/*
* x86 segmentation related helpers:
* TSS, interrupts, system calls, jumps and call/task gates, descriptors
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/log.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
//#define DEBUG_PCALL
#ifdef DEBUG_PCALL
# define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
# define LOG_PCALL_STATE(cpu) \
log_cpu_state_mask(CPU_LOG_PCALL, (cpu), CPU_DUMP_CCOP)
#else
# define LOG_PCALL(...) do { } while (0)
# define LOG_PCALL_STATE(cpu) do { } while (0)
#endif
#ifdef CONFIG_USER_ONLY
#define MEMSUFFIX _kernel
#define DATA_SIZE 1
#include "exec/cpu_ldst_useronly_template.h"
#define DATA_SIZE 2
#include "exec/cpu_ldst_useronly_template.h"
#define DATA_SIZE 4
#include "exec/cpu_ldst_useronly_template.h"
#define DATA_SIZE 8
#include "exec/cpu_ldst_useronly_template.h"
#undef MEMSUFFIX
#else
#define CPU_MMU_INDEX (cpu_mmu_index_kernel(env))
#define MEMSUFFIX _kernel
#define DATA_SIZE 1
#include "exec/cpu_ldst_template.h"
#define DATA_SIZE 2
#include "exec/cpu_ldst_template.h"
#define DATA_SIZE 4
#include "exec/cpu_ldst_template.h"
#define DATA_SIZE 8
#include "exec/cpu_ldst_template.h"
#undef CPU_MMU_INDEX
#undef MEMSUFFIX
#endif
/* return non zero if error */
static inline int load_segment_ra(CPUX86State *env, uint32_t *e1_ptr,
uint32_t *e2_ptr, int selector,
uintptr_t retaddr)
{
SegmentCache *dt;
int index;
target_ulong ptr;
if (selector & 0x4) {
dt = &env->ldt;
} else {
dt = &env->gdt;
}
index = selector & ~7;
if ((index + 7) > dt->limit) {
return -1;
}
ptr = dt->base + index;
*e1_ptr = cpu_ldl_kernel_ra(env, ptr, retaddr);
*e2_ptr = cpu_ldl_kernel_ra(env, ptr + 4, retaddr);
return 0;
}
static inline int load_segment(CPUX86State *env, uint32_t *e1_ptr,
uint32_t *e2_ptr, int selector)
{
return load_segment_ra(env, e1_ptr, e2_ptr, selector, 0);
}
static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
{
unsigned int limit;
limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK) {
limit = (limit << 12) | 0xfff;
}
return limit;
}
static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2)
{
return (e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000);
}
static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1,
uint32_t e2)
{
sc->base = get_seg_base(e1, e2);
sc->limit = get_seg_limit(e1, e2);
sc->flags = e2;
}
/* init the segment cache in vm86 mode. */
static inline void load_seg_vm(CPUX86State *env, int seg, int selector)
{
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg, selector, (selector << 4), 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK | (3 << DESC_DPL_SHIFT));
}
static inline void get_ss_esp_from_tss(CPUX86State *env, uint32_t *ss_ptr,
uint32_t *esp_ptr, int dpl,
uintptr_t retaddr)
{
X86CPU *cpu = x86_env_get_cpu(env);
int type, index, shift;
#if 0
{
int i;
printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
for (i = 0; i < env->tr.limit; i++) {
printf("%02x ", env->tr.base[i]);
if ((i & 7) == 7) {
printf("\n");
}
}
printf("\n");
}
#endif
if (!(env->tr.flags & DESC_P_MASK)) {
cpu_abort(CPU(cpu), "invalid tss");
}
type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
if ((type & 7) != 1) {
cpu_abort(CPU(cpu), "invalid tss type");
}
shift = type >> 3;
index = (dpl * 4 + 2) << shift;
if (index + (4 << shift) - 1 > env->tr.limit) {
raise_exception_err_ra(env, EXCP0A_TSS, env->tr.selector & 0xfffc, retaddr);
}
if (shift == 0) {
*esp_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index, retaddr);
*ss_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index + 2, retaddr);
} else {
*esp_ptr = cpu_ldl_kernel_ra(env, env->tr.base + index, retaddr);
*ss_ptr = cpu_lduw_kernel_ra(env, env->tr.base + index + 4, retaddr);
}
}
static void tss_load_seg(CPUX86State *env, int seg_reg, int selector, int cpl,
uintptr_t retaddr)
{
uint32_t e1, e2;
int rpl, dpl;
if ((selector & 0xfffc) != 0) {
if (load_segment_ra(env, &e1, &e2, selector, retaddr) != 0) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
if (!(e2 & DESC_S_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (seg_reg == R_CS) {
if (!(e2 & DESC_CS_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
if (dpl != rpl) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
} else if (seg_reg == R_SS) {
/* SS must be writable data */
if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
if (dpl != cpl || dpl != rpl) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
} else {
/* not readable code */
if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
/* if data or non conforming code, checks the rights */
if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) {
if (dpl < cpl || dpl < rpl) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
}
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, retaddr);
}
cpu_x86_load_seg_cache(env, seg_reg, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
} else {
if (seg_reg == R_SS || seg_reg == R_CS) {
raise_exception_err_ra(env, EXCP0A_TSS, selector & 0xfffc, retaddr);
}
}
}
#define SWITCH_TSS_JMP 0
#define SWITCH_TSS_IRET 1
#define SWITCH_TSS_CALL 2
/* XXX: restore CPU state in registers (PowerPC case) */
static void switch_tss_ra(CPUX86State *env, int tss_selector,
uint32_t e1, uint32_t e2, int source,
uint32_t next_eip, uintptr_t retaddr)
{
int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i;
target_ulong tss_base;
uint32_t new_regs[8], new_segs[6];
uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap;
uint32_t old_eflags, eflags_mask;
SegmentCache *dt;
int index;
target_ulong ptr;
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type,
source);
/* if task gate, we read the TSS segment and we load it */
if (type == 5) {
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, tss_selector & 0xfffc, retaddr);
}
tss_selector = e1 >> 16;
if (tss_selector & 4) {
raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, retaddr);
}
if (load_segment_ra(env, &e1, &e2, tss_selector, retaddr) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr);
}
if (e2 & DESC_S_MASK) {
raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr);
}
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
if ((type & 7) != 1) {
raise_exception_err_ra(env, EXCP0D_GPF, tss_selector & 0xfffc, retaddr);
}
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, tss_selector & 0xfffc, retaddr);
}
if (type & 8) {
tss_limit_max = 103;
} else {
tss_limit_max = 43;
}
tss_limit = get_seg_limit(e1, e2);
tss_base = get_seg_base(e1, e2);
if ((tss_selector & 4) != 0 ||
tss_limit < tss_limit_max) {
raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, retaddr);
}
old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
if (old_type & 8) {
old_tss_limit_max = 103;
} else {
old_tss_limit_max = 43;
}
/* read all the registers from the new TSS */
if (type & 8) {
/* 32 bit */
new_cr3 = cpu_ldl_kernel_ra(env, tss_base + 0x1c, retaddr);
new_eip = cpu_ldl_kernel_ra(env, tss_base + 0x20, retaddr);
new_eflags = cpu_ldl_kernel_ra(env, tss_base + 0x24, retaddr);
for (i = 0; i < 8; i++) {
new_regs[i] = cpu_ldl_kernel_ra(env, tss_base + (0x28 + i * 4),
retaddr);
}
for (i = 0; i < 6; i++) {
new_segs[i] = cpu_lduw_kernel_ra(env, tss_base + (0x48 + i * 4),
retaddr);
}
new_ldt = cpu_lduw_kernel_ra(env, tss_base + 0x60, retaddr);
new_trap = cpu_ldl_kernel_ra(env, tss_base + 0x64, retaddr);
} else {
/* 16 bit */
new_cr3 = 0;
new_eip = cpu_lduw_kernel_ra(env, tss_base + 0x0e, retaddr);
new_eflags = cpu_lduw_kernel_ra(env, tss_base + 0x10, retaddr);
for (i = 0; i < 8; i++) {
new_regs[i] = cpu_lduw_kernel_ra(env, tss_base + (0x12 + i * 2),
retaddr) | 0xffff0000;
}
for (i = 0; i < 4; i++) {
new_segs[i] = cpu_lduw_kernel_ra(env, tss_base + (0x22 + i * 4),
retaddr);
}
new_ldt = cpu_lduw_kernel_ra(env, tss_base + 0x2a, retaddr);
new_segs[R_FS] = 0;
new_segs[R_GS] = 0;
new_trap = 0;
}
/* XXX: avoid a compiler warning, see
http://support.amd.com/us/Processor_TechDocs/24593.pdf
chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */
(void)new_trap;
/* NOTE: we must avoid memory exceptions during the task switch,
so we make dummy accesses before */
/* XXX: it can still fail in some cases, so a bigger hack is
necessary to valid the TLB after having done the accesses */
v1 = cpu_ldub_kernel_ra(env, env->tr.base, retaddr);
v2 = cpu_ldub_kernel_ra(env, env->tr.base + old_tss_limit_max, retaddr);
cpu_stb_kernel_ra(env, env->tr.base, v1, retaddr);
cpu_stb_kernel_ra(env, env->tr.base + old_tss_limit_max, v2, retaddr);
/* clear busy bit (it is restartable) */
if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) {
target_ulong ptr;
uint32_t e2;
ptr = env->gdt.base + (env->tr.selector & ~7);
e2 = cpu_ldl_kernel_ra(env, ptr + 4, retaddr);
e2 &= ~DESC_TSS_BUSY_MASK;
cpu_stl_kernel_ra(env, ptr + 4, e2, retaddr);
}
old_eflags = cpu_compute_eflags(env);
if (source == SWITCH_TSS_IRET) {
old_eflags &= ~NT_MASK;
}
/* save the current state in the old TSS */
if (type & 8) {
/* 32 bit */
cpu_stl_kernel_ra(env, env->tr.base + 0x20, next_eip, retaddr);
cpu_stl_kernel_ra(env, env->tr.base + 0x24, old_eflags, retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 0 * 4), env->regs[R_EAX], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 1 * 4), env->regs[R_ECX], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 2 * 4), env->regs[R_EDX], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 3 * 4), env->regs[R_EBX], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 4 * 4), env->regs[R_ESP], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 5 * 4), env->regs[R_EBP], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 6 * 4), env->regs[R_ESI], retaddr);
cpu_stl_kernel_ra(env, env->tr.base + (0x28 + 7 * 4), env->regs[R_EDI], retaddr);
for (i = 0; i < 6; i++) {
cpu_stw_kernel_ra(env, env->tr.base + (0x48 + i * 4),
env->segs[i].selector, retaddr);
}
} else {
/* 16 bit */
cpu_stw_kernel_ra(env, env->tr.base + 0x0e, next_eip, retaddr);
cpu_stw_kernel_ra(env, env->tr.base + 0x10, old_eflags, retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 0 * 2), env->regs[R_EAX], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 1 * 2), env->regs[R_ECX], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 2 * 2), env->regs[R_EDX], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 3 * 2), env->regs[R_EBX], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 4 * 2), env->regs[R_ESP], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 5 * 2), env->regs[R_EBP], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 6 * 2), env->regs[R_ESI], retaddr);
cpu_stw_kernel_ra(env, env->tr.base + (0x12 + 7 * 2), env->regs[R_EDI], retaddr);
for (i = 0; i < 4; i++) {
cpu_stw_kernel_ra(env, env->tr.base + (0x22 + i * 4),
env->segs[i].selector, retaddr);
}
}
/* now if an exception occurs, it will occurs in the next task
context */
if (source == SWITCH_TSS_CALL) {
cpu_stw_kernel_ra(env, tss_base, env->tr.selector, retaddr);
new_eflags |= NT_MASK;
}
/* set busy bit */
if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) {
target_ulong ptr;
uint32_t e2;
ptr = env->gdt.base + (tss_selector & ~7);
e2 = cpu_ldl_kernel_ra(env, ptr + 4, retaddr);
e2 |= DESC_TSS_BUSY_MASK;
cpu_stl_kernel_ra(env, ptr + 4, e2, retaddr);
}
/* set the new CPU state */
/* from this point, any exception which occurs can give problems */
env->cr[0] |= CR0_TS_MASK;
env->hflags |= HF_TS_MASK;
env->tr.selector = tss_selector;
env->tr.base = tss_base;
env->tr.limit = tss_limit;
env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK;
if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) {
cpu_x86_update_cr3(env, new_cr3);
}
/* load all registers without an exception, then reload them with
possible exception */
env->eip = new_eip;
eflags_mask = TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK;
if (!(type & 8)) {
eflags_mask &= 0xffff;
}
cpu_load_eflags(env, new_eflags, eflags_mask);
/* XXX: what to do in 16 bit case? */
env->regs[R_EAX] = new_regs[0];
env->regs[R_ECX] = new_regs[1];
env->regs[R_EDX] = new_regs[2];
env->regs[R_EBX] = new_regs[3];
env->regs[R_ESP] = new_regs[4];
env->regs[R_EBP] = new_regs[5];
env->regs[R_ESI] = new_regs[6];
env->regs[R_EDI] = new_regs[7];
if (new_eflags & VM_MASK) {
for (i = 0; i < 6; i++) {
load_seg_vm(env, i, new_segs[i]);
}
} else {
/* first just selectors as the rest may trigger exceptions */
for (i = 0; i < 6; i++) {
cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0);
}
}
env->ldt.selector = new_ldt & ~4;
env->ldt.base = 0;
env->ldt.limit = 0;
env->ldt.flags = 0;
/* load the LDT */
if (new_ldt & 4) {
raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr);
}
if ((new_ldt & 0xfffc) != 0) {
dt = &env->gdt;
index = new_ldt & ~7;
if ((index + 7) > dt->limit) {
raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr);
}
ptr = dt->base + index;
e1 = cpu_ldl_kernel_ra(env, ptr, retaddr);
e2 = cpu_ldl_kernel_ra(env, ptr + 4, retaddr);
if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) {
raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr);
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, new_ldt & 0xfffc, retaddr);
}
load_seg_cache_raw_dt(&env->ldt, e1, e2);
}
/* load the segments */
if (!(new_eflags & VM_MASK)) {
int cpl = new_segs[R_CS] & 3;
tss_load_seg(env, R_CS, new_segs[R_CS], cpl, retaddr);
tss_load_seg(env, R_SS, new_segs[R_SS], cpl, retaddr);
tss_load_seg(env, R_ES, new_segs[R_ES], cpl, retaddr);
tss_load_seg(env, R_DS, new_segs[R_DS], cpl, retaddr);
tss_load_seg(env, R_FS, new_segs[R_FS], cpl, retaddr);
tss_load_seg(env, R_GS, new_segs[R_GS], cpl, retaddr);
}
/* check that env->eip is in the CS segment limits */
if (new_eip > env->segs[R_CS].limit) {
/* XXX: different exception if CALL? */
raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
}
#ifndef CONFIG_USER_ONLY
/* reset local breakpoints */
if (env->dr[7] & DR7_LOCAL_BP_MASK) {
cpu_x86_update_dr7(env, env->dr[7] & ~DR7_LOCAL_BP_MASK);
}
#endif
}
static void switch_tss(CPUX86State *env, int tss_selector,
uint32_t e1, uint32_t e2, int source,
uint32_t next_eip)
{
switch_tss_ra(env, tss_selector, e1, e2, source, next_eip, 0);
}
static inline unsigned int get_sp_mask(unsigned int e2)
{
if (e2 & DESC_B_MASK) {
return 0xffffffff;
} else {
return 0xffff;
}
}
static int exception_has_error_code(int intno)
{
switch (intno) {
case 8:
case 10:
case 11:
case 12:
case 13:
case 14:
case 17:
return 1;
}
return 0;
}
#ifdef TARGET_X86_64
#define SET_ESP(val, sp_mask) \
do { \
if ((sp_mask) == 0xffff) { \
env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | \
((val) & 0xffff); \
} else if ((sp_mask) == 0xffffffffLL) { \
env->regs[R_ESP] = (uint32_t)(val); \
} else { \
env->regs[R_ESP] = (val); \
} \
} while (0)
#else
#define SET_ESP(val, sp_mask) \
do { \
env->regs[R_ESP] = (env->regs[R_ESP] & ~(sp_mask)) | \
((val) & (sp_mask)); \
} while (0)
#endif
/* in 64-bit machines, this can overflow. So this segment addition macro
* can be used to trim the value to 32-bit whenever needed */
#define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask))))
/* XXX: add a is_user flag to have proper security support */
#define PUSHW_RA(ssp, sp, sp_mask, val, ra) \
{ \
sp -= 2; \
cpu_stw_kernel_ra(env, (ssp) + (sp & (sp_mask)), (val), ra); \
}
#define PUSHL_RA(ssp, sp, sp_mask, val, ra) \
{ \
sp -= 4; \
cpu_stl_kernel_ra(env, SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val), ra); \
}
#define POPW_RA(ssp, sp, sp_mask, val, ra) \
{ \
val = cpu_lduw_kernel_ra(env, (ssp) + (sp & (sp_mask)), ra); \
sp += 2; \
}
#define POPL_RA(ssp, sp, sp_mask, val, ra) \
{ \
val = (uint32_t)cpu_ldl_kernel_ra(env, SEG_ADDL(ssp, sp, sp_mask), ra); \
sp += 4; \
}
#define PUSHW(ssp, sp, sp_mask, val) PUSHW_RA(ssp, sp, sp_mask, val, 0)
#define PUSHL(ssp, sp, sp_mask, val) PUSHL_RA(ssp, sp, sp_mask, val, 0)
#define POPW(ssp, sp, sp_mask, val) POPW_RA(ssp, sp, sp_mask, val, 0)
#define POPL(ssp, sp, sp_mask, val) POPL_RA(ssp, sp, sp_mask, val, 0)
/* protected mode interrupt */
static void do_interrupt_protected(CPUX86State *env, int intno, int is_int,
int error_code, unsigned int next_eip,
int is_hw)
{
SegmentCache *dt;
target_ulong ptr, ssp;
int type, dpl, selector, ss_dpl, cpl;
int has_error_code, new_stack, shift;
uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
uint32_t old_eip, sp_mask;
int vm86 = env->eflags & VM_MASK;
has_error_code = 0;
if (!is_int && !is_hw) {
has_error_code = exception_has_error_code(intno);
}
if (is_int) {
old_eip = next_eip;
} else {
old_eip = env->eip;
}
dt = &env->idt;
if (intno * 8 + 7 > dt->limit) {
raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2);
}
ptr = dt->base + intno * 8;
e1 = cpu_ldl_kernel(env, ptr);
e2 = cpu_ldl_kernel(env, ptr + 4);
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch (type) {
case 5: /* task gate */
/* must do that check here to return the correct error code */
if (!(e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0B_NOSEG, intno * 8 + 2);
}
switch_tss(env, intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip);
if (has_error_code) {
int type;
uint32_t mask;
/* push the error code */
type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
shift = type >> 3;
if (env->segs[R_SS].flags & DESC_B_MASK) {
mask = 0xffffffff;
} else {
mask = 0xffff;
}
esp = (env->regs[R_ESP] - (2 << shift)) & mask;
ssp = env->segs[R_SS].base + esp;
if (shift) {
cpu_stl_kernel(env, ssp, error_code);
} else {
cpu_stw_kernel(env, ssp, error_code);
}
SET_ESP(esp, mask);
}
return;
case 6: /* 286 interrupt gate */
case 7: /* 286 trap gate */
case 14: /* 386 interrupt gate */
case 15: /* 386 trap gate */
break;
default:
raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2);
break;
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (is_int && dpl < cpl) {
raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2);
}
/* check valid bit */
if (!(e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0B_NOSEG, intno * 8 + 2);
}
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
if ((selector & 0xfffc) == 0) {
raise_exception_err(env, EXCP0D_GPF, 0);
}
if (load_segment(env, &e1, &e2, selector) != 0) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0B_NOSEG, selector & 0xfffc);
}
if (e2 & DESC_C_MASK) {
dpl = cpl;
}
if (dpl < cpl) {
/* to inner privilege */
get_ss_esp_from_tss(env, &ss, &esp, dpl, 0);
if ((ss & 0xfffc) == 0) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
if ((ss & 3) != dpl) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
if (load_segment(env, &ss_e1, &ss_e2, ss) != 0) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK)) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
if (!(ss_e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0A_TSS, ss & 0xfffc);
}
new_stack = 1;
sp_mask = get_sp_mask(ss_e2);
ssp = get_seg_base(ss_e1, ss_e2);
} else {
/* to same privilege */
if (vm86) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
new_stack = 0;
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
esp = env->regs[R_ESP];
}
shift = type >> 3;
#if 0
/* XXX: check that enough room is available */
push_size = 6 + (new_stack << 2) + (has_error_code << 1);
if (vm86) {
push_size += 8;
}
push_size <<= shift;
#endif
if (shift == 1) {
if (new_stack) {
if (vm86) {
PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector);
}
PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector);
PUSHL(ssp, esp, sp_mask, env->regs[R_ESP]);
}
PUSHL(ssp, esp, sp_mask, cpu_compute_eflags(env));
PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector);
PUSHL(ssp, esp, sp_mask, old_eip);
if (has_error_code) {
PUSHL(ssp, esp, sp_mask, error_code);
}
} else {
if (new_stack) {
if (vm86) {
PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector);
}
PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector);
PUSHW(ssp, esp, sp_mask, env->regs[R_ESP]);
}
PUSHW(ssp, esp, sp_mask, cpu_compute_eflags(env));
PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector);
PUSHW(ssp, esp, sp_mask, old_eip);
if (has_error_code) {
PUSHW(ssp, esp, sp_mask, error_code);
}
}
/* interrupt gate clear IF mask */
if ((type & 1) == 0) {
env->eflags &= ~IF_MASK;
}
env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
if (new_stack) {
if (vm86) {
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0);
}
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
ssp, get_seg_limit(ss_e1, ss_e2), ss_e2);
}
SET_ESP(esp, sp_mask);
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
env->eip = offset;
}
#ifdef TARGET_X86_64
#define PUSHQ_RA(sp, val, ra) \
{ \
sp -= 8; \
cpu_stq_kernel_ra(env, sp, (val), ra); \
}
#define POPQ_RA(sp, val, ra) \
{ \
val = cpu_ldq_kernel_ra(env, sp, ra); \
sp += 8; \
}
#define PUSHQ(sp, val) PUSHQ_RA(sp, val, 0)
#define POPQ(sp, val) POPQ_RA(sp, val, 0)
static inline target_ulong get_rsp_from_tss(CPUX86State *env, int level)
{
X86CPU *cpu = x86_env_get_cpu(env);
int index;
#if 0
printf("TR: base=" TARGET_FMT_lx " limit=%x\n",
env->tr.base, env->tr.limit);
#endif
if (!(env->tr.flags & DESC_P_MASK)) {
cpu_abort(CPU(cpu), "invalid tss");
}
index = 8 * level + 4;
if ((index + 7) > env->tr.limit) {
raise_exception_err(env, EXCP0A_TSS, env->tr.selector & 0xfffc);
}
return cpu_ldq_kernel(env, env->tr.base + index);
}
/* 64 bit interrupt */
static void do_interrupt64(CPUX86State *env, int intno, int is_int,
int error_code, target_ulong next_eip, int is_hw)
{
SegmentCache *dt;
target_ulong ptr;
int type, dpl, selector, cpl, ist;
int has_error_code, new_stack;
uint32_t e1, e2, e3, ss;
target_ulong old_eip, esp, offset;
has_error_code = 0;
if (!is_int && !is_hw) {
has_error_code = exception_has_error_code(intno);
}
if (is_int) {
old_eip = next_eip;
} else {
old_eip = env->eip;
}
dt = &env->idt;
if (intno * 16 + 15 > dt->limit) {
raise_exception_err(env, EXCP0D_GPF, intno * 16 + 2);
}
ptr = dt->base + intno * 16;
e1 = cpu_ldl_kernel(env, ptr);
e2 = cpu_ldl_kernel(env, ptr + 4);
e3 = cpu_ldl_kernel(env, ptr + 8);
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch (type) {
case 14: /* 386 interrupt gate */
case 15: /* 386 trap gate */
break;
default:
raise_exception_err(env, EXCP0D_GPF, intno * 16 + 2);
break;
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (is_int && dpl < cpl) {
raise_exception_err(env, EXCP0D_GPF, intno * 16 + 2);
}
/* check valid bit */
if (!(e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0B_NOSEG, intno * 16 + 2);
}
selector = e1 >> 16;
offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff);
ist = e2 & 7;
if ((selector & 0xfffc) == 0) {
raise_exception_err(env, EXCP0D_GPF, 0);
}
if (load_segment(env, &e1, &e2, selector) != 0) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err(env, EXCP0B_NOSEG, selector & 0xfffc);
}
if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK)) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
if (e2 & DESC_C_MASK) {
dpl = cpl;
}
if (dpl < cpl || ist != 0) {
/* to inner privilege */
new_stack = 1;
esp = get_rsp_from_tss(env, ist != 0 ? ist + 3 : dpl);
ss = 0;
} else {
/* to same privilege */
if (env->eflags & VM_MASK) {
raise_exception_err(env, EXCP0D_GPF, selector & 0xfffc);
}
new_stack = 0;
esp = env->regs[R_ESP];
}
esp &= ~0xfLL; /* align stack */
PUSHQ(esp, env->segs[R_SS].selector);
PUSHQ(esp, env->regs[R_ESP]);
PUSHQ(esp, cpu_compute_eflags(env));
PUSHQ(esp, env->segs[R_CS].selector);
PUSHQ(esp, old_eip);
if (has_error_code) {
PUSHQ(esp, error_code);
}
/* interrupt gate clear IF mask */
if ((type & 1) == 0) {
env->eflags &= ~IF_MASK;
}
env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
if (new_stack) {
ss = 0 | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, dpl << DESC_DPL_SHIFT);
}
env->regs[R_ESP] = esp;
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
env->eip = offset;
}
#endif
#ifdef TARGET_X86_64
#if defined(CONFIG_USER_ONLY)
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
cs->exception_index = EXCP_SYSCALL;
env->exception_next_eip = env->eip + next_eip_addend;
cpu_loop_exit(cs);
}
#else
void helper_syscall(CPUX86State *env, int next_eip_addend)
{
int selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
}
selector = (env->star >> 32) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
int code64;
env->regs[R_ECX] = env->eip + next_eip_addend;
env->regs[11] = cpu_compute_eflags(env);
code64 = env->hflags & HF_CS64_MASK;
env->eflags &= ~env->fmask;
cpu_load_eflags(env, env->eflags, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
if (code64) {
env->eip = env->lstar;
} else {
env->eip = env->cstar;
}
} else {
env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eip = (uint32_t)env->star;
}
}
#endif
#endif
#ifdef TARGET_X86_64
void helper_sysret(CPUX86State *env, int dflag)
{
int cpl, selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
}
cpl = env->hflags & HF_CPL_MASK;
if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
selector = (env->star >> 48) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
cpu_load_eflags(env, (uint32_t)(env->regs[11]), TF_MASK | AC_MASK
| ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | RF_MASK |
NT_MASK);
if (dflag == 2) {
cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
env->eip = env->regs[R_ECX];
} else {
cpu_x86_load_seg_cache(env, R_CS, selector | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
env->eip = (uint32_t)env->regs[R_ECX];
}
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
} else {
env->eflags |= IF_MASK;
cpu_x86_load_seg_cache(env, R_CS, selector | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
env->eip = (uint32_t)env->regs[R_ECX];
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
}
}
#endif
/* real mode interrupt */
static void do_interrupt_real(CPUX86State *env, int intno, int is_int,
int error_code, unsigned int next_eip)
{
SegmentCache *dt;
target_ulong ptr, ssp;
int selector;
uint32_t offset, esp;
uint32_t old_cs, old_eip;
/* real mode (simpler!) */
dt = &env->idt;
if (intno * 4 + 3 > dt->limit) {
raise_exception_err(env, EXCP0D_GPF, intno * 8 + 2);
}
ptr = dt->base + intno * 4;
offset = cpu_lduw_kernel(env, ptr);
selector = cpu_lduw_kernel(env, ptr + 2);
esp = env->regs[R_ESP];
ssp = env->segs[R_SS].base;
if (is_int) {
old_eip = next_eip;
} else {
old_eip = env->eip;
}
old_cs = env->segs[R_CS].selector;
/* XXX: use SS segment size? */
PUSHW(ssp, esp, 0xffff, cpu_compute_eflags(env));
PUSHW(ssp, esp, 0xffff, old_cs);
PUSHW(ssp, esp, 0xffff, old_eip);
/* update processor state */
env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | (esp & 0xffff);
env->eip = offset;
env->segs[R_CS].selector = selector;
env->segs[R_CS].base = (selector << 4);
env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
}
#if defined(CONFIG_USER_ONLY)
/* fake user mode interrupt. is_int is TRUE if coming from the int
* instruction. next_eip is the env->eip value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE or if intno
* is EXCP_SYSCALL.
*/
static void do_interrupt_user(CPUX86State *env, int intno, int is_int,
int error_code, target_ulong next_eip)
{
if (is_int) {
SegmentCache *dt;
target_ulong ptr;
int dpl, cpl, shift;
uint32_t e2;
dt = &env->idt;
if (env->hflags & HF_LMA_MASK) {
shift = 4;
} else {
shift = 3;
}
ptr = dt->base + (intno << shift);
e2 = cpu_ldl_kernel(env, ptr + 4);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (dpl < cpl) {
raise_exception_err(env, EXCP0D_GPF, (intno << shift) + 2);
}
}
/* Since we emulate only user space, we cannot do more than
exiting the emulation with the suitable exception and error
code. So update EIP for INT 0x80 and EXCP_SYSCALL. */
if (is_int || intno == EXCP_SYSCALL) {
env->eip = next_eip;
}
}
#else
static void handle_even_inj(CPUX86State *env, int intno, int is_int,
int error_code, int is_hw, int rm)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj));
if (!(event_inj & SVM_EVTINJ_VALID)) {
int type;
if (is_int) {
type = SVM_EVTINJ_TYPE_SOFT;
} else {
type = SVM_EVTINJ_TYPE_EXEPT;
}
event_inj = intno | type | SVM_EVTINJ_VALID;
if (!rm && exception_has_error_code(intno)) {
event_inj |= SVM_EVTINJ_VALID_ERR;
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
control.event_inj_err),
error_code);
}
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
event_inj);
}
}
#endif
/*
* Begin execution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the env->eip value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
static void do_interrupt_all(X86CPU *cpu, int intno, int is_int,
int error_code, target_ulong next_eip, int is_hw)
{
CPUX86State *env = &cpu->env;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
if ((env->cr[0] & CR0_PE_MASK)) {
static int count;
qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx
" pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
count, intno, error_code, is_int,
env->hflags & HF_CPL_MASK,
env->segs[R_CS].selector, env->eip,
(int)env->segs[R_CS].base + env->eip,
env->segs[R_SS].selector, env->regs[R_ESP]);
if (intno == 0x0e) {
qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
} else {
qemu_log(" env->regs[R_EAX]=" TARGET_FMT_lx, env->regs[R_EAX]);
}
qemu_log("\n");
log_cpu_state(CPU(cpu), CPU_DUMP_CCOP);
#if 0
{
int i;
target_ulong ptr;
qemu_log(" code=");
ptr = env->segs[R_CS].base + env->eip;
for (i = 0; i < 16; i++) {
qemu_log(" %02x", ldub(ptr + i));
}
qemu_log("\n");
}
#endif
count++;
}
}
if (env->cr[0] & CR0_PE_MASK) {
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK) {
handle_even_inj(env, intno, is_int, error_code, is_hw, 0);
}
#endif
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
do_interrupt64(env, intno, is_int, error_code, next_eip, is_hw);
} else
#endif
{
do_interrupt_protected(env, intno, is_int, error_code, next_eip,
is_hw);
}
} else {
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK) {
handle_even_inj(env, intno, is_int, error_code, is_hw, 1);
}
#endif
do_interrupt_real(env, intno, is_int, error_code, next_eip);
}
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK) {
CPUState *cs = CPU(cpu);
uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb +
offsetof(struct vmcb,
control.event_inj));
x86_stl_phys(cs,
env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
event_inj & ~SVM_EVTINJ_VALID);
}
#endif
}
void x86_cpu_do_interrupt(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
#if defined(CONFIG_USER_ONLY)
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
do_interrupt_user(env, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip);
/* successfully delivered */
env->old_exception = -1;
#else
if (cs->exception_index >= EXCP_VMEXIT) {
assert(env->old_exception == -1);
do_vmexit(env, cs->exception_index - EXCP_VMEXIT, env->error_code);
} else {
do_interrupt_all(cpu, cs->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
/* successfully delivered */
env->old_exception = -1;
}
#endif
}
void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw)
{
do_interrupt_all(x86_env_get_cpu(env), intno, 0, 0, 0, is_hw);
}
bool x86_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
bool ret = false;
#if !defined(CONFIG_USER_ONLY)
if (interrupt_request & CPU_INTERRUPT_POLL) {
cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
apic_poll_irq(cpu->apic_state);
/* Don't process multiple interrupt requests in a single call.
This is required to make icount-driven execution deterministic. */
return true;
}
#endif
if (interrupt_request & CPU_INTERRUPT_SIPI) {
do_cpu_sipi(cpu);
ret = true;
} else if (env->hflags2 & HF2_GIF_MASK) {
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK)) {
cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, 0, 0);
cs->interrupt_request &= ~CPU_INTERRUPT_SMI;
do_smm_enter(cpu);
ret = true;
} else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
!(env->hflags2 & HF2_NMI_MASK)) {
cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
env->hflags2 |= HF2_NMI_MASK;
do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
ret = true;
} else if (interrupt_request & CPU_INTERRUPT_MCE) {
cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
ret = true;
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(((env->hflags2 & HF2_VINTR_MASK) &&
(env->hflags2 & HF2_HIF_MASK)) ||
(!(env->hflags2 & HF2_VINTR_MASK) &&
(env->eflags & IF_MASK &&
!(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
int intno;
cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, 0, 0);
cs->interrupt_request &= ~(CPU_INTERRUPT_HARD |
CPU_INTERRUPT_VIRQ);
intno = cpu_get_pic_interrupt(env);
qemu_log_mask(CPU_LOG_TB_IN_ASM,
"Servicing hardware INT=0x%02x\n", intno);
do_interrupt_x86_hardirq(env, intno, 1);
/* ensure that no TB jump will be modified as
the program flow was changed */
ret = true;
#if !defined(CONFIG_USER_ONLY)
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
(env->eflags & IF_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
int intno;
/* FIXME: this should respect TPR */
cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, 0, 0);
intno = x86_ldl_phys(cs, env->vm_vmcb
+ offsetof(struct vmcb, control.int_vector));
qemu_log_mask(CPU_LOG_TB_IN_ASM,
"Servicing virtual hardware INT=0x%02x\n", intno);
do_interrupt_x86_hardirq(env, intno, 1);
cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
ret = true;
#endif
}
}
return ret;
}
void helper_lldt(CPUX86State *env, int selector)
{
SegmentCache *dt;
uint32_t e1, e2;
int index, entry_limit;
target_ulong ptr;
selector &= 0xffff;
if ((selector & 0xfffc) == 0) {
/* XXX: NULL selector case: invalid LDT */
env->ldt.base = 0;
env->ldt.limit = 0;
} else {
if (selector & 0x4) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
dt = &env->gdt;
index = selector & ~7;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
entry_limit = 15;
} else
#endif
{
entry_limit = 7;
}
if ((index + entry_limit) > dt->limit) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
ptr = dt->base + index;
e1 = cpu_ldl_kernel_ra(env, ptr, GETPC());
e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC());
if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC());
}
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t e3;
e3 = cpu_ldl_kernel_ra(env, ptr + 8, GETPC());
load_seg_cache_raw_dt(&env->ldt, e1, e2);
env->ldt.base |= (target_ulong)e3 << 32;
} else
#endif
{
load_seg_cache_raw_dt(&env->ldt, e1, e2);
}
}
env->ldt.selector = selector;
}
void helper_ltr(CPUX86State *env, int selector)
{
SegmentCache *dt;
uint32_t e1, e2;
int index, type, entry_limit;
target_ulong ptr;
selector &= 0xffff;
if ((selector & 0xfffc) == 0) {
/* NULL selector case: invalid TR */
env->tr.base = 0;
env->tr.limit = 0;
env->tr.flags = 0;
} else {
if (selector & 0x4) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
dt = &env->gdt;
index = selector & ~7;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
entry_limit = 15;
} else
#endif
{
entry_limit = 7;
}
if ((index + entry_limit) > dt->limit) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
ptr = dt->base + index;
e1 = cpu_ldl_kernel_ra(env, ptr, GETPC());
e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC());
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
if ((e2 & DESC_S_MASK) ||
(type != 1 && type != 9)) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC());
}
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t e3, e4;
e3 = cpu_ldl_kernel_ra(env, ptr + 8, GETPC());
e4 = cpu_ldl_kernel_ra(env, ptr + 12, GETPC());
if ((e4 >> DESC_TYPE_SHIFT) & 0xf) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
load_seg_cache_raw_dt(&env->tr, e1, e2);
env->tr.base |= (target_ulong)e3 << 32;
} else
#endif
{
load_seg_cache_raw_dt(&env->tr, e1, e2);
}
e2 |= DESC_TSS_BUSY_MASK;
cpu_stl_kernel_ra(env, ptr + 4, e2, GETPC());
}
env->tr.selector = selector;
}
/* only works if protected mode and not VM86. seg_reg must be != R_CS */
void helper_load_seg(CPUX86State *env, int seg_reg, int selector)
{
uint32_t e1, e2;
int cpl, dpl, rpl;
SegmentCache *dt;
int index;
target_ulong ptr;
selector &= 0xffff;
cpl = env->hflags & HF_CPL_MASK;
if ((selector & 0xfffc) == 0) {
/* null selector case */
if (seg_reg == R_SS
#ifdef TARGET_X86_64
&& (!(env->hflags & HF_CS64_MASK) || cpl == 3)
#endif
) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0);
} else {
if (selector & 0x4) {
dt = &env->ldt;
} else {
dt = &env->gdt;
}
index = selector & ~7;
if ((index + 7) > dt->limit) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
ptr = dt->base + index;
e1 = cpu_ldl_kernel_ra(env, ptr, GETPC());
e2 = cpu_ldl_kernel_ra(env, ptr + 4, GETPC());
if (!(e2 & DESC_S_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (seg_reg == R_SS) {
/* must be writable segment */
if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (rpl != cpl || dpl != cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
} else {
/* must be readable segment */
if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
/* if not conforming code, test rights */
if (dpl < cpl || dpl < rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
}
}
if (!(e2 & DESC_P_MASK)) {
if (seg_reg == R_SS) {
raise_exception_err_ra(env, EXCP0C_STACK, selector & 0xfffc, GETPC());
} else {
raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC());
}
}
/* set the access bit if not already set */
if (!(e2 & DESC_A_MASK)) {
e2 |= DESC_A_MASK;
cpu_stl_kernel_ra(env, ptr + 4, e2, GETPC());
}
cpu_x86_load_seg_cache(env, seg_reg, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
#if 0
qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
selector, (unsigned long)sc->base, sc->limit, sc->flags);
#endif
}
}
/* protected mode jump */
void helper_ljmp_protected(CPUX86State *env, int new_cs, target_ulong new_eip,
target_ulong next_eip)
{
int gate_cs, type;
uint32_t e1, e2, cpl, dpl, rpl, limit;
if ((new_cs & 0xfffc) == 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
if (load_segment_ra(env, &e1, &e2, new_cs, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
/* conforming code segment */
if (dpl > cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
if (dpl != cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC());
}
limit = get_seg_limit(e1, e2);
if (new_eip > limit &&
!(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
env->eip = new_eip;
} else {
/* jump to call or task gate */
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
rpl = new_cs & 3;
cpl = env->hflags & HF_CPL_MASK;
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch (type) {
case 1: /* 286 TSS */
case 9: /* 386 TSS */
case 5: /* task gate */
if (dpl < cpl || dpl < rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
switch_tss_ra(env, new_cs, e1, e2, SWITCH_TSS_JMP, next_eip, GETPC());
break;
case 4: /* 286 call gate */
case 12: /* 386 call gate */
if ((dpl < cpl) || (dpl < rpl)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC());
}
gate_cs = e1 >> 16;
new_eip = (e1 & 0xffff);
if (type == 12) {
new_eip |= (e2 & 0xffff0000);
}
if (load_segment_ra(env, &e1, &e2, gate_cs, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC());
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
/* must be code segment */
if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) !=
(DESC_S_MASK | DESC_CS_MASK))) {
raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC());
}
if (((e2 & DESC_C_MASK) && (dpl > cpl)) ||
(!(e2 & DESC_C_MASK) && (dpl != cpl))) {
raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC());
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, gate_cs & 0xfffc, GETPC());
}
limit = get_seg_limit(e1, e2);
if (new_eip > limit) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
env->eip = new_eip;
break;
default:
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
break;
}
}
}
/* real mode call */
void helper_lcall_real(CPUX86State *env, int new_cs, target_ulong new_eip1,
int shift, int next_eip)
{
int new_eip;
uint32_t esp, esp_mask;
target_ulong ssp;
new_eip = new_eip1;
esp = env->regs[R_ESP];
esp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
if (shift) {
PUSHL_RA(ssp, esp, esp_mask, env->segs[R_CS].selector, GETPC());
PUSHL_RA(ssp, esp, esp_mask, next_eip, GETPC());
} else {
PUSHW_RA(ssp, esp, esp_mask, env->segs[R_CS].selector, GETPC());
PUSHW_RA(ssp, esp, esp_mask, next_eip, GETPC());
}
SET_ESP(esp, esp_mask);
env->eip = new_eip;
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (new_cs << 4);
}
/* protected mode call */
void helper_lcall_protected(CPUX86State *env, int new_cs, target_ulong new_eip,
int shift, target_ulong next_eip)
{
int new_stack, i;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
uint32_t val, limit, old_sp_mask;
target_ulong ssp, old_ssp;
LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
LOG_PCALL_STATE(CPU(x86_env_get_cpu(env)));
if ((new_cs & 0xfffc) == 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
if (load_segment_ra(env, &e1, &e2, new_cs, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
cpl = env->hflags & HF_CPL_MASK;
LOG_PCALL("desc=%08x:%08x\n", e1, e2);
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
/* conforming code segment */
if (dpl > cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
if (dpl != cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC());
}
#ifdef TARGET_X86_64
/* XXX: check 16/32 bit cases in long mode */
if (shift == 2) {
target_ulong rsp;
/* 64 bit case */
rsp = env->regs[R_ESP];
PUSHQ_RA(rsp, env->segs[R_CS].selector, GETPC());
PUSHQ_RA(rsp, next_eip, GETPC());
/* from this point, not restartable */
env->regs[R_ESP] = rsp;
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2),
get_seg_limit(e1, e2), e2);
env->eip = new_eip;
} else
#endif
{
sp = env->regs[R_ESP];
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
if (shift) {
PUSHL_RA(ssp, sp, sp_mask, env->segs[R_CS].selector, GETPC());
PUSHL_RA(ssp, sp, sp_mask, next_eip, GETPC());
} else {
PUSHW_RA(ssp, sp, sp_mask, env->segs[R_CS].selector, GETPC());
PUSHW_RA(ssp, sp, sp_mask, next_eip, GETPC());
}
limit = get_seg_limit(e1, e2);
if (new_eip > limit) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
/* from this point, not restartable */
SET_ESP(sp, sp_mask);
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
env->eip = new_eip;
}
} else {
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
rpl = new_cs & 3;
switch (type) {
case 1: /* available 286 TSS */
case 9: /* available 386 TSS */
case 5: /* task gate */
if (dpl < cpl || dpl < rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
switch_tss_ra(env, new_cs, e1, e2, SWITCH_TSS_CALL, next_eip, GETPC());
return;
case 4: /* 286 call gate */
case 12: /* 386 call gate */
break;
default:
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
break;
}
shift = type >> 3;
if (dpl < cpl || dpl < rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, GETPC());
}
/* check valid bit */
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, GETPC());
}
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
param_count = e2 & 0x1f;
if ((selector & 0xfffc) == 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, selector & 0xfffc, GETPC());
}
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner privilege */
get_ss_esp_from_tss(env, &ss, &sp, dpl, GETPC());
LOG_PCALL("new ss:esp=%04x:%08x param_count=%d env->regs[R_ESP]="
TARGET_FMT_lx "\n", ss, sp, param_count,
env->regs[R_ESP]);
if ((ss & 0xfffc) == 0) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
if ((ss & 3) != dpl) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
if (load_segment_ra(env, &ss_e1, &ss_e2, ss, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
if (!(ss_e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0A_TSS, ss & 0xfffc, GETPC());
}
/* push_size = ((param_count * 2) + 8) << shift; */
old_sp_mask = get_sp_mask(env->segs[R_SS].flags);
old_ssp = env->segs[R_SS].base;
sp_mask = get_sp_mask(ss_e2);
ssp = get_seg_base(ss_e1, ss_e2);
if (shift) {
PUSHL_RA(ssp, sp, sp_mask, env->segs[R_SS].selector, GETPC());
PUSHL_RA(ssp, sp, sp_mask, env->regs[R_ESP], GETPC());
for (i = param_count - 1; i >= 0; i--) {
val = cpu_ldl_kernel_ra(env, old_ssp +
((env->regs[R_ESP] + i * 4) &
old_sp_mask), GETPC());
PUSHL_RA(ssp, sp, sp_mask, val, GETPC());
}
} else {
PUSHW_RA(ssp, sp, sp_mask, env->segs[R_SS].selector, GETPC());
PUSHW_RA(ssp, sp, sp_mask, env->regs[R_ESP], GETPC());
for (i = param_count - 1; i >= 0; i--) {
val = cpu_lduw_kernel_ra(env, old_ssp +
((env->regs[R_ESP] + i * 2) &
old_sp_mask), GETPC());
PUSHW_RA(ssp, sp, sp_mask, val, GETPC());
}
}
new_stack = 1;
} else {
/* to same privilege */
sp = env->regs[R_ESP];
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
/* push_size = (4 << shift); */
new_stack = 0;
}
if (shift) {
PUSHL_RA(ssp, sp, sp_mask, env->segs[R_CS].selector, GETPC());
PUSHL_RA(ssp, sp, sp_mask, next_eip, GETPC());
} else {
PUSHW_RA(ssp, sp, sp_mask, env->segs[R_CS].selector, GETPC());
PUSHW_RA(ssp, sp, sp_mask, next_eip, GETPC());
}
/* from this point, not restartable */
if (new_stack) {
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
ssp,
get_seg_limit(ss_e1, ss_e2),
ss_e2);
}
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
SET_ESP(sp, sp_mask);
env->eip = offset;
}
}
/* real and vm86 mode iret */
void helper_iret_real(CPUX86State *env, int shift)
{
uint32_t sp, new_cs, new_eip, new_eflags, sp_mask;
target_ulong ssp;
int eflags_mask;
sp_mask = 0xffff; /* XXXX: use SS segment size? */
sp = env->regs[R_ESP];
ssp = env->segs[R_SS].base;
if (shift == 1) {
/* 32 bits */
POPL_RA(ssp, sp, sp_mask, new_eip, GETPC());
POPL_RA(ssp, sp, sp_mask, new_cs, GETPC());
new_cs &= 0xffff;
POPL_RA(ssp, sp, sp_mask, new_eflags, GETPC());
} else {
/* 16 bits */
POPW_RA(ssp, sp, sp_mask, new_eip, GETPC());
POPW_RA(ssp, sp, sp_mask, new_cs, GETPC());
POPW_RA(ssp, sp, sp_mask, new_eflags, GETPC());
}
env->regs[R_ESP] = (env->regs[R_ESP] & ~sp_mask) | (sp & sp_mask);
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (new_cs << 4);
env->eip = new_eip;
if (env->eflags & VM_MASK) {
eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK |
NT_MASK;
} else {
eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK |
RF_MASK | NT_MASK;
}
if (shift == 0) {
eflags_mask &= 0xffff;
}
cpu_load_eflags(env, new_eflags, eflags_mask);
env->hflags2 &= ~HF2_NMI_MASK;
}
static inline void validate_seg(CPUX86State *env, int seg_reg, int cpl)
{
int dpl;
uint32_t e2;
/* XXX: on x86_64, we do not want to nullify FS and GS because
they may still contain a valid base. I would be interested to
know how a real x86_64 CPU behaves */
if ((seg_reg == R_FS || seg_reg == R_GS) &&
(env->segs[seg_reg].selector & 0xfffc) == 0) {
return;
}
e2 = env->segs[seg_reg].flags;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
/* data or non conforming code segment */
if (dpl < cpl) {
cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0);
}
}
}
/* protected mode iret */
static inline void helper_ret_protected(CPUX86State *env, int shift,
int is_iret, int addend,
uintptr_t retaddr)
{
uint32_t new_cs, new_eflags, new_ss;
uint32_t new_es, new_ds, new_fs, new_gs;
uint32_t e1, e2, ss_e1, ss_e2;
int cpl, dpl, rpl, eflags_mask, iopl;
target_ulong ssp, sp, new_eip, new_esp, sp_mask;
#ifdef TARGET_X86_64
if (shift == 2) {
sp_mask = -1;
} else
#endif
{
sp_mask = get_sp_mask(env->segs[R_SS].flags);
}
sp = env->regs[R_ESP];
ssp = env->segs[R_SS].base;
new_eflags = 0; /* avoid warning */
#ifdef TARGET_X86_64
if (shift == 2) {
POPQ_RA(sp, new_eip, retaddr);
POPQ_RA(sp, new_cs, retaddr);
new_cs &= 0xffff;
if (is_iret) {
POPQ_RA(sp, new_eflags, retaddr);
}
} else
#endif
{
if (shift == 1) {
/* 32 bits */
POPL_RA(ssp, sp, sp_mask, new_eip, retaddr);
POPL_RA(ssp, sp, sp_mask, new_cs, retaddr);
new_cs &= 0xffff;
if (is_iret) {
POPL_RA(ssp, sp, sp_mask, new_eflags, retaddr);
if (new_eflags & VM_MASK) {
goto return_to_vm86;
}
}
} else {
/* 16 bits */
POPW_RA(ssp, sp, sp_mask, new_eip, retaddr);
POPW_RA(ssp, sp, sp_mask, new_cs, retaddr);
if (is_iret) {
POPW_RA(ssp, sp, sp_mask, new_eflags, retaddr);
}
}
}
LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
new_cs, new_eip, shift, addend);
LOG_PCALL_STATE(CPU(x86_env_get_cpu(env)));
if ((new_cs & 0xfffc) == 0) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
if (load_segment_ra(env, &e1, &e2, new_cs, retaddr) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
if (!(e2 & DESC_S_MASK) ||
!(e2 & DESC_CS_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
cpl = env->hflags & HF_CPL_MASK;
rpl = new_cs & 3;
if (rpl < cpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
if (dpl > rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
} else {
if (dpl != rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_cs & 0xfffc, retaddr);
}
}
if (!(e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_cs & 0xfffc, retaddr);
}
sp += addend;
if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) ||
((env->hflags & HF_CS64_MASK) && !is_iret))) {
/* return to same privilege level */
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
} else {
/* return to different privilege level */
#ifdef TARGET_X86_64
if (shift == 2) {
POPQ_RA(sp, new_esp, retaddr);
POPQ_RA(sp, new_ss, retaddr);
new_ss &= 0xffff;
} else
#endif
{
if (shift == 1) {
/* 32 bits */
POPL_RA(ssp, sp, sp_mask, new_esp, retaddr);
POPL_RA(ssp, sp, sp_mask, new_ss, retaddr);
new_ss &= 0xffff;
} else {
/* 16 bits */
POPW_RA(ssp, sp, sp_mask, new_esp, retaddr);
POPW_RA(ssp, sp, sp_mask, new_ss, retaddr);
}
}
LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
new_ss, new_esp);
if ((new_ss & 0xfffc) == 0) {
#ifdef TARGET_X86_64
/* NULL ss is allowed in long mode if cpl != 3 */
/* XXX: test CS64? */
if ((env->hflags & HF_LMA_MASK) && rpl != 3) {
cpu_x86_load_seg_cache(env, R_SS, new_ss,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (rpl << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
ss_e2 = DESC_B_MASK; /* XXX: should not be needed? */
} else
#endif
{
raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
}
} else {
if ((new_ss & 3) != rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr);
}
if (load_segment_ra(env, &ss_e1, &ss_e2, new_ss, retaddr) != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr);
}
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK)) {
raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr);
}
dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (dpl != rpl) {
raise_exception_err_ra(env, EXCP0D_GPF, new_ss & 0xfffc, retaddr);
}
if (!(ss_e2 & DESC_P_MASK)) {
raise_exception_err_ra(env, EXCP0B_NOSEG, new_ss & 0xfffc, retaddr);
}
cpu_x86_load_seg_cache(env, R_SS, new_ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
}
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
sp = new_esp;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
sp_mask = -1;
} else
#endif
{
sp_mask = get_sp_mask(ss_e2);
}
/* validate data segments */
validate_seg(env, R_ES, rpl);
validate_seg(env, R_DS, rpl);
validate_seg(env, R_FS, rpl);
validate_seg(env, R_GS, rpl);
sp += addend;
}
SET_ESP(sp, sp_mask);
env->eip = new_eip;
if (is_iret) {
/* NOTE: 'cpl' is the _old_ CPL */
eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK;
if (cpl == 0) {
eflags_mask |= IOPL_MASK;
}
iopl = (env->eflags >> IOPL_SHIFT) & 3;
if (cpl <= iopl) {
eflags_mask |= IF_MASK;
}
if (shift == 0) {
eflags_mask &= 0xffff;
}
cpu_load_eflags(env, new_eflags, eflags_mask);
}
return;
return_to_vm86:
POPL_RA(ssp, sp, sp_mask, new_esp, retaddr);
POPL_RA(ssp, sp, sp_mask, new_ss, retaddr);
POPL_RA(ssp, sp, sp_mask, new_es, retaddr);
POPL_RA(ssp, sp, sp_mask, new_ds, retaddr);
POPL_RA(ssp, sp, sp_mask, new_fs, retaddr);
POPL_RA(ssp, sp, sp_mask, new_gs, retaddr);
/* modify processor state */
cpu_load_eflags(env, new_eflags, TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK |
VIP_MASK);
load_seg_vm(env, R_CS, new_cs & 0xffff);
load_seg_vm(env, R_SS, new_ss & 0xffff);
load_seg_vm(env, R_ES, new_es & 0xffff);
load_seg_vm(env, R_DS, new_ds & 0xffff);
load_seg_vm(env, R_FS, new_fs & 0xffff);
load_seg_vm(env, R_GS, new_gs & 0xffff);
env->eip = new_eip & 0xffff;
env->regs[R_ESP] = new_esp;
}
void helper_iret_protected(CPUX86State *env, int shift, int next_eip)
{
int tss_selector, type;
uint32_t e1, e2;
/* specific case for TSS */
if (env->eflags & NT_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
#endif
tss_selector = cpu_lduw_kernel_ra(env, env->tr.base + 0, GETPC());
if (tss_selector & 4) {
raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC());
}
if (load_segment_ra(env, &e1, &e2, tss_selector, GETPC()) != 0) {
raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC());
}
type = (e2 >> DESC_TYPE_SHIFT) & 0x17;
/* NOTE: we check both segment and busy TSS */
if (type != 3) {
raise_exception_err_ra(env, EXCP0A_TSS, tss_selector & 0xfffc, GETPC());
}
switch_tss_ra(env, tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip, GETPC());
} else {
helper_ret_protected(env, shift, 1, 0, GETPC());
}
env->hflags2 &= ~HF2_NMI_MASK;
}
void helper_lret_protected(CPUX86State *env, int shift, int addend)
{
helper_ret_protected(env, shift, 0, addend, GETPC());
}
void helper_sysenter(CPUX86State *env)
{
if (env->sysenter_cs == 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
} else
#endif
{
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
}
cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->regs[R_ESP] = env->sysenter_esp;
env->eip = env->sysenter_eip;
}
void helper_sysexit(CPUX86State *env, int dflag)
{
int cpl;
cpl = env->hflags & HF_CPL_MASK;
if (env->sysenter_cs == 0 || cpl != 0) {
raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
}
#ifdef TARGET_X86_64
if (dflag == 2) {
cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) |
3, 0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) |
3, 0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
} else
#endif
{
cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) |
3, 0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) |
3, 0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
}
env->regs[R_ESP] = env->regs[R_ECX];
env->eip = env->regs[R_EDX];
}
target_ulong helper_lsl(CPUX86State *env, target_ulong selector1)
{
unsigned int limit;
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl, type;
selector = selector1 & 0xffff;
eflags = cpu_cc_compute_all(env, CC_OP);
if ((selector & 0xfffc) == 0) {
goto fail;
}
if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) {
goto fail;
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
/* conforming */
} else {
if (dpl < cpl || dpl < rpl) {
goto fail;
}
}
} else {
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch (type) {
case 1:
case 2:
case 3:
case 9:
case 11:
break;
default:
goto fail;
}
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return 0;
}
}
limit = get_seg_limit(e1, e2);
CC_SRC = eflags | CC_Z;
return limit;
}
target_ulong helper_lar(CPUX86State *env, target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl, type;
selector = selector1 & 0xffff;
eflags = cpu_cc_compute_all(env, CC_OP);
if ((selector & 0xfffc) == 0) {
goto fail;
}
if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) {
goto fail;
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
/* conforming */
} else {
if (dpl < cpl || dpl < rpl) {
goto fail;
}
}
} else {
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch (type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 9:
case 11:
case 12:
break;
default:
goto fail;
}
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return 0;
}
}
CC_SRC = eflags | CC_Z;
return e2 & 0x00f0ff00;
}
void helper_verr(CPUX86State *env, target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl;
selector = selector1 & 0xffff;
eflags = cpu_cc_compute_all(env, CC_OP);
if ((selector & 0xfffc) == 0) {
goto fail;
}
if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) {
goto fail;
}
if (!(e2 & DESC_S_MASK)) {
goto fail;
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_CS_MASK) {
if (!(e2 & DESC_R_MASK)) {
goto fail;
}
if (!(e2 & DESC_C_MASK)) {
if (dpl < cpl || dpl < rpl) {
goto fail;
}
}
} else {
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return;
}
}
CC_SRC = eflags | CC_Z;
}
void helper_verw(CPUX86State *env, target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl;
selector = selector1 & 0xffff;
eflags = cpu_cc_compute_all(env, CC_OP);
if ((selector & 0xfffc) == 0) {
goto fail;
}
if (load_segment_ra(env, &e1, &e2, selector, GETPC()) != 0) {
goto fail;
}
if (!(e2 & DESC_S_MASK)) {
goto fail;
}
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_CS_MASK) {
goto fail;
} else {
if (dpl < cpl || dpl < rpl) {
goto fail;
}
if (!(e2 & DESC_W_MASK)) {
fail:
CC_SRC = eflags & ~CC_Z;
return;
}
}
CC_SRC = eflags | CC_Z;
}
#if defined(CONFIG_USER_ONLY)
void cpu_x86_load_seg(CPUX86State *env, int seg_reg, int selector)
{
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
int dpl = (env->eflags & VM_MASK) ? 3 : 0;
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK | (dpl << DESC_DPL_SHIFT));
} else {
helper_load_seg(env, seg_reg, selector);
}
}
#endif
/* check if Port I/O is allowed in TSS */
static inline void check_io(CPUX86State *env, int addr, int size,
uintptr_t retaddr)
{
int io_offset, val, mask;
/* TSS must be a valid 32 bit one */
if (!(env->tr.flags & DESC_P_MASK) ||
((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
env->tr.limit < 103) {
goto fail;
}
io_offset = cpu_lduw_kernel_ra(env, env->tr.base + 0x66, retaddr);
io_offset += (addr >> 3);
/* Note: the check needs two bytes */
if ((io_offset + 1) > env->tr.limit) {
goto fail;
}
val = cpu_lduw_kernel_ra(env, env->tr.base + io_offset, retaddr);
val >>= (addr & 7);
mask = (1 << size) - 1;
/* all bits must be zero to allow the I/O */
if ((val & mask) != 0) {
fail:
raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
}
}
void helper_check_iob(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 1, GETPC());
}
void helper_check_iow(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 2, GETPC());
}
void helper_check_iol(CPUX86State *env, uint32_t t0)
{
check_io(env, t0, 4, GETPC());
}