summaryrefslogblamecommitdiffstats
path: root/target/arm/mve_helper.c
blob: bc89ce94d5ac45bfe5fb1173e47aee54ed03599c (plain) (tree)

























                                                                               
                    
 




























                                                                      





































                                                                           

                                                                     

     




                                                          







                                                    

                                          










                                                                          
                                                                           

                                              




                                                                              
     


                                                      
     





                                                            















































                                                                              










                                       

              































































                                                                   















                                                                    











                                                                         






                                       





                                     






                                     



                                 











                                                         











                                                        
 























                                                                         













                                                                         





                                                 





                                                 



















                                                                                 


















                                                                                 











                                                 










                                  







                                
 













                                                       


















                                                                       














                                                       





                                       






                                         







                                              




                                                          
























                                                         
 

                                                                                

                                                                                


                         

                           
 





                                                         



















































                                                                            



























                                                                                 

                                               
 


























                                                                                
 

















                                                                              







                                               













                                            

















                                                                         



                                                      

                                                        


                                 

                                   
 










































































                                                                            





























                                                                        













                                                            













                                                            













                                                                         




















                                                                         




                                                        



                                                 

                                    

                                    



                                          
 













                                                          






                                                             
































































                                                                               





























                                                                          










































                                                        































                                                                              




                                              

  




                                                                          
   
                                                                         





                                                                         
                                                                         
                                                                         
                                                                         
                                                                         



                                                                         
                                                                         
                                                                         
                                                                         

                                                                         


                                                                         
                                                                         

     

                                                      
 
                                                        
 

                                                     

















                                                                 


                             


                              
 


















                                                                 







































                                                                 



                                                 










                                                 
                              


                                        

                                
 








                                                                         
                                                                         
                                                                         



                                                                         



























                                                                          






























                                                                           













                                                                         
                                                                 























                                                                 









                                                      

                              
























                                                                       
                                                                 



                                                                 
                                                                 































































                                                                 





































                                                                    
 









                                                                        








                                                                         














                                                                          

                        








                                                      






                                         
         
                            

                                                         






                                  
                                                                       





















                                                                 

                                                         


















                                                                            









                                                                        









                                                                         
/*
 * M-profile MVE Operations
 *
 * Copyright (c) 2021 Linaro, Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "vec_internal.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"

static uint16_t mve_eci_mask(CPUARMState *env)
{
    /*
     * Return the mask of which elements in the MVE vector correspond
     * to beats being executed. The mask has 1 bits for executed lanes
     * and 0 bits where ECI says this beat was already executed.
     */
    int eci;

    if ((env->condexec_bits & 0xf) != 0) {
        return 0xffff;
    }

    eci = env->condexec_bits >> 4;
    switch (eci) {
    case ECI_NONE:
        return 0xffff;
    case ECI_A0:
        return 0xfff0;
    case ECI_A0A1:
        return 0xff00;
    case ECI_A0A1A2:
    case ECI_A0A1A2B0:
        return 0xf000;
    default:
        g_assert_not_reached();
    }
}

static uint16_t mve_element_mask(CPUARMState *env)
{
    /*
     * Return the mask of which elements in the MVE vector should be
     * updated. This is a combination of multiple things:
     *  (1) by default, we update every lane in the vector
     *  (2) VPT predication stores its state in the VPR register;
     *  (3) low-overhead-branch tail predication will mask out part
     *      the vector on the final iteration of the loop
     *  (4) if EPSR.ECI is set then we must execute only some beats
     *      of the insn
     * We combine all these into a 16-bit result with the same semantics
     * as VPR.P0: 0 to mask the lane, 1 if it is active.
     * 8-bit vector ops will look at all bits of the result;
     * 16-bit ops will look at bits 0, 2, 4, ...;
     * 32-bit ops will look at bits 0, 4, 8 and 12.
     * Compare pseudocode GetCurInstrBeat(), though that only returns
     * the 4-bit slice of the mask corresponding to a single beat.
     */
    uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);

    if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
        mask |= 0xff;
    }
    if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
        mask |= 0xff00;
    }

    if (env->v7m.ltpsize < 4 &&
        env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
        /*
         * Tail predication active, and this is the last loop iteration.
         * The element size is (1 << ltpsize), and we only want to process
         * loopcount elements, so we want to retain the least significant
         * (loopcount * esize) predicate bits and zero out bits above that.
         */
        int masklen = env->regs[14] << env->v7m.ltpsize;
        assert(masklen <= 16);
        uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
        mask &= ltpmask;
    }

    /*
     * ECI bits indicate which beats are already executed;
     * we handle this by effectively predicating them out.
     */
    mask &= mve_eci_mask(env);
    return mask;
}

static void mve_advance_vpt(CPUARMState *env)
{
    /* Advance the VPT and ECI state if necessary */
    uint32_t vpr = env->v7m.vpr;
    unsigned mask01, mask23;
    uint16_t inv_mask;
    uint16_t eci_mask = mve_eci_mask(env);

    if ((env->condexec_bits & 0xf) == 0) {
        env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
            (ECI_A0 << 4) : (ECI_NONE << 4);
    }

    if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
        /* VPT not enabled, nothing to do */
        return;
    }

    /* Invert P0 bits if needed, but only for beats we actually executed */
    mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
    mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
    /* Start by assuming we invert all bits corresponding to executed beats */
    inv_mask = eci_mask;
    if (mask01 <= 8) {
        /* MASK01 says don't invert low half of P0 */
        inv_mask &= ~0xff;
    }
    if (mask23 <= 8) {
        /* MASK23 says don't invert high half of P0 */
        inv_mask &= ~0xff00;
    }
    vpr ^= inv_mask;
    /* Only update MASK01 if beat 1 executed */
    if (eci_mask & 0xf0) {
        vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
    }
    /* Beat 3 always executes, so update MASK23 */
    vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
    env->v7m.vpr = vpr;
}


#define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
    void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
    {                                                                   \
        TYPE *d = vd;                                                   \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned b, e;                                                  \
        /*                                                              \
         * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
         * beats so we don't care if we update part of the dest and     \
         * then take an exception.                                      \
         */                                                             \
        for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
            if (mask & (1 << b)) {                                      \
                d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
            }                                                           \
            addr += MSIZE;                                              \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
    void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
    {                                                                   \
        TYPE *d = vd;                                                   \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned b, e;                                                  \
        for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
            if (mask & (1 << b)) {                                      \
                cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
            }                                                           \
            addr += MSIZE;                                              \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
DO_VLDR(vldrw, 4, ldl, 4, uint32_t)

DO_VSTR(vstrb, 1, stb, 1, uint8_t)
DO_VSTR(vstrh, 2, stw, 2, uint16_t)
DO_VSTR(vstrw, 4, stl, 4, uint32_t)

DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)

DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
DO_VSTR(vstrh_w, 2, stw, 4, int32_t)

#undef DO_VLDR
#undef DO_VSTR

/*
 * The mergemask(D, R, M) macro performs the operation "*D = R" but
 * storing only the bytes which correspond to 1 bits in M,
 * leaving other bytes in *D unchanged. We use _Generic
 * to select the correct implementation based on the type of D.
 */

static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
{
    if (mask & 1) {
        *d = r;
    }
}

static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
{
    mergemask_ub((uint8_t *)d, r, mask);
}

static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
{
    uint16_t bmask = expand_pred_b_data[mask & 3];
    *d = (*d & ~bmask) | (r & bmask);
}

static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
{
    mergemask_uh((uint16_t *)d, r, mask);
}

static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
{
    uint32_t bmask = expand_pred_b_data[mask & 0xf];
    *d = (*d & ~bmask) | (r & bmask);
}

static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
{
    mergemask_uw((uint32_t *)d, r, mask);
}

static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
{
    uint64_t bmask = expand_pred_b_data[mask & 0xff];
    *d = (*d & ~bmask) | (r & bmask);
}

static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
{
    mergemask_uq((uint64_t *)d, r, mask);
}

#define mergemask(D, R, M)                      \
    _Generic(D,                                 \
             uint8_t *: mergemask_ub,           \
             int8_t *:  mergemask_sb,           \
             uint16_t *: mergemask_uh,          \
             int16_t *:  mergemask_sh,          \
             uint32_t *: mergemask_uw,          \
             int32_t *:  mergemask_sw,          \
             uint64_t *: mergemask_uq,          \
             int64_t *:  mergemask_sq)(D, R, M)

void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
{
    /*
     * The generated code already replicated an 8 or 16 bit constant
     * into the 32-bit value, so we only need to write the 32-bit
     * value to all elements of the Qreg, allowing for predication.
     */
    uint32_t *d = vd;
    uint16_t mask = mve_element_mask(env);
    unsigned e;
    for (e = 0; e < 16 / 4; e++, mask >>= 4) {
        mergemask(&d[H4(e)], val, mask);
    }
    mve_advance_vpt(env);
}

#define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
    void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
    {                                                                   \
        TYPE *d = vd, *m = vm;                                          \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_CLS_B(N)   (clrsb32(N) - 24)
#define DO_CLS_H(N)   (clrsb32(N) - 16)

DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
DO_1OP(vclsw, 4, int32_t, clrsb32)

#define DO_CLZ_B(N)   (clz32(N) - 24)
#define DO_CLZ_H(N)   (clz32(N) - 16)

DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
DO_1OP(vclzw, 4, uint32_t, clz32)

DO_1OP(vrev16b, 2, uint16_t, bswap16)
DO_1OP(vrev32b, 4, uint32_t, bswap32)
DO_1OP(vrev32h, 4, uint32_t, hswap32)
DO_1OP(vrev64b, 8, uint64_t, bswap64)
DO_1OP(vrev64h, 8, uint64_t, hswap64)
DO_1OP(vrev64w, 8, uint64_t, wswap64)

#define DO_NOT(N) (~(N))

DO_1OP(vmvn, 8, uint64_t, DO_NOT)

#define DO_ABS(N) ((N) < 0 ? -(N) : (N))
#define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
#define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))

DO_1OP(vabsb, 1, int8_t, DO_ABS)
DO_1OP(vabsh, 2, int16_t, DO_ABS)
DO_1OP(vabsw, 4, int32_t, DO_ABS)

/* We can do these 64 bits at a time */
DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
DO_1OP(vfabss, 8, uint64_t, DO_FABSS)

#define DO_NEG(N)    (-(N))
#define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
#define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))

DO_1OP(vnegb, 1, int8_t, DO_NEG)
DO_1OP(vnegh, 2, int16_t, DO_NEG)
DO_1OP(vnegw, 4, int32_t, DO_NEG)

/* We can do these 64 bits at a time */
DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)

/*
 * 1 operand immediates: Vda is destination and possibly also one source.
 * All these insns work at 64-bit widths.
 */
#define DO_1OP_IMM(OP, FN)                                              \
    void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
    {                                                                   \
        uint64_t *da = vda;                                             \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
            mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_MOVI(N, I) (I)
#define DO_ANDI(N, I) ((N) & (I))
#define DO_ORRI(N, I) ((N) | (I))

DO_1OP_IMM(vmovi, DO_MOVI)
DO_1OP_IMM(vandi, DO_ANDI)
DO_1OP_IMM(vorri, DO_ORRI)

#define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
    void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
                                void *vd, void *vn, void *vm)           \
    {                                                                   \
        TYPE *d = vd, *n = vn, *m = vm;                                 \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            mergemask(&d[H##ESIZE(e)],                                  \
                      FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_U(OP, FN)                        \
    DO_2OP(OP##b, 1, uint8_t, FN)               \
    DO_2OP(OP##h, 2, uint16_t, FN)              \
    DO_2OP(OP##w, 4, uint32_t, FN)

/* provide signed 2-op helpers for all sizes */
#define DO_2OP_S(OP, FN)                        \
    DO_2OP(OP##b, 1, int8_t, FN)                \
    DO_2OP(OP##h, 2, int16_t, FN)               \
    DO_2OP(OP##w, 4, int32_t, FN)

/*
 * "Long" operations where two half-sized inputs (taken from either the
 * top or the bottom of the input vector) produce a double-width result.
 * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
 */
#define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
    {                                                                   \
        LTYPE *d = vd;                                                  \
        TYPE *n = vn, *m = vm;                                          \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned le;                                                    \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
            LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
                         m[H##ESIZE(le * 2 + TOP)]);                    \
            mergemask(&d[H##LESIZE(le)], r, mask);                      \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
    {                                                                   \
        TYPE *d = vd, *n = vn, *m = vm;                                 \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        bool qc = false;                                                \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            bool sat = false;                                           \
            TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
            mergemask(&d[H##ESIZE(e)], r, mask);                        \
            qc |= sat & mask & 1;                                       \
        }                                                               \
        if (qc) {                                                       \
            env->vfp.qc[0] = qc;                                        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_SAT_U(OP, FN)                    \
    DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
    DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
    DO_2OP_SAT(OP##w, 4, uint32_t, FN)

/* provide signed 2-op helpers for all sizes */
#define DO_2OP_SAT_S(OP, FN)                    \
    DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
    DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
    DO_2OP_SAT(OP##w, 4, int32_t, FN)

#define DO_AND(N, M)  ((N) & (M))
#define DO_BIC(N, M)  ((N) & ~(M))
#define DO_ORR(N, M)  ((N) | (M))
#define DO_ORN(N, M)  ((N) | ~(M))
#define DO_EOR(N, M)  ((N) ^ (M))

DO_2OP(vand, 8, uint64_t, DO_AND)
DO_2OP(vbic, 8, uint64_t, DO_BIC)
DO_2OP(vorr, 8, uint64_t, DO_ORR)
DO_2OP(vorn, 8, uint64_t, DO_ORN)
DO_2OP(veor, 8, uint64_t, DO_EOR)

#define DO_ADD(N, M) ((N) + (M))
#define DO_SUB(N, M) ((N) - (M))
#define DO_MUL(N, M) ((N) * (M))

DO_2OP_U(vadd, DO_ADD)
DO_2OP_U(vsub, DO_SUB)
DO_2OP_U(vmul, DO_MUL)

DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)

DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)

/*
 * Because the computation type is at least twice as large as required,
 * these work for both signed and unsigned source types.
 */
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
    return (n * m) >> 8;
}

static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
    return (n * m) >> 16;
}

static inline uint32_t do_mulh_w(int64_t n, int64_t m)
{
    return (n * m) >> 32;
}

static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
{
    return (n * m + (1U << 7)) >> 8;
}

static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
{
    return (n * m + (1U << 15)) >> 16;
}

static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
{
    return (n * m + (1U << 31)) >> 32;
}

DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)

DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)

#define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))

DO_2OP_S(vmaxs, DO_MAX)
DO_2OP_U(vmaxu, DO_MAX)
DO_2OP_S(vmins, DO_MIN)
DO_2OP_U(vminu, DO_MIN)

#define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))

DO_2OP_S(vabds, DO_ABD)
DO_2OP_U(vabdu, DO_ABD)

static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
{
    return ((uint64_t)n + m) >> 1;
}

static inline int32_t do_vhadd_s(int32_t n, int32_t m)
{
    return ((int64_t)n + m) >> 1;
}

static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
{
    return ((uint64_t)n - m) >> 1;
}

static inline int32_t do_vhsub_s(int32_t n, int32_t m)
{
    return ((int64_t)n - m) >> 1;
}

DO_2OP_S(vhadds, do_vhadd_s)
DO_2OP_U(vhaddu, do_vhadd_u)
DO_2OP_S(vhsubs, do_vhsub_s)
DO_2OP_U(vhsubu, do_vhsub_u)

#define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
#define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)

DO_2OP_S(vshls, DO_VSHLS)
DO_2OP_U(vshlu, DO_VSHLU)
DO_2OP_S(vrshls, DO_VRSHLS)
DO_2OP_U(vrshlu, DO_VRSHLU)

#define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
#define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)

DO_2OP_S(vrhadds, DO_RHADD_S)
DO_2OP_U(vrhaddu, DO_RHADD_U)

static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
                    uint32_t inv, uint32_t carry_in, bool update_flags)
{
    uint16_t mask = mve_element_mask(env);
    unsigned e;

    /* If any additions trigger, we will update flags. */
    if (mask & 0x1111) {
        update_flags = true;
    }

    for (e = 0; e < 16 / 4; e++, mask >>= 4) {
        uint64_t r = carry_in;
        r += n[H4(e)];
        r += m[H4(e)] ^ inv;
        if (mask & 1) {
            carry_in = r >> 32;
        }
        mergemask(&d[H4(e)], r, mask);
    }

    if (update_flags) {
        /* Store C, clear NZV. */
        env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
        env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
    }
    mve_advance_vpt(env);
}

void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
    bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
    do_vadc(env, vd, vn, vm, 0, carry_in, false);
}

void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
    bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
    do_vadc(env, vd, vn, vm, -1, carry_in, false);
}


void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
    do_vadc(env, vd, vn, vm, 0, 0, true);
}

void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
    do_vadc(env, vd, vn, vm, -1, 1, true);
}

#define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
    {                                                                   \
        TYPE *d = vd, *n = vn, *m = vm;                                 \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        TYPE r[16 / ESIZE];                                             \
        /* Calculate all results first to avoid overwriting inputs */   \
        for (e = 0; e < 16 / ESIZE; e++) {                              \
            if (!(e & 1)) {                                             \
                r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
            } else {                                                    \
                r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
            }                                                           \
        }                                                               \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_VCADD_ALL(OP, FN0, FN1)              \
    DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
    DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
    DO_VCADD(OP##w, 4, int32_t, FN0, FN1)

DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)

static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
{
    if (val > max) {
        *s = true;
        return max;
    } else if (val < min) {
        *s = true;
        return min;
    }
    return val;
}

#define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
#define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
#define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)

#define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
#define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
#define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)

#define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
#define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
#define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)

#define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
#define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
#define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)

/*
 * For QDMULH and QRDMULH we simplify "double and shift by esize" into
 * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
 */
#define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
                                        INT8_MIN, INT8_MAX, s)
#define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
                                        INT16_MIN, INT16_MAX, s)
#define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
                                        INT32_MIN, INT32_MAX, s)

#define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
                                         INT8_MIN, INT8_MAX, s)
#define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
                                         INT16_MIN, INT16_MAX, s)
#define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
                                         INT32_MIN, INT32_MAX, s)

DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)

DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)

DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)

DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)

/*
 * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
 * and friends wanting a uint32_t* sat and our needing a bool*.
 */
#define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
    ({                                                                  \
        uint32_t su32 = 0;                                              \
        typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
        if (su32) {                                                     \
            *satp = true;                                               \
        }                                                               \
        r;                                                              \
    })

#define DO_SQSHL_OP(N, M, satp) \
    WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
#define DO_UQSHL_OP(N, M, satp) \
    WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
#define DO_SQRSHL_OP(N, M, satp) \
    WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
#define DO_UQRSHL_OP(N, M, satp) \
    WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
#define DO_SUQSHL_OP(N, M, satp) \
    WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)

DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)

/*
 * Multiply add dual returning high half
 * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
 * whether to add the rounding constant, and the pointer to the
 * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
 * saturate to twice the input size and return the high half; or
 * (A * B - C * D) etc for VQDMLSDH.
 */
#define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
                                void *vm)                               \
    {                                                                   \
        TYPE *d = vd, *n = vn, *m = vm;                                 \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        bool qc = false;                                                \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            bool sat = false;                                           \
            if ((e & 1) == XCHG) {                                      \
                TYPE r = FN(n[H##ESIZE(e)],                             \
                            m[H##ESIZE(e - XCHG)],                      \
                            n[H##ESIZE(e + (1 - 2 * XCHG))],            \
                            m[H##ESIZE(e + (1 - XCHG))],                \
                            ROUND, &sat);                               \
                mergemask(&d[H##ESIZE(e)], r, mask);                    \
                qc |= sat & mask & 1;                                   \
            }                                                           \
        }                                                               \
        if (qc) {                                                       \
            env->vfp.qc[0] = qc;                                        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
                            int round, bool *sat)
{
    int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
    return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}

static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
                             int round, bool *sat)
{
    int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
    return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}

static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
                             int round, bool *sat)
{
    int64_t m1 = (int64_t)a * b;
    int64_t m2 = (int64_t)c * d;
    int64_t r;
    /*
     * Architecturally we should do the entire add, double, round
     * and then check for saturation. We do three saturating adds,
     * but we need to be careful about the order. If the first
     * m1 + m2 saturates then it's impossible for the *2+rc to
     * bring it back into the non-saturated range. However, if
     * m1 + m2 is negative then it's possible that doing the doubling
     * would take the intermediate result below INT64_MAX and the
     * addition of the rounding constant then brings it back in range.
     * So we add half the rounding constant before doubling rather
     * than adding the rounding constant after the doubling.
     */
    if (sadd64_overflow(m1, m2, &r) ||
        sadd64_overflow(r, (round << 30), &r) ||
        sadd64_overflow(r, r, &r)) {
        *sat = true;
        return r < 0 ? INT32_MAX : INT32_MIN;
    }
    return r >> 32;
}

static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
                            int round, bool *sat)
{
    int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
    return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}

static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
                             int round, bool *sat)
{
    int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
    return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}

static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
                             int round, bool *sat)
{
    int64_t m1 = (int64_t)a * b;
    int64_t m2 = (int64_t)c * d;
    int64_t r;
    /* The same ordering issue as in do_vqdmladh_w applies here too */
    if (ssub64_overflow(m1, m2, &r) ||
        sadd64_overflow(r, (round << 30), &r) ||
        sadd64_overflow(r, r, &r)) {
        *sat = true;
        return r < 0 ? INT32_MAX : INT32_MIN;
    }
    return r >> 32;
}

DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)

DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)

DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)

DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)

#define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
                                uint32_t rm)                            \
    {                                                                   \
        TYPE *d = vd, *n = vn;                                          \
        TYPE m = rm;                                                    \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
                                uint32_t rm)                            \
    {                                                                   \
        TYPE *d = vd, *n = vn;                                          \
        TYPE m = rm;                                                    \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        bool qc = false;                                                \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            bool sat = false;                                           \
            mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
                      mask);                                            \
            qc |= sat & mask & 1;                                       \
        }                                                               \
        if (qc) {                                                       \
            env->vfp.qc[0] = qc;                                        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

/* provide unsigned 2-op scalar helpers for all sizes */
#define DO_2OP_SCALAR_U(OP, FN)                 \
    DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
    DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
    DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
#define DO_2OP_SCALAR_S(OP, FN)                 \
    DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
    DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
    DO_2OP_SCALAR(OP##w, 4, int32_t, FN)

DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)

DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)

DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)

DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)

/*
 * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
 * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
 * SATMASK specifies which bits of the predicate mask matter for determining
 * whether to propagate a saturation indication into FPSCR.QC -- for
 * the 16x16->32 case we must check only the bit corresponding to the T or B
 * half that we used, but for the 32x32->64 case we propagate if the mask
 * bit is set for either half.
 */
#define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
                                uint32_t rm)                            \
    {                                                                   \
        LTYPE *d = vd;                                                  \
        TYPE *n = vn;                                                   \
        TYPE m = rm;                                                    \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned le;                                                    \
        bool qc = false;                                                \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
            bool sat = false;                                           \
            LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
            mergemask(&d[H##LESIZE(le)], r, mask);                      \
            qc |= sat && (mask & SATMASK);                              \
        }                                                               \
        if (qc) {                                                       \
            env->vfp.qc[0] = qc;                                        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
{
    int64_t r = ((int64_t)n * m) * 2;
    return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
}

static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
{
    /* The multiply can't overflow, but the doubling might */
    int64_t r = (int64_t)n * m;
    if (r > INT64_MAX / 2) {
        *sat = true;
        return INT64_MAX;
    } else if (r < INT64_MIN / 2) {
        *sat = true;
        return INT64_MIN;
    } else {
        return r * 2;
    }
}

#define SATMASK16B 1
#define SATMASK16T (1 << 2)
#define SATMASK32 ((1 << 4) | 1)

DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
                    do_qdmullh, SATMASK16B)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
                    do_qdmullw, SATMASK32)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
                    do_qdmullh, SATMASK16T)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
                    do_qdmullw, SATMASK32)

/*
 * Long saturating ops
 */
#define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
                                void *vm)                               \
    {                                                                   \
        LTYPE *d = vd;                                                  \
        TYPE *n = vn, *m = vm;                                          \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned le;                                                    \
        bool qc = false;                                                \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
            bool sat = false;                                           \
            LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
            LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
            mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
            qc |= sat && (mask & SATMASK);                              \
        }                                                               \
        if (qc) {                                                       \
            env->vfp.qc[0] = qc;                                        \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)

static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
{
    m &= 0xff;
    if (m == 0) {
        return 0;
    }
    n = revbit8(n);
    if (m < 8) {
        n >>= 8 - m;
    }
    return n;
}

static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
{
    m &= 0xff;
    if (m == 0) {
        return 0;
    }
    n = revbit16(n);
    if (m < 16) {
        n >>= 16 - m;
    }
    return n;
}

static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
{
    m &= 0xff;
    if (m == 0) {
        return 0;
    }
    n = revbit32(n);
    if (m < 32) {
        n >>= 32 - m;
    }
    return n;
}

DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)

/*
 * Multiply add long dual accumulate ops.
 */
#define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
    uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
                                    void *vm, uint64_t a)               \
    {                                                                   \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        TYPE *n = vn, *m = vm;                                          \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
            if (mask & 1) {                                             \
                if (e & 1) {                                            \
                    a ODDACC                                            \
                        (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
                } else {                                                \
                    a EVENACC                                           \
                        (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
                }                                                       \
            }                                                           \
        }                                                               \
        mve_advance_vpt(env);                                           \
        return a;                                                       \
    }

DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)

DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)

DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)

/*
 * Rounding multiply add long dual accumulate high. In the pseudocode
 * this is implemented with a 72-bit internal accumulator value of which
 * the top 64 bits are returned. We optimize this to avoid having to
 * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
 * is squashed back into 64-bits after each beat.
 */
#define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
    uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
                                    void *vm, uint64_t a)               \
    {                                                                   \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned e;                                                     \
        TYPE *n = vn, *m = vm;                                          \
        for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
            if (mask & 1) {                                             \
                LTYPE mul;                                              \
                if (e & 1) {                                            \
                    mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
                    if (SUB) {                                          \
                        mul = -mul;                                     \
                    }                                                   \
                } else {                                                \
                    mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
                }                                                       \
                mul = (mul >> 8) + ((mul >> 7) & 1);                    \
                a += mul;                                               \
            }                                                           \
        }                                                               \
        mve_advance_vpt(env);                                           \
        return a;                                                       \
    }

DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)

DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)

DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)

/* Vector add across vector */
#define DO_VADDV(OP, ESIZE, TYPE)                               \
    uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
                                    uint32_t ra)                \
    {                                                           \
        uint16_t mask = mve_element_mask(env);                  \
        unsigned e;                                             \
        TYPE *m = vm;                                           \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
            if (mask & 1) {                                     \
                ra += m[H##ESIZE(e)];                           \
            }                                                   \
        }                                                       \
        mve_advance_vpt(env);                                   \
        return ra;                                              \
    }                                                           \

DO_VADDV(vaddvsb, 1, int8_t)
DO_VADDV(vaddvsh, 2, int16_t)
DO_VADDV(vaddvsw, 4, int32_t)
DO_VADDV(vaddvub, 1, uint8_t)
DO_VADDV(vaddvuh, 2, uint16_t)
DO_VADDV(vaddvuw, 4, uint32_t)

#define DO_VADDLV(OP, TYPE, LTYPE)                              \
    uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
                                    uint64_t ra)                \
    {                                                           \
        uint16_t mask = mve_element_mask(env);                  \
        unsigned e;                                             \
        TYPE *m = vm;                                           \
        for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
            if (mask & 1) {                                     \
                ra += (LTYPE)m[H4(e)];                          \
            }                                                   \
        }                                                       \
        mve_advance_vpt(env);                                   \
        return ra;                                              \
    }                                                           \

DO_VADDLV(vaddlv_s, int32_t, int64_t)
DO_VADDLV(vaddlv_u, uint32_t, uint64_t)

/* Shifts by immediate */
#define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
                                void *vm, uint32_t shift)       \
    {                                                           \
        TYPE *d = vd, *m = vm;                                  \
        uint16_t mask = mve_element_mask(env);                  \
        unsigned e;                                             \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
            mergemask(&d[H##ESIZE(e)],                          \
                      FN(m[H##ESIZE(e)], shift), mask);         \
        }                                                       \
        mve_advance_vpt(env);                                   \
    }

#define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
                                void *vm, uint32_t shift)       \
    {                                                           \
        TYPE *d = vd, *m = vm;                                  \
        uint16_t mask = mve_element_mask(env);                  \
        unsigned e;                                             \
        bool qc = false;                                        \
        for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
            bool sat = false;                                   \
            mergemask(&d[H##ESIZE(e)],                          \
                      FN(m[H##ESIZE(e)], shift, &sat), mask);   \
            qc |= sat & mask & 1;                               \
        }                                                       \
        if (qc) {                                               \
            env->vfp.qc[0] = qc;                                \
        }                                                       \
        mve_advance_vpt(env);                                   \
    }

/* provide unsigned 2-op shift helpers for all sizes */
#define DO_2SHIFT_U(OP, FN)                     \
    DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
    DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
    DO_2SHIFT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_S(OP, FN)                     \
    DO_2SHIFT(OP##b, 1, int8_t, FN)             \
    DO_2SHIFT(OP##h, 2, int16_t, FN)            \
    DO_2SHIFT(OP##w, 4, int32_t, FN)

#define DO_2SHIFT_SAT_U(OP, FN)                 \
    DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
    DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
    DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_SAT_S(OP, FN)                 \
    DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
    DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
    DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)

DO_2SHIFT_U(vshli_u, DO_VSHLU)
DO_2SHIFT_S(vshli_s, DO_VSHLS)
DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
DO_2SHIFT_S(vrshli_s, DO_VRSHLS)

/* Shift-and-insert; we always work with 64 bits at a time */
#define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
                                void *vm, uint32_t shift)               \
    {                                                                   \
        uint64_t *d = vd, *m = vm;                                      \
        uint16_t mask;                                                  \
        uint64_t shiftmask;                                             \
        unsigned e;                                                     \
        if (shift == ESIZE * 8) {                                       \
            /*                                                          \
             * Only VSRI can shift by <dt>; it should mean "don't       \
             * update the destination". The generic logic can't handle  \
             * this because it would try to shift by an out-of-range    \
             * amount, so special case it here.                         \
             */                                                         \
            goto done;                                                  \
        }                                                               \
        assert(shift < ESIZE * 8);                                      \
        mask = mve_element_mask(env);                                   \
        /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
        shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
        for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
            uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
                (d[H8(e)] & ~shiftmask);                                \
            mergemask(&d[H8(e)], r, mask);                              \
        }                                                               \
done:                                                                   \
        mve_advance_vpt(env);                                           \
    }

#define DO_SHL(N, SHIFT) ((N) << (SHIFT))
#define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
#define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
#define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))

DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)

/*
 * Long shifts taking half-sized inputs from top or bottom of the input
 * vector and producing a double-width result. ESIZE, TYPE are for
 * the input, and LESIZE, LTYPE for the output.
 * Unlike the normal shift helpers, we do not handle negative shift counts,
 * because the long shift is strictly left-only.
 */
#define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
                                void *vm, uint32_t shift)               \
    {                                                                   \
        LTYPE *d = vd;                                                  \
        TYPE *m = vm;                                                   \
        uint16_t mask = mve_element_mask(env);                          \
        unsigned le;                                                    \
        assert(shift <= 16);                                            \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
            LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
            mergemask(&d[H##LESIZE(le)], r, mask);                      \
        }                                                               \
        mve_advance_vpt(env);                                           \
    }

#define DO_VSHLL_ALL(OP, TOP)                                \
    DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
    DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
    DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
    DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \

DO_VSHLL_ALL(vshllb, false)
DO_VSHLL_ALL(vshllt, true)

/*
 * Narrowing right shifts, taking a double sized input, shifting it
 * and putting the result in either the top or bottom half of the output.
 * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
 */
#define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
                                void *vm, uint32_t shift)       \
    {                                                           \
        LTYPE *m = vm;                                          \
        TYPE *d = vd;                                           \
        uint16_t mask = mve_element_mask(env);                  \
        unsigned le;                                            \
        mask >>= ESIZE * TOP;                                   \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
            TYPE r = FN(m[H##LESIZE(le)], shift);               \
            mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
        }                                                       \
        mve_advance_vpt(env);                                   \
    }

#define DO_VSHRN_ALL(OP, FN)                                    \
    DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
    DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
    DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
    DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)

static inline uint64_t do_urshr(uint64_t x, unsigned sh)
{
    if (likely(sh < 64)) {
        return (x >> sh) + ((x >> (sh - 1)) & 1);
    } else if (sh == 64) {
        return x >> 63;
    } else {
        return 0;
    }
}

static inline int64_t do_srshr(int64_t x, unsigned sh)
{
    if (likely(sh < 64)) {
        return (x >> sh) + ((x >> (sh - 1)) & 1);
    } else {
        /* Rounding the sign bit always produces 0. */
        return 0;
    }
}

DO_VSHRN_ALL(vshrn, DO_SHR)
DO_VSHRN_ALL(vrshrn, do_urshr)

static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
                                 bool *satp)
{
    if (val > max) {
        *satp = true;
        return max;
    } else if (val < min) {
        *satp = true;
        return min;
    } else {
        return val;
    }
}

/* Saturating narrowing right shifts */
#define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
    void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
                                void *vm, uint32_t shift)       \
    {                                                           \
        LTYPE *m = vm;                                          \
        TYPE *d = vd;                                           \
        uint16_t mask = mve_element_mask(env);                  \
        bool qc = false;                                        \
        unsigned le;                                            \
        mask >>= ESIZE * TOP;                                   \
        for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
            bool sat = false;                                   \
            TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
            mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
            qc |= sat & mask & 1;                               \
        }                                                       \
        if (qc) {                                               \
            env->vfp.qc[0] = qc;                                \
        }                                                       \
        mve_advance_vpt(env);                                   \
    }

#define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
    DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
    DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)

#define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
    DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
    DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)

#define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
    DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
    DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)

#define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
    DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
    DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)

#define DO_SHRN_SB(N, M, SATP)                                  \
    do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
#define DO_SHRN_UB(N, M, SATP)                                  \
    do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
#define DO_SHRUN_B(N, M, SATP)                                  \
    do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)

#define DO_SHRN_SH(N, M, SATP)                                  \
    do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
#define DO_SHRN_UH(N, M, SATP)                                  \
    do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
#define DO_SHRUN_H(N, M, SATP)                                  \
    do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)

#define DO_RSHRN_SB(N, M, SATP)                                 \
    do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
#define DO_RSHRN_UB(N, M, SATP)                                 \
    do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
#define DO_RSHRUN_B(N, M, SATP)                                 \
    do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)

#define DO_RSHRN_SH(N, M, SATP)                                 \
    do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
#define DO_RSHRN_UH(N, M, SATP)                                 \
    do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
#define DO_RSHRUN_H(N, M, SATP)                                 \
    do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)

DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)

DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)

uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
                           uint32_t shift)
{
    uint32_t *d = vd;
    uint16_t mask = mve_element_mask(env);
    unsigned e;
    uint32_t r;

    /*
     * For each 32-bit element, we shift it left, bringing in the
     * low 'shift' bits of rdm at the bottom. Bits shifted out at
     * the top become the new rdm, if the predicate mask permits.
     * The final rdm value is returned to update the register.
     * shift == 0 here means "shift by 32 bits".
     */
    if (shift == 0) {
        for (e = 0; e < 16 / 4; e++, mask >>= 4) {
            r = rdm;
            if (mask & 1) {
                rdm = d[H4(e)];
            }
            mergemask(&d[H4(e)], r, mask);
        }
    } else {
        uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);

        for (e = 0; e < 16 / 4; e++, mask >>= 4) {
            r = (d[H4(e)] << shift) | (rdm & shiftmask);
            if (mask & 1) {
                rdm = d[H4(e)] >> (32 - shift);
            }
            mergemask(&d[H4(e)], r, mask);
        }
    }
    mve_advance_vpt(env);
    return rdm;
}

uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
}

uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_uqrshl_d(n, (int8_t)shift, false, NULL);
}

uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
}

uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
}

uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
}

uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
}

/* Operate on 64-bit values, but saturate at 48 bits */
static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
                                    bool round, uint32_t *sat)
{
    int64_t val, extval;

    if (shift <= -48) {
        /* Rounding the sign bit always produces 0. */
        if (round) {
            return 0;
        }
        return src >> 63;
    } else if (shift < 0) {
        if (round) {
            src >>= -shift - 1;
            val = (src >> 1) + (src & 1);
        } else {
            val = src >> -shift;
        }
        extval = sextract64(val, 0, 48);
        if (!sat || val == extval) {
            return extval;
        }
    } else if (shift < 48) {
        int64_t extval = sextract64(src << shift, 0, 48);
        if (!sat || src == (extval >> shift)) {
            return extval;
        }
    } else if (!sat || src == 0) {
        return 0;
    }

    *sat = 1;
    return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
}

/* Operate on 64-bit values, but saturate at 48 bits */
static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
                                     bool round, uint32_t *sat)
{
    uint64_t val, extval;

    if (shift <= -(48 + round)) {
        return 0;
    } else if (shift < 0) {
        if (round) {
            val = src >> (-shift - 1);
            val = (val >> 1) + (val & 1);
        } else {
            val = src >> -shift;
        }
        extval = extract64(val, 0, 48);
        if (!sat || val == extval) {
            return extval;
        }
    } else if (shift < 48) {
        uint64_t extval = extract64(src << shift, 0, 48);
        if (!sat || src == (extval >> shift)) {
            return extval;
        }
    } else if (!sat || src == 0) {
        return 0;
    }

    *sat = 1;
    return MAKE_64BIT_MASK(0, 48);
}

uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
}

uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
{
    return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
}

uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
{
    return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
}

uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
{
    return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
}

uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
{
    return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
}

uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
{
    return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
}