summaryrefslogblamecommitdiffstats
path: root/target/i386/hvf/x86_emu.c
blob: e063d01221a9fc32ec6baaebfbcafd750b4b2629 (plain) (tree)
1
2
3
4
5
6
7
8
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467




                                                                


                                                                   


                                                                  

                                                                    
  

                                                                               























































































































































































































































































                                                                                 
                                                         


























































































































































































































                                                                                             
                                                               

                          
                                                            











                                                                                       
                                         




                                                                                         
                                             














                                                                                
                                                                  




                                                                                        
                                             


















                                                                                
                                                               
                                                                                    
                                      



                                                            

                                             

















                                                                                
                                                               
                                                                                    
                                      







                                                                          

                                             

















                                                                                

                                                                                       

                                                                      
                                             

















                                                                                
                                                                                       



                                                                                   
                                             




                                                                         
                              













                                                                                
                                                           
                                                                      
                                                     
 
                                             





















































































































































                                                                          
                                  















































































































































































































































































































































































































































































































































































































































                                                                               







                                                    





























































                                                                              
/*
 * Copyright (C) 2016 Veertu Inc,
 * Copyright (C) 2017 Google Inc,
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001-2012  The Bochs Project
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////

#include "qemu/osdep.h"

#include "qemu-common.h"
#include "x86_decode.h"
#include "x86.h"
#include "x86_emu.h"
#include "x86_mmu.h"
#include "x86_flags.h"
#include "vmcs.h"
#include "vmx.h"

void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data,
                   int direction, int size, uint32_t count);

#define EXEC_2OP_LOGIC_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
{                                                       \
    fetch_operands(env, decode, 2, true, true, false);  \
    switch (decode->operand_size) {                     \
    case 1:                                         \
    {                                               \
        uint8_t v1 = (uint8_t)decode->op[0].val;    \
        uint8_t v2 = (uint8_t)decode->op[1].val;    \
        uint8_t diff = v1 cmd v2;                   \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 1);  \
        } \
        FLAGS_FUNC##_8(diff);                       \
        break;                                      \
    }                                               \
    case 2:                                        \
    {                                               \
        uint16_t v1 = (uint16_t)decode->op[0].val;  \
        uint16_t v2 = (uint16_t)decode->op[1].val;  \
        uint16_t diff = v1 cmd v2;                  \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 2); \
        } \
        FLAGS_FUNC##_16(diff);                      \
        break;                                      \
    }                                               \
    case 4:                                        \
    {                                               \
        uint32_t v1 = (uint32_t)decode->op[0].val;  \
        uint32_t v2 = (uint32_t)decode->op[1].val;  \
        uint32_t diff = v1 cmd v2;                  \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 4); \
        } \
        FLAGS_FUNC##_32(diff);                      \
        break;                                      \
    }                                               \
    default:                                        \
        VM_PANIC("bad size\n");                    \
    }                                                   \
}                                                       \


#define EXEC_2OP_ARITH_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
{                                                       \
    fetch_operands(env, decode, 2, true, true, false);  \
    switch (decode->operand_size) {                     \
    case 1:                                         \
    {                                               \
        uint8_t v1 = (uint8_t)decode->op[0].val;    \
        uint8_t v2 = (uint8_t)decode->op[1].val;    \
        uint8_t diff = v1 cmd v2;                   \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 1);  \
        } \
        FLAGS_FUNC##_8(v1, v2, diff);               \
        break;                                      \
    }                                               \
    case 2:                                        \
    {                                               \
        uint16_t v1 = (uint16_t)decode->op[0].val;  \
        uint16_t v2 = (uint16_t)decode->op[1].val;  \
        uint16_t diff = v1 cmd v2;                  \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 2); \
        } \
        FLAGS_FUNC##_16(v1, v2, diff);              \
        break;                                      \
    }                                               \
    case 4:                                        \
    {                                               \
        uint32_t v1 = (uint32_t)decode->op[0].val;  \
        uint32_t v2 = (uint32_t)decode->op[1].val;  \
        uint32_t diff = v1 cmd v2;                  \
        if (save_res) {                              \
            write_val_ext(env, decode->op[0].ptr, diff, 4); \
        } \
        FLAGS_FUNC##_32(v1, v2, diff);              \
        break;                                      \
    }                                               \
    default:                                        \
        VM_PANIC("bad size\n");                    \
    }                                                   \
}

addr_t read_reg(CPUX86State *env, int reg, int size)
{
    switch (size) {
    case 1:
        return env->hvf_emul->regs[reg].lx;
    case 2:
        return env->hvf_emul->regs[reg].rx;
    case 4:
        return env->hvf_emul->regs[reg].erx;
    case 8:
        return env->hvf_emul->regs[reg].rrx;
    default:
        VM_PANIC_ON("read_reg size");
    }
    return 0;
}

void write_reg(CPUX86State *env, int reg, addr_t val, int size)
{
    switch (size) {
    case 1:
        env->hvf_emul->regs[reg].lx = val;
        break;
    case 2:
        env->hvf_emul->regs[reg].rx = val;
        break;
    case 4:
        env->hvf_emul->regs[reg].rrx = (uint32_t)val;
        break;
    case 8:
        env->hvf_emul->regs[reg].rrx = val;
        break;
    default:
        VM_PANIC_ON("write_reg size");
    }
}

addr_t read_val_from_reg(addr_t reg_ptr, int size)
{
    addr_t val;
    
    switch (size) {
    case 1:
        val = *(uint8_t *)reg_ptr;
        break;
    case 2:
        val = *(uint16_t *)reg_ptr;
        break;
    case 4:
        val = *(uint32_t *)reg_ptr;
        break;
    case 8:
        val = *(uint64_t *)reg_ptr;
        break;
    default:
        VM_PANIC_ON_EX(1, "read_val: Unknown size %d\n", size);
        break;
    }
    return val;
}

void write_val_to_reg(addr_t reg_ptr, addr_t val, int size)
{
    switch (size) {
    case 1:
        *(uint8_t *)reg_ptr = val;
        break;
    case 2:
        *(uint16_t *)reg_ptr = val;
        break;
    case 4:
        *(uint64_t *)reg_ptr = (uint32_t)val;
        break;
    case 8:
        *(uint64_t *)reg_ptr = val;
        break;
    default:
        VM_PANIC("write_val: Unknown size\n");
        break;
    }
}

static bool is_host_reg(struct CPUX86State *env, addr_t ptr)
{
    return (ptr - (addr_t)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs);
}

void write_val_ext(struct CPUX86State *env, addr_t ptr, addr_t val, int size)
{
    if (is_host_reg(env, ptr)) {
        write_val_to_reg(ptr, val, size);
        return;
    }
    vmx_write_mem(ENV_GET_CPU(env), ptr, &val, size);
}

uint8_t *read_mmio(struct CPUX86State *env, addr_t ptr, int bytes)
{
    vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, ptr, bytes);
    return env->hvf_emul->mmio_buf;
}


addr_t read_val_ext(struct CPUX86State *env, addr_t ptr, int size)
{
    addr_t val;
    uint8_t *mmio_ptr;

    if (is_host_reg(env, ptr)) {
        return read_val_from_reg(ptr, size);
    }

    mmio_ptr = read_mmio(env, ptr, size);
    switch (size) {
    case 1:
        val = *(uint8_t *)mmio_ptr;
        break;
    case 2:
        val = *(uint16_t *)mmio_ptr;
        break;
    case 4:
        val = *(uint32_t *)mmio_ptr;
        break;
    case 8:
        val = *(uint64_t *)mmio_ptr;
        break;
    default:
        VM_PANIC("bad size\n");
        break;
    }
    return val;
}

static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode,
                           int n, bool val_op0, bool val_op1, bool val_op2)
{
    int i;
    bool calc_val[3] = {val_op0, val_op1, val_op2};

    for (i = 0; i < n; i++) {
        switch (decode->op[i].type) {
        case X86_VAR_IMMEDIATE:
            break;
        case X86_VAR_REG:
            VM_PANIC_ON(!decode->op[i].ptr);
            if (calc_val[i]) {
                decode->op[i].val = read_val_from_reg(decode->op[i].ptr,
                                                      decode->operand_size);
            }
            break;
        case X86_VAR_RM:
            calc_modrm_operand(env, decode, &decode->op[i]);
            if (calc_val[i]) {
                decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
                                                 decode->operand_size);
            }
            break;
        case X86_VAR_OFFSET:
            decode->op[i].ptr = decode_linear_addr(env, decode,
                                                   decode->op[i].ptr,
                                                   R_DS);
            if (calc_val[i]) {
                decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
                                                 decode->operand_size);
            }
            break;
        default:
            break;
        }
    }
}

static void exec_mov(struct CPUX86State *env, struct x86_decode *decode)
{
    fetch_operands(env, decode, 2, false, true, false);
    write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
                  decode->operand_size);

    RIP(env) += decode->len;
}

static void exec_add(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
    RIP(env) += decode->len;
}

static void exec_or(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_LOGIC_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true);
    RIP(env) += decode->len;
}

static void exec_adc(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true);
    RIP(env) += decode->len;
}

static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true);
    RIP(env) += decode->len;
}

static void exec_and(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true);
    RIP(env) += decode->len;
}

static void exec_sub(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true);
    RIP(env) += decode->len;
}

static void exec_xor(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_LOGIC_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true);
    RIP(env) += decode->len;
}

static void exec_neg(struct CPUX86State *env, struct x86_decode *decode)
{
    /*EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
    int32_t val;
    fetch_operands(env, decode, 2, true, true, false);

    val = 0 - sign(decode->op[1].val, decode->operand_size);
    write_val_ext(env, decode->op[1].ptr, val, decode->operand_size);

    if (4 == decode->operand_size) {
        SET_FLAGS_OSZAPC_SUB_32(0, 0 - val, val);
    } else if (2 == decode->operand_size) {
        SET_FLAGS_OSZAPC_SUB_16(0, 0 - val, val);
    } else if (1 == decode->operand_size) {
        SET_FLAGS_OSZAPC_SUB_8(0, 0 - val, val);
    } else {
        VM_PANIC("bad op size\n");
    }

    /*lflags_to_rflags(env);*/
    RIP(env) += decode->len;
}

static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
    RIP(env) += decode->len;
}

static void exec_inc(struct CPUX86State *env, struct x86_decode *decode)
{
    decode->op[1].type = X86_VAR_IMMEDIATE;
    decode->op[1].val = 0;

    EXEC_2OP_ARITH_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true);

    RIP(env) += decode->len;
}

static void exec_dec(struct CPUX86State *env, struct x86_decode *decode)
{
    decode->op[1].type = X86_VAR_IMMEDIATE;
    decode->op[1].val = 0;

    EXEC_2OP_ARITH_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true);
    RIP(env) += decode->len;
}

static void exec_tst(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false);
    RIP(env) += decode->len;
}

static void exec_not(struct CPUX86State *env, struct x86_decode *decode)
{
    fetch_operands(env, decode, 1, true, false, false);

    write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val,
                  decode->operand_size);
    RIP(env) += decode->len;
}

void exec_movzx(struct CPUX86State *env, struct x86_decode *decode)
{
    int src_op_size;
    int op_size = decode->operand_size;

    fetch_operands(env, decode, 1, false, false, false);

    if (0xb6 == decode->opcode[1]) {
        src_op_size = 1;
    } else {
        src_op_size = 2;
    }
    decode->operand_size = src_op_size;
    calc_modrm_operand(env, decode, &decode->op[1]);
    decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size);
    write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);

    RIP(env) += decode->len;
}

static void exec_out(struct CPUX86State *env, struct x86_decode *decode)
{
    switch (decode->opcode[0]) {
    case 0xe6:
        hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 1, 1, 1);
        break;
    case 0xe7:
        hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &RAX(env), 1,
                      decode->operand_size, 1);
        break;
    case 0xee:
        hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 1, 1, 1);
        break;
    case 0xef:
        hvf_handle_io(ENV_GET_CPU(env), DX(env), &RAX(env), 1, decode->operand_size, 1);
        break;
    default:
        VM_PANIC("Bad out opcode\n");
        break;
    }
    RIP(env) += decode->len;
}

static void exec_in(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t val = 0;
    switch (decode->opcode[0]) {
    case 0xe4:
        hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 0, 1, 1);
        break;
    case 0xe5:
        hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &val, 0, decode->operand_size, 1);
        if (decode->operand_size == 2) {
            AX(env) = val;
        } else {
            RAX(env) = (uint32_t)val;
        }
        break;
    case 0xec:
        hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 0, 1, 1);
        break;
    case 0xed:
        hvf_handle_io(ENV_GET_CPU(env), DX(env), &val, 0, decode->operand_size, 1);
        if (decode->operand_size == 2) {
            AX(env) = val;
        } else {
            RAX(env) = (uint32_t)val;
        }

        break;
    default:
        VM_PANIC("Bad in opcode\n");
        break;
    }

    RIP(env) += decode->len;
}

static inline void string_increment_reg(struct CPUX86State *env, int reg,
                                        struct x86_decode *decode)
{
    addr_t val = read_reg(env, reg, decode->addressing_size);
    if (env->hvf_emul->rflags.df) {
        val -= decode->operand_size;
    } else {
        val += decode->operand_size;
    }
    write_reg(env, reg, val, decode->addressing_size);
}

static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode,
                              void (*func)(struct CPUX86State *env,
                                           struct x86_decode *ins), int rep)
{
    addr_t rcx = read_reg(env, R_ECX, decode->addressing_size);
    while (rcx--) {
        func(env, decode);
        write_reg(env, R_ECX, rcx, decode->addressing_size);
        if ((PREFIX_REP == rep) && !get_ZF(env)) {
            break;
        }
        if ((PREFIX_REPN == rep) && get_ZF(env)) {
            break;
        }
    }
}

static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
                                   R_ES);

    hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 0,
                  decode->operand_size, 1);
    vmx_write_mem(ENV_GET_CPU(env), addr, env->hvf_emul->mmio_buf, decode->operand_size);

    string_increment_reg(env, R_EDI, decode);
}

static void exec_ins(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_ins_single, 0);
    } else {
        exec_ins_single(env, decode);
    }

    RIP(env) += decode->len;
}

static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t addr = decode_linear_addr(env, decode, RSI(env), R_DS);

    vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, addr, decode->operand_size);
    hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 1,
                  decode->operand_size, 1);

    string_increment_reg(env, R_ESI, decode);
}

static void exec_outs(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_outs_single, 0);
    } else {
        exec_outs_single(env, decode);
    }

    RIP(env) += decode->len;
}

static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t src_addr;
    addr_t dst_addr;
    addr_t val;

    src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
    dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
                                R_ES);

    val = read_val_ext(env, src_addr, decode->operand_size);
    write_val_ext(env, dst_addr, val, decode->operand_size);

    string_increment_reg(env, R_ESI, decode);
    string_increment_reg(env, R_EDI, decode);
}

static void exec_movs(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_movs_single, 0);
    } else {
        exec_movs_single(env, decode);
    }

    RIP(env) += decode->len;
}

static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t src_addr;
    addr_t dst_addr;

    src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
    dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
                                R_ES);

    decode->op[0].type = X86_VAR_IMMEDIATE;
    decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size);
    decode->op[1].type = X86_VAR_IMMEDIATE;
    decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size);

    EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);

    string_increment_reg(env, R_ESI, decode);
    string_increment_reg(env, R_EDI, decode);
}

static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_cmps_single, decode->rep);
    } else {
        exec_cmps_single(env, decode);
    }
    RIP(env) += decode->len;
}


static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t addr;
    addr_t val;

    addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
    val = read_reg(env, R_EAX, decode->operand_size);
    vmx_write_mem(ENV_GET_CPU(env), addr, &val, decode->operand_size);

    string_increment_reg(env, R_EDI, decode);
}


static void exec_stos(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_stos_single, 0);
    } else {
        exec_stos_single(env, decode);
    }

    RIP(env) += decode->len;
}

static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t addr;

    addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
    decode->op[1].type = X86_VAR_IMMEDIATE;
    vmx_read_mem(ENV_GET_CPU(env), &decode->op[1].val, addr, decode->operand_size);

    EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
    string_increment_reg(env, R_EDI, decode);
}

static void exec_scas(struct CPUX86State *env, struct x86_decode *decode)
{
    decode->op[0].type = X86_VAR_REG;
    decode->op[0].reg = R_EAX;
    if (decode->rep) {
        string_rep(env, decode, exec_scas_single, decode->rep);
    } else {
        exec_scas_single(env, decode);
    }

    RIP(env) += decode->len;
}

static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode)
{
    addr_t addr;
    addr_t val = 0;

    addr = decode_linear_addr(env, decode, RSI(env), R_DS);
    vmx_read_mem(ENV_GET_CPU(env), &val, addr,  decode->operand_size);
    write_reg(env, R_EAX, val, decode->operand_size);

    string_increment_reg(env, R_ESI, decode);
}

static void exec_lods(struct CPUX86State *env, struct x86_decode *decode)
{
    if (decode->rep) {
        string_rep(env, decode, exec_lods_single, 0);
    } else {
        exec_lods_single(env, decode);
    }

    RIP(env) += decode->len;
}

#define MSR_IA32_UCODE_REV 0x00000017

void simulate_rdmsr(struct CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;
    uint32_t msr = ECX(env);
    uint64_t val = 0;

    switch (msr) {
    case MSR_IA32_TSC:
        val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET);
        break;
    case MSR_IA32_APICBASE:
        val = cpu_get_apic_base(X86_CPU(cpu)->apic_state);
        break;
    case MSR_IA32_UCODE_REV:
        val = (0x100000000ULL << 32) | 0x100000000ULL;
        break;
    case MSR_EFER:
        val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER);
        break;
    case MSR_FSBASE:
        val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE);
        break;
    case MSR_GSBASE:
        val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE);
        break;
    case MSR_KERNELGSBASE:
        val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE);
        break;
    case MSR_STAR:
        abort();
        break;
    case MSR_LSTAR:
        abort();
        break;
    case MSR_CSTAR:
        abort();
        break;
    case MSR_IA32_MISC_ENABLE:
        val = env->msr_ia32_misc_enable;
        break;
    case MSR_MTRRphysBase(0):
    case MSR_MTRRphysBase(1):
    case MSR_MTRRphysBase(2):
    case MSR_MTRRphysBase(3):
    case MSR_MTRRphysBase(4):
    case MSR_MTRRphysBase(5):
    case MSR_MTRRphysBase(6):
    case MSR_MTRRphysBase(7):
        val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
        break;
    case MSR_MTRRphysMask(0):
    case MSR_MTRRphysMask(1):
    case MSR_MTRRphysMask(2):
    case MSR_MTRRphysMask(3):
    case MSR_MTRRphysMask(4):
    case MSR_MTRRphysMask(5):
    case MSR_MTRRphysMask(6):
    case MSR_MTRRphysMask(7):
        val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
        break;
    case MSR_MTRRfix64K_00000:
        val = env->mtrr_fixed[0];
        break;
    case MSR_MTRRfix16K_80000:
    case MSR_MTRRfix16K_A0000:
        val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
        break;
    case MSR_MTRRfix4K_C0000:
    case MSR_MTRRfix4K_C8000:
    case MSR_MTRRfix4K_D0000:
    case MSR_MTRRfix4K_D8000:
    case MSR_MTRRfix4K_E0000:
    case MSR_MTRRfix4K_E8000:
    case MSR_MTRRfix4K_F0000:
    case MSR_MTRRfix4K_F8000:
        val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
        break;
    case MSR_MTRRdefType:
        val = env->mtrr_deftype;
        break;
    default:
        /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
        val = 0;
        break;
    }

    RAX(env) = (uint32_t)val;
    RDX(env) = (uint32_t)(val >> 32);
}

static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode)
{
    simulate_rdmsr(ENV_GET_CPU(env));
    RIP(env) += decode->len;
}

void simulate_wrmsr(struct CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;
    uint32_t msr = ECX(env);
    uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);

    switch (msr) {
    case MSR_IA32_TSC:
        /* if (!osx_is_sierra())
             wvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET, data - rdtscp());
        hv_vm_sync_tsc(data);*/
        break;
    case MSR_IA32_APICBASE:
        cpu_set_apic_base(X86_CPU(cpu)->apic_state, data);
        break;
    case MSR_FSBASE:
        wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data);
        break;
    case MSR_GSBASE:
        wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data);
        break;
    case MSR_KERNELGSBASE:
        wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data);
        break;
    case MSR_STAR:
        abort();
        break;
    case MSR_LSTAR:
        abort();
        break;
    case MSR_CSTAR:
        abort();
        break;
    case MSR_EFER:
        env->hvf_emul->efer.efer = data;
        /*printf("new efer %llx\n", EFER(cpu));*/
        wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data);
        if (data & MSR_EFER_NXE) {
            hv_vcpu_invalidate_tlb(cpu->hvf_fd);
        }
        break;
    case MSR_MTRRphysBase(0):
    case MSR_MTRRphysBase(1):
    case MSR_MTRRphysBase(2):
    case MSR_MTRRphysBase(3):
    case MSR_MTRRphysBase(4):
    case MSR_MTRRphysBase(5):
    case MSR_MTRRphysBase(6):
    case MSR_MTRRphysBase(7):
        env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
        break;
    case MSR_MTRRphysMask(0):
    case MSR_MTRRphysMask(1):
    case MSR_MTRRphysMask(2):
    case MSR_MTRRphysMask(3):
    case MSR_MTRRphysMask(4):
    case MSR_MTRRphysMask(5):
    case MSR_MTRRphysMask(6):
    case MSR_MTRRphysMask(7):
        env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
        break;
    case MSR_MTRRfix64K_00000:
        env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
        break;
    case MSR_MTRRfix16K_80000:
    case MSR_MTRRfix16K_A0000:
        env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
        break;
    case MSR_MTRRfix4K_C0000:
    case MSR_MTRRfix4K_C8000:
    case MSR_MTRRfix4K_D0000:
    case MSR_MTRRfix4K_D8000:
    case MSR_MTRRfix4K_E0000:
    case MSR_MTRRfix4K_E8000:
    case MSR_MTRRfix4K_F0000:
    case MSR_MTRRfix4K_F8000:
        env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
        break;
    case MSR_MTRRdefType:
        env->mtrr_deftype = data;
        break;
    default:
        break;
    }

    /* Related to support known hypervisor interface */
    /* if (g_hypervisor_iface)
         g_hypervisor_iface->wrmsr_handler(cpu, msr, data);

    printf("write msr %llx\n", RCX(cpu));*/
}

static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode)
{
    simulate_wrmsr(ENV_GET_CPU(env));
    RIP(env) += decode->len;
}

/*
 * flag:
 * 0 - bt, 1 - btc, 2 - bts, 3 - btr
 */
static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag)
{
    int32_t displacement;
    uint8_t index;
    bool cf;
    int mask = (4 == decode->operand_size) ? 0x1f : 0xf;

    VM_PANIC_ON(decode->rex.rex);

    fetch_operands(env, decode, 2, false, true, false);
    index = decode->op[1].val & mask;

    if (decode->op[0].type != X86_VAR_REG) {
        if (4 == decode->operand_size) {
            displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32;
            decode->op[0].ptr += 4 * displacement;
        } else if (2 == decode->operand_size) {
            displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16;
            decode->op[0].ptr += 2 * displacement;
        } else {
            VM_PANIC("bt 64bit\n");
        }
    }
    decode->op[0].val = read_val_ext(env, decode->op[0].ptr,
                                     decode->operand_size);
    cf = (decode->op[0].val >> index) & 0x01;

    switch (flag) {
    case 0:
        set_CF(env, cf);
        return;
    case 1:
        decode->op[0].val ^= (1u << index);
        break;
    case 2:
        decode->op[0].val |= (1u << index);
        break;
    case 3:
        decode->op[0].val &= ~(1u << index);
        break;
    }
    write_val_ext(env, decode->op[0].ptr, decode->op[0].val,
                  decode->operand_size);
    set_CF(env, cf);
}

static void exec_bt(struct CPUX86State *env, struct x86_decode *decode)
{
    do_bt(env, decode, 0);
    RIP(env) += decode->len;
}

static void exec_btc(struct CPUX86State *env, struct x86_decode *decode)
{
    do_bt(env, decode, 1);
    RIP(env) += decode->len;
}

static void exec_btr(struct CPUX86State *env, struct x86_decode *decode)
{
    do_bt(env, decode, 3);
    RIP(env) += decode->len;
}

static void exec_bts(struct CPUX86State *env, struct x86_decode *decode)
{
    do_bt(env, decode, 2);
    RIP(env) += decode->len;
}

void exec_shl(struct CPUX86State *env, struct x86_decode *decode)
{
    uint8_t count;
    int of = 0, cf = 0;

    fetch_operands(env, decode, 2, true, true, false);

    count = decode->op[1].val;
    count &= 0x1f;      /* count is masked to 5 bits*/
    if (!count) {
        goto exit;
    }

    switch (decode->operand_size) {
    case 1:
    {
        uint8_t res = 0;
        if (count <= 8) {
            res = (decode->op[0].val << count);
            cf = (decode->op[0].val >> (8 - count)) & 0x1;
            of = cf ^ (res >> 7);
        }

        write_val_ext(env, decode->op[0].ptr, res, 1);
        SET_FLAGS_OSZAPC_LOGIC_8(res);
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 2:
    {
        uint16_t res = 0;

        /* from bochs */
        if (count <= 16) {
            res = (decode->op[0].val << count);
            cf = (decode->op[0].val >> (16 - count)) & 0x1;
            of = cf ^ (res >> 15); /* of = cf ^ result15 */
        }

        write_val_ext(env, decode->op[0].ptr, res, 2);
        SET_FLAGS_OSZAPC_LOGIC_16(res);
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 4:
    {
        uint32_t res = decode->op[0].val << count;

        write_val_ext(env, decode->op[0].ptr, res, 4);
        SET_FLAGS_OSZAPC_LOGIC_32(res);
        cf = (decode->op[0].val >> (32 - count)) & 0x1;
        of = cf ^ (res >> 31); /* of = cf ^ result31 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    default:
        abort();
    }

exit:
    /* lflags_to_rflags(env); */
    RIP(env) += decode->len;
}

void exec_movsx(CPUX86State *env, struct x86_decode *decode)
{
    int src_op_size;
    int op_size = decode->operand_size;

    fetch_operands(env, decode, 2, false, false, false);

    if (0xbe == decode->opcode[1]) {
        src_op_size = 1;
    } else {
        src_op_size = 2;
    }

    decode->operand_size = src_op_size;
    calc_modrm_operand(env, decode, &decode->op[1]);
    decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size),
                             src_op_size);

    write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);

    RIP(env) += decode->len;
}

void exec_ror(struct CPUX86State *env, struct x86_decode *decode)
{
    uint8_t count;

    fetch_operands(env, decode, 2, true, true, false);
    count = decode->op[1].val;

    switch (decode->operand_size) {
    case 1:
    {
        uint32_t bit6, bit7;
        uint8_t res;

        if ((count & 0x07) == 0) {
            if (count & 0x18) {
                bit6 = ((uint8_t)decode->op[0].val >> 6) & 1;
                bit7 = ((uint8_t)decode->op[0].val >> 7) & 1;
                SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
             }
        } else {
            count &= 0x7; /* use only bottom 3 bits */
            res = ((uint8_t)decode->op[0].val >> count) |
                   ((uint8_t)decode->op[0].val << (8 - count));
            write_val_ext(env, decode->op[0].ptr, res, 1);
            bit6 = (res >> 6) & 1;
            bit7 = (res >> 7) & 1;
            /* set eflags: ROR count affects the following flags: C, O */
            SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
        }
        break;
    }
    case 2:
    {
        uint32_t bit14, bit15;
        uint16_t res;

        if ((count & 0x0f) == 0) {
            if (count & 0x10) {
                bit14 = ((uint16_t)decode->op[0].val >> 14) & 1;
                bit15 = ((uint16_t)decode->op[0].val >> 15) & 1;
                /* of = result14 ^ result15 */
                SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
            }
        } else {
            count &= 0x0f;  /* use only 4 LSB's */
            res = ((uint16_t)decode->op[0].val >> count) |
                   ((uint16_t)decode->op[0].val << (16 - count));
            write_val_ext(env, decode->op[0].ptr, res, 2);

            bit14 = (res >> 14) & 1;
            bit15 = (res >> 15) & 1;
            /* of = result14 ^ result15 */
            SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
        }
        break;
    }
    case 4:
    {
        uint32_t bit31, bit30;
        uint32_t res;

        count &= 0x1f;
        if (count) {
            res = ((uint32_t)decode->op[0].val >> count) |
                   ((uint32_t)decode->op[0].val << (32 - count));
            write_val_ext(env, decode->op[0].ptr, res, 4);

            bit31 = (res >> 31) & 1;
            bit30 = (res >> 30) & 1;
            /* of = result30 ^ result31 */
            SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31);
        }
        break;
        }
    }
    RIP(env) += decode->len;
}

void exec_rol(struct CPUX86State *env, struct x86_decode *decode)
{
    uint8_t count;

    fetch_operands(env, decode, 2, true, true, false);
    count = decode->op[1].val;

    switch (decode->operand_size) {
    case 1:
    {
        uint32_t bit0, bit7;
        uint8_t res;

        if ((count & 0x07) == 0) {
            if (count & 0x18) {
                bit0 = ((uint8_t)decode->op[0].val & 1);
                bit7 = ((uint8_t)decode->op[0].val >> 7);
                SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
            }
        }  else {
            count &= 0x7; /* use only lowest 3 bits */
            res = ((uint8_t)decode->op[0].val << count) |
                   ((uint8_t)decode->op[0].val >> (8 - count));

            write_val_ext(env, decode->op[0].ptr, res, 1);
            /* set eflags:
             * ROL count affects the following flags: C, O
             */
            bit0 = (res &  1);
            bit7 = (res >> 7);
            SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
        }
        break;
    }
    case 2:
    {
        uint32_t bit0, bit15;
        uint16_t res;

        if ((count & 0x0f) == 0) {
            if (count & 0x10) {
                bit0  = ((uint16_t)decode->op[0].val & 0x1);
                bit15 = ((uint16_t)decode->op[0].val >> 15);
                /* of = cf ^ result15 */
                SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
            }
        } else {
            count &= 0x0f; /* only use bottom 4 bits */
            res = ((uint16_t)decode->op[0].val << count) |
                   ((uint16_t)decode->op[0].val >> (16 - count));

            write_val_ext(env, decode->op[0].ptr, res, 2);
            bit0  = (res & 0x1);
            bit15 = (res >> 15);
            /* of = cf ^ result15 */
            SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
        }
        break;
    }
    case 4:
    {
        uint32_t bit0, bit31;
        uint32_t res;

        count &= 0x1f;
        if (count) {
            res = ((uint32_t)decode->op[0].val << count) |
                   ((uint32_t)decode->op[0].val >> (32 - count));

            write_val_ext(env, decode->op[0].ptr, res, 4);
            bit0  = (res & 0x1);
            bit31 = (res >> 31);
            /* of = cf ^ result31 */
            SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0);
        }
        break;
        }
    }
    RIP(env) += decode->len;
}


void exec_rcl(struct CPUX86State *env, struct x86_decode *decode)
{
    uint8_t count;
    int of = 0, cf = 0;

    fetch_operands(env, decode, 2, true, true, false);
    count = decode->op[1].val & 0x1f;

    switch (decode->operand_size) {
    case 1:
    {
        uint8_t op1_8 = decode->op[0].val;
        uint8_t res;
        count %= 9;
        if (!count) {
            break;
        }

        if (1 == count) {
            res = (op1_8 << 1) | get_CF(env);
        } else {
            res = (op1_8 << count) | (get_CF(env) << (count - 1)) |
                   (op1_8 >> (9 - count));
        }

        write_val_ext(env, decode->op[0].ptr, res, 1);

        cf = (op1_8 >> (8 - count)) & 0x01;
        of = cf ^ (res >> 7); /* of = cf ^ result7 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 2:
    {
        uint16_t res;
        uint16_t op1_16 = decode->op[0].val;

        count %= 17;
        if (!count) {
            break;
        }

        if (1 == count) {
            res = (op1_16 << 1) | get_CF(env);
        } else if (count == 16) {
            res = (get_CF(env) << 15) | (op1_16 >> 1);
        } else { /* 2..15 */
            res = (op1_16 << count) | (get_CF(env) << (count - 1)) |
                   (op1_16 >> (17 - count));
        }

        write_val_ext(env, decode->op[0].ptr, res, 2);

        cf = (op1_16 >> (16 - count)) & 0x1;
        of = cf ^ (res >> 15); /* of = cf ^ result15 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 4:
    {
        uint32_t res;
        uint32_t op1_32 = decode->op[0].val;

        if (!count) {
            break;
        }

        if (1 == count) {
            res = (op1_32 << 1) | get_CF(env);
        } else {
            res = (op1_32 << count) | (get_CF(env) << (count - 1)) |
                   (op1_32 >> (33 - count));
        }

        write_val_ext(env, decode->op[0].ptr, res, 4);

        cf = (op1_32 >> (32 - count)) & 0x1;
        of = cf ^ (res >> 31); /* of = cf ^ result31 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
        }
    }
    RIP(env) += decode->len;
}

void exec_rcr(struct CPUX86State *env, struct x86_decode *decode)
{
    uint8_t count;
    int of = 0, cf = 0;

    fetch_operands(env, decode, 2, true, true, false);
    count = decode->op[1].val & 0x1f;

    switch (decode->operand_size) {
    case 1:
    {
        uint8_t op1_8 = decode->op[0].val;
        uint8_t res;

        count %= 9;
        if (!count) {
            break;
        }
        res = (op1_8 >> count) | (get_CF(env) << (8 - count)) |
               (op1_8 << (9 - count));

        write_val_ext(env, decode->op[0].ptr, res, 1);

        cf = (op1_8 >> (count - 1)) & 0x1;
        of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 2:
    {
        uint16_t op1_16 = decode->op[0].val;
        uint16_t res;

        count %= 17;
        if (!count) {
            break;
        }
        res = (op1_16 >> count) | (get_CF(env) << (16 - count)) |
               (op1_16 << (17 - count));

        write_val_ext(env, decode->op[0].ptr, res, 2);

        cf = (op1_16 >> (count - 1)) & 0x1;
        of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^
                                                            result14 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
    }
    case 4:
    {
        uint32_t res;
        uint32_t op1_32 = decode->op[0].val;

        if (!count) {
            break;
        }

        if (1 == count) {
            res = (op1_32 >> 1) | (get_CF(env) << 31);
        } else {
            res = (op1_32 >> count) | (get_CF(env) << (32 - count)) |
                   (op1_32 << (33 - count));
        }

        write_val_ext(env, decode->op[0].ptr, res, 4);

        cf = (op1_32 >> (count - 1)) & 0x1;
        of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */
        SET_FLAGS_OxxxxC(env, of, cf);
        break;
        }
    }
    RIP(env) += decode->len;
}

static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode)
{
    fetch_operands(env, decode, 2, true, true, false);

    write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
                  decode->operand_size);
    write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
                  decode->operand_size);

    RIP(env) += decode->len;
}

static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode)
{
    EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
    write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
                  decode->operand_size);

    RIP(env) += decode->len;
}

static struct cmd_handler {
    enum x86_decode_cmd cmd;
    void (*handler)(struct CPUX86State *env, struct x86_decode *ins);
} handlers[] = {
    {X86_DECODE_CMD_INVL, NULL,},
    {X86_DECODE_CMD_MOV, exec_mov},
    {X86_DECODE_CMD_ADD, exec_add},
    {X86_DECODE_CMD_OR, exec_or},
    {X86_DECODE_CMD_ADC, exec_adc},
    {X86_DECODE_CMD_SBB, exec_sbb},
    {X86_DECODE_CMD_AND, exec_and},
    {X86_DECODE_CMD_SUB, exec_sub},
    {X86_DECODE_CMD_NEG, exec_neg},
    {X86_DECODE_CMD_XOR, exec_xor},
    {X86_DECODE_CMD_CMP, exec_cmp},
    {X86_DECODE_CMD_INC, exec_inc},
    {X86_DECODE_CMD_DEC, exec_dec},
    {X86_DECODE_CMD_TST, exec_tst},
    {X86_DECODE_CMD_NOT, exec_not},
    {X86_DECODE_CMD_MOVZX, exec_movzx},
    {X86_DECODE_CMD_OUT, exec_out},
    {X86_DECODE_CMD_IN, exec_in},
    {X86_DECODE_CMD_INS, exec_ins},
    {X86_DECODE_CMD_OUTS, exec_outs},
    {X86_DECODE_CMD_RDMSR, exec_rdmsr},
    {X86_DECODE_CMD_WRMSR, exec_wrmsr},
    {X86_DECODE_CMD_BT, exec_bt},
    {X86_DECODE_CMD_BTR, exec_btr},
    {X86_DECODE_CMD_BTC, exec_btc},
    {X86_DECODE_CMD_BTS, exec_bts},
    {X86_DECODE_CMD_SHL, exec_shl},
    {X86_DECODE_CMD_ROL, exec_rol},
    {X86_DECODE_CMD_ROR, exec_ror},
    {X86_DECODE_CMD_RCR, exec_rcr},
    {X86_DECODE_CMD_RCL, exec_rcl},
    /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
    {X86_DECODE_CMD_MOVS, exec_movs},
    {X86_DECODE_CMD_CMPS, exec_cmps},
    {X86_DECODE_CMD_STOS, exec_stos},
    {X86_DECODE_CMD_SCAS, exec_scas},
    {X86_DECODE_CMD_LODS, exec_lods},
    {X86_DECODE_CMD_MOVSX, exec_movsx},
    {X86_DECODE_CMD_XCHG, exec_xchg},
    {X86_DECODE_CMD_XADD, exec_xadd},
};

static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST];

static void init_cmd_handler()
{
    int i;
    for (i = 0; i < ARRAY_SIZE(handlers); i++) {
        _cmd_handler[handlers[i].cmd] = handlers[i];
    }
}

void load_regs(struct CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;

    int i = 0;
    RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX);
    RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX);
    RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX);
    RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX);
    RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI);
    RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI);
    RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP);
    RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP);
    for (i = 8; i < 16; i++) {
        RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i);
    }

    RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
    rflags_to_lflags(env);
    RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP);
}

void store_regs(struct CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;

    int i = 0;
    wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env));
    wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env));
    wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env));
    wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env));
    wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env));
    wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env));
    wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env));
    wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env));
    for (i = 8; i < 16; i++) {
        wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i));
    }

    lflags_to_rflags(env);
    wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env));
    macvm_set_rip(cpu, RIP(env));
}

bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins)
{
    /*if (hvf_vcpu_id(cpu))
    printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu),  RIP(cpu),
          decode_cmd_to_string(ins->cmd));*/

    if (0 && ins->is_fpu) {
        VM_PANIC("emulate fpu\n");
    } else {
        if (!_cmd_handler[ins->cmd].handler) {
            printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env),
                    ins->cmd, ins->opcode[0],
                    ins->opcode_len > 1 ? ins->opcode[1] : 0);
            RIP(env) += ins->len;
            return true;
        }

        VM_PANIC_ON_EX(!_cmd_handler[ins->cmd].handler,
                "Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env),
                 ins->cmd, ins->opcode[0],
                 ins->opcode_len > 1 ? ins->opcode[1] : 0);
        _cmd_handler[ins->cmd].handler(env, ins);
    }
    return true;
}

void init_emu()
{
    init_cmd_handler();
}