/*
* PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
#include "mmu-hash32.h"
#include "exec/exec-all.h"
#include "exec/log.h"
#include "helper_regs.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/qemu-print.h"
#include "internal.h"
#include "mmu-book3s-v3.h"
#include "mmu-radix64.h"
/* #define DUMP_PAGE_TABLES */
void ppc_store_sdr1(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
qemu_log_mask(CPU_LOG_MMU, "%s: " TARGET_FMT_lx "\n", __func__, value);
assert(!cpu->env.has_hv_mode || !cpu->vhyp);
#if defined(TARGET_PPC64)
if (mmu_is_64bit(env->mmu_model)) {
target_ulong sdr_mask = SDR_64_HTABORG | SDR_64_HTABSIZE;
target_ulong htabsize = value & SDR_64_HTABSIZE;
if (value & ~sdr_mask) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid bits 0x"TARGET_FMT_lx
" set in SDR1", value & ~sdr_mask);
value &= sdr_mask;
}
if (htabsize > 28) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid HTABSIZE 0x" TARGET_FMT_lx
" stored in SDR1", htabsize);
return;
}
}
#endif /* defined(TARGET_PPC64) */
/* FIXME: Should check for valid HTABMASK values in 32-bit case */
env->spr[SPR_SDR1] = value;
}
/*****************************************************************************/
/* PowerPC MMU emulation */
static int pp_check(int key, int pp, int nx)
{
int access;
/* Compute access rights */
access = 0;
if (key == 0) {
switch (pp) {
case 0x0:
case 0x1:
case 0x2:
access |= PAGE_WRITE;
/* fall through */
case 0x3:
access |= PAGE_READ;
break;
}
} else {
switch (pp) {
case 0x0:
access = 0;
break;
case 0x1:
case 0x3:
access = PAGE_READ;
break;
case 0x2:
access = PAGE_READ | PAGE_WRITE;
break;
}
}
if (nx == 0) {
access |= PAGE_EXEC;
}
return access;
}
static int check_prot(int prot, MMUAccessType access_type)
{
return prot & prot_for_access_type(access_type) ? 0 : -2;
}
int ppc6xx_tlb_getnum(CPUPPCState *env, target_ulong eaddr,
int way, int is_code)
{
int nr;
/* Select TLB num in a way from address */
nr = (eaddr >> TARGET_PAGE_BITS) & (env->tlb_per_way - 1);
/* Select TLB way */
nr += env->tlb_per_way * way;
/* 6xx have separate TLBs for instructions and data */
if (is_code && env->id_tlbs == 1) {
nr += env->nb_tlb;
}
return nr;
}
static int ppc6xx_tlb_pte_check(mmu_ctx_t *ctx, target_ulong pte0,
target_ulong pte1, int h,
MMUAccessType access_type)
{
target_ulong ptem, mmask;
int access, ret, pteh, ptev, pp;
ret = -1;
/* Check validity and table match */
ptev = pte_is_valid(pte0);
pteh = (pte0 >> 6) & 1;
if (ptev && h == pteh) {
/* Check vsid & api */
ptem = pte0 & PTE_PTEM_MASK;
mmask = PTE_CHECK_MASK;
pp = pte1 & 0x00000003;
if (ptem == ctx->ptem) {
if (ctx->raddr != (hwaddr)-1ULL) {
/* all matches should have equal RPN, WIMG & PP */
if ((ctx->raddr & mmask) != (pte1 & mmask)) {
qemu_log_mask(CPU_LOG_MMU, "Bad RPN/WIMG/PP\n");
return -3;
}
}
/* Compute access rights */
access = pp_check(ctx->key, pp, ctx->nx);
/* Keep the matching PTE information */
ctx->raddr = pte1;
ctx->prot = access;
ret = check_prot(ctx->prot, access_type);
if (ret == 0) {
/* Access granted */
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
} else {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
}
}
}
return ret;
}
static int pte_update_flags(mmu_ctx_t *ctx, target_ulong *pte1p,
int ret, MMUAccessType access_type)
{
int store = 0;
/* Update page flags */
if (!(*pte1p & 0x00000100)) {
/* Update accessed flag */
*pte1p |= 0x00000100;
store = 1;
}
if (!(*pte1p & 0x00000080)) {
if (access_type == MMU_DATA_STORE && ret == 0) {
/* Update changed flag */
*pte1p |= 0x00000080;
store = 1;
} else {
/* Force page fault for first write access */
ctx->prot &= ~PAGE_WRITE;
}
}
return store;
}
/* Software driven TLB helpers */
static int ppc6xx_tlb_check(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong eaddr, MMUAccessType access_type)
{
ppc6xx_tlb_t *tlb;
int nr, best, way;
int ret;
best = -1;
ret = -1; /* No TLB found */
for (way = 0; way < env->nb_ways; way++) {
nr = ppc6xx_tlb_getnum(env, eaddr, way, access_type == MMU_INST_FETCH);
tlb = &env->tlb.tlb6[nr];
/* This test "emulates" the PTE index match for hardware TLBs */
if ((eaddr & TARGET_PAGE_MASK) != tlb->EPN) {
qemu_log_mask(CPU_LOG_MMU, "TLB %d/%d %s [" TARGET_FMT_lx
" " TARGET_FMT_lx "] <> " TARGET_FMT_lx "\n",
nr, env->nb_tlb,
pte_is_valid(tlb->pte0) ? "valid" : "inval",
tlb->EPN, tlb->EPN + TARGET_PAGE_SIZE, eaddr);
continue;
}
qemu_log_mask(CPU_LOG_MMU, "TLB %d/%d %s " TARGET_FMT_lx " <> "
TARGET_FMT_lx " " TARGET_FMT_lx " %c %c\n",
nr, env->nb_tlb,
pte_is_valid(tlb->pte0) ? "valid" : "inval",
tlb->EPN, eaddr, tlb->pte1,
access_type == MMU_DATA_STORE ? 'S' : 'L',
access_type == MMU_INST_FETCH ? 'I' : 'D');
switch (ppc6xx_tlb_pte_check(ctx, tlb->pte0, tlb->pte1,
0, access_type)) {
case -3:
/* TLB inconsistency */
return -1;
case -2:
/* Access violation */
ret = -2;
best = nr;
break;
case -1:
default:
/* No match */
break;
case 0:
/* access granted */
/*
* XXX: we should go on looping to check all TLBs
* consistency but we can speed-up the whole thing as
* the result would be undefined if TLBs are not
* consistent.
*/
ret = 0;
best = nr;
goto done;
}
}
if (best != -1) {
done:
qemu_log_mask(CPU_LOG_MMU, "found TLB at addr " TARGET_FMT_plx
" prot=%01x ret=%d\n",
ctx->raddr & TARGET_PAGE_MASK, ctx->prot, ret);
/* Update page flags */
pte_update_flags(ctx, &env->tlb.tlb6[best].pte1, ret, access_type);
}
return ret;
}
/* Perform BAT hit & translation */
static inline void bat_size_prot(CPUPPCState *env, target_ulong *blp,
int *validp, int *protp, target_ulong *BATu,
target_ulong *BATl)
{
target_ulong bl;
int pp, valid, prot;
bl = (*BATu & 0x00001FFC) << 15;
valid = 0;
prot = 0;
if (((msr_pr == 0) && (*BATu & 0x00000002)) ||
((msr_pr != 0) && (*BATu & 0x00000001))) {
valid = 1;
pp = *BATl & 0x00000003;
if (pp != 0) {
prot = PAGE_READ | PAGE_EXEC;
if (pp == 0x2) {
prot |= PAGE_WRITE;
}
}
}
*blp = bl;
*validp = valid;
*protp = prot;
}
static int get_bat_6xx_tlb(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong virtual, MMUAccessType access_type)
{
target_ulong *BATlt, *BATut, *BATu, *BATl;
target_ulong BEPIl, BEPIu, bl;
int i, valid, prot;
int ret = -1;
bool ifetch = access_type == MMU_INST_FETCH;
qemu_log_mask(CPU_LOG_MMU, "%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
ifetch ? 'I' : 'D', virtual);
if (ifetch) {
BATlt = env->IBAT[1];
BATut = env->IBAT[0];
} else {
BATlt = env->DBAT[1];
BATut = env->DBAT[0];
}
for (i = 0; i < env->nb_BATs; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & 0xF0000000;
BEPIl = *BATu & 0x0FFE0000;
bat_size_prot(env, &bl, &valid, &prot, BATu, BATl);
qemu_log_mask(CPU_LOG_MMU, "%s: %cBAT%d v " TARGET_FMT_lx " BATu "
TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n", __func__,
ifetch ? 'I' : 'D', i, virtual, *BATu, *BATl);
if ((virtual & 0xF0000000) == BEPIu &&
((virtual & 0x0FFE0000) & ~bl) == BEPIl) {
/* BAT matches */
if (valid != 0) {
/* Get physical address */
ctx->raddr = (*BATl & 0xF0000000) |
((virtual & 0x0FFE0000 & bl) | (*BATl & 0x0FFE0000)) |
(virtual & 0x0001F000);
/* Compute access rights */
ctx->prot = prot;
ret = check_prot(ctx->prot, access_type);
if (ret == 0) {
qemu_log_mask(CPU_LOG_MMU, "BAT %d match: r " TARGET_FMT_plx
" prot=%c%c\n", i, ctx->raddr,
ctx->prot & PAGE_READ ? 'R' : '-',
ctx->prot & PAGE_WRITE ? 'W' : '-');
}
break;
}
}
}
if (ret < 0) {
if (qemu_log_enabled()) {
qemu_log_mask(CPU_LOG_MMU, "no BAT match for "
TARGET_FMT_lx ":\n", virtual);
for (i = 0; i < 4; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & 0xF0000000;
BEPIl = *BATu & 0x0FFE0000;
bl = (*BATu & 0x00001FFC) << 15;
qemu_log_mask(CPU_LOG_MMU, "%s: %cBAT%d v "
TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
TARGET_FMT_lx " " TARGET_FMT_lx "\n",
__func__, ifetch ? 'I' : 'D', i, virtual,
*BATu, *BATl, BEPIu, BEPIl, bl);
}
}
}
/* No hit */
return ret;
}
/* Perform segment based translation */
static int get_segment_6xx_tlb(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong eaddr, MMUAccessType access_type,
int type)
{
PowerPCCPU *cpu = env_archcpu(env);
hwaddr hash;
target_ulong vsid;
int ds, pr, target_page_bits;
int ret;
target_ulong sr, pgidx;
pr = msr_pr;
ctx->eaddr = eaddr;
sr = env->sr[eaddr >> 28];
ctx->key = (((sr & 0x20000000) && (pr != 0)) ||
((sr & 0x40000000) && (pr == 0))) ? 1 : 0;
ds = sr & 0x80000000 ? 1 : 0;
ctx->nx = sr & 0x10000000 ? 1 : 0;
vsid = sr & 0x00FFFFFF;
target_page_bits = TARGET_PAGE_BITS;
qemu_log_mask(CPU_LOG_MMU,
"Check segment v=" TARGET_FMT_lx " %d " TARGET_FMT_lx
" nip=" TARGET_FMT_lx " lr=" TARGET_FMT_lx
" ir=%d dr=%d pr=%d %d t=%d\n",
eaddr, (int)(eaddr >> 28), sr, env->nip, env->lr, (int)msr_ir,
(int)msr_dr, pr != 0 ? 1 : 0,
access_type == MMU_DATA_STORE, type);
pgidx = (eaddr & ~SEGMENT_MASK_256M) >> target_page_bits;
hash = vsid ^ pgidx;
ctx->ptem = (vsid << 7) | (pgidx >> 10);
qemu_log_mask(CPU_LOG_MMU,
"pte segment: key=%d ds %d nx %d vsid " TARGET_FMT_lx "\n",
ctx->key, ds, ctx->nx, vsid);
ret = -1;
if (!ds) {
/* Check if instruction fetch is allowed, if needed */
if (type != ACCESS_CODE || ctx->nx == 0) {
/* Page address translation */
qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
" hash " TARGET_FMT_plx "\n",
ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash);
ctx->hash[0] = hash;
ctx->hash[1] = ~hash;
/* Initialize real address with an invalid value */
ctx->raddr = (hwaddr)-1ULL;
/* Software TLB search */
ret = ppc6xx_tlb_check(env, ctx, eaddr, access_type);
#if defined(DUMP_PAGE_TABLES)
if (qemu_loglevel_mask(CPU_LOG_MMU)) {
CPUState *cs = env_cpu(env);
hwaddr curaddr;
uint32_t a0, a1, a2, a3;
qemu_log("Page table: " TARGET_FMT_plx " len " TARGET_FMT_plx
"\n", ppc_hash32_hpt_base(cpu),
ppc_hash32_hpt_mask(cpu) + 0x80);
for (curaddr = ppc_hash32_hpt_base(cpu);
curaddr < (ppc_hash32_hpt_base(cpu)
+ ppc_hash32_hpt_mask(cpu) + 0x80);
curaddr += 16) {
a0 = ldl_phys(cs->as, curaddr);
a1 = ldl_phys(cs->as, curaddr + 4);
a2 = ldl_phys(cs->as, curaddr + 8);
a3 = ldl_phys(cs->as, curaddr + 12);
if (a0 != 0 || a1 != 0 || a2 != 0 || a3 != 0) {
qemu_log(TARGET_FMT_plx ": %08x %08x %08x %08x\n",
curaddr, a0, a1, a2, a3);
}
}
}
#endif
} else {
qemu_log_mask(CPU_LOG_MMU, "No access allowed\n");
ret = -3;
}
} else {
qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
/* Direct-store segment : absolutely *BUGGY* for now */
switch (type) {
case ACCESS_INT:
/* Integer load/store : only access allowed */
break;
case ACCESS_CODE:
/* No code fetch is allowed in direct-store areas */
return -4;
case ACCESS_FLOAT:
/* Floating point load/store */
return -4;
case ACCESS_RES:
/* lwarx, ldarx or srwcx. */
return -4;
case ACCESS_CACHE:
/*
* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi
*
* Should make the instruction do no-op. As it already do
* no-op, it's quite easy :-)
*/
ctx->raddr = eaddr;
return 0;
case ACCESS_EXT:
/* eciwx or ecowx */
return -4;
default:
qemu_log_mask(CPU_LOG_MMU, "ERROR: instruction should not need "
"address translation\n");
return -4;
}
if ((access_type == MMU_DATA_STORE || ctx->key != 1) &&
(access_type == MMU_DATA_LOAD || ctx->key != 0)) {
ctx->raddr = eaddr;
ret = 2;
} else {
ret = -2;
}
}
return ret;
}
/* Generic TLB check function for embedded PowerPC implementations */
int ppcemb_tlb_check(CPUPPCState *env, ppcemb_tlb_t *tlb,
hwaddr *raddrp,
target_ulong address, uint32_t pid, int ext,
int i)
{
target_ulong mask;
/* Check valid flag */
if (!(tlb->prot & PAGE_VALID)) {
return -1;
}
mask = ~(tlb->size - 1);
qemu_log_mask(CPU_LOG_MMU, "%s: TLB %d address " TARGET_FMT_lx
" PID %u <=> " TARGET_FMT_lx " " TARGET_FMT_lx " %u %x\n",
__func__, i, address, pid, tlb->EPN,
mask, (uint32_t)tlb->PID, tlb->prot);
/* Check PID */
if (tlb->PID != 0 && tlb->PID != pid) {
return -1;
}
/* Check effective address */
if ((address & mask) != tlb->EPN) {
return -1;
}
*raddrp = (tlb->RPN & mask) | (address & ~mask);
if (ext) {
/* Extend the physical address to 36 bits */
*raddrp |= (uint64_t)(tlb->RPN & 0xF) << 32;
}
return 0;
}
static int mmu40x_get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong address,
MMUAccessType access_type)
{
ppcemb_tlb_t *tlb;
hwaddr raddr;
int i, ret, zsel, zpr, pr;
ret = -1;
raddr = (hwaddr)-1ULL;
pr = msr_pr;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
if (ppcemb_tlb_check(env, tlb, &raddr, address,
env->spr[SPR_40x_PID], 0, i) < 0) {
continue;
}
zsel = (tlb->attr >> 4) & 0xF;
zpr = (env->spr[SPR_40x_ZPR] >> (30 - (2 * zsel))) & 0x3;
qemu_log_mask(CPU_LOG_MMU,
"%s: TLB %d zsel %d zpr %d ty %d attr %08x\n",
__func__, i, zsel, zpr, access_type, tlb->attr);
/* Check execute enable bit */
switch (zpr) {
case 0x2:
if (pr != 0) {
goto check_perms;
}
/* fall through */
case 0x3:
/* All accesses granted */
ctx->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = 0;
break;
case 0x0:
if (pr != 0) {
/* Raise Zone protection fault. */
env->spr[SPR_40x_ESR] = 1 << 22;
ctx->prot = 0;
ret = -2;
break;
}
/* fall through */
case 0x1:
check_perms:
/* Check from TLB entry */
ctx->prot = tlb->prot;
ret = check_prot(ctx->prot, access_type);
if (ret == -2) {
env->spr[SPR_40x_ESR] = 0;
}
break;
}
if (ret >= 0) {
ctx->raddr = raddr;
qemu_log_mask(CPU_LOG_MMU, "%s: access granted " TARGET_FMT_lx
" => " TARGET_FMT_plx
" %d %d\n", __func__, address, ctx->raddr, ctx->prot,
ret);
return 0;
}
}
qemu_log_mask(CPU_LOG_MMU, "%s: access refused " TARGET_FMT_lx
" => " TARGET_FMT_plx
" %d %d\n", __func__, address, raddr, ctx->prot, ret);
return ret;
}
static int mmubooke_check_tlb(CPUPPCState *env, ppcemb_tlb_t *tlb,
hwaddr *raddr, int *prot, target_ulong address,
MMUAccessType access_type, int i)
{
int prot2;
if (ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID],
!env->nb_pids, i) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID1] &&
ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID1], 0, i) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID2] &&
ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID2], 0, i) >= 0) {
goto found_tlb;
}
qemu_log_mask(CPU_LOG_MMU, "%s: TLB entry not found\n", __func__);
return -1;
found_tlb:
if (msr_pr != 0) {
prot2 = tlb->prot & 0xF;
} else {
prot2 = (tlb->prot >> 4) & 0xF;
}
/* Check the address space */
if ((access_type == MMU_INST_FETCH ? msr_ir : msr_dr) != (tlb->attr & 1)) {
qemu_log_mask(CPU_LOG_MMU, "%s: AS doesn't match\n", __func__);
return -1;
}
*prot = prot2;
if (prot2 & prot_for_access_type(access_type)) {
qemu_log_mask(CPU_LOG_MMU, "%s: good TLB!\n", __func__);
return 0;
}
qemu_log_mask(CPU_LOG_MMU, "%s: no prot match: %x\n", __func__, prot2);
return access_type == MMU_INST_FETCH ? -3 : -2;
}
static int mmubooke_get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong address,
MMUAccessType access_type)
{
ppcemb_tlb_t *tlb;
hwaddr raddr;
int i, ret;
ret = -1;
raddr = (hwaddr)-1ULL;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
ret = mmubooke_check_tlb(env, tlb, &raddr, &ctx->prot, address,
access_type, i);
if (ret != -1) {
break;
}
}
if (ret >= 0) {
ctx->raddr = raddr;
qemu_log_mask(CPU_LOG_MMU, "%s: access granted " TARGET_FMT_lx
" => " TARGET_FMT_plx " %d %d\n", __func__,
address, ctx->raddr, ctx->prot, ret);
} else {
qemu_log_mask(CPU_LOG_MMU, "%s: access refused " TARGET_FMT_lx
" => " TARGET_FMT_plx " %d %d\n", __func__,
address, raddr, ctx->prot, ret);
}
return ret;
}
hwaddr booke206_tlb_to_page_size(CPUPPCState *env,
ppcmas_tlb_t *tlb)
{
int tlbm_size;
tlbm_size = (tlb->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
return 1024ULL << tlbm_size;
}
/* TLB check function for MAS based SoftTLBs */
int ppcmas_tlb_check(CPUPPCState *env, ppcmas_tlb_t *tlb,
hwaddr *raddrp, target_ulong address,
uint32_t pid)
{
hwaddr mask;
uint32_t tlb_pid;
if (!msr_cm) {
/* In 32bit mode we can only address 32bit EAs */
address = (uint32_t)address;
}
/* Check valid flag */
if (!(tlb->mas1 & MAS1_VALID)) {
return -1;
}
mask = ~(booke206_tlb_to_page_size(env, tlb) - 1);
qemu_log_mask(CPU_LOG_MMU, "%s: TLB ADDR=0x" TARGET_FMT_lx
" PID=0x%x MAS1=0x%x MAS2=0x%" PRIx64 " mask=0x%"
HWADDR_PRIx " MAS7_3=0x%" PRIx64 " MAS8=0x%" PRIx32 "\n",
__func__, address, pid, tlb->mas1, tlb->mas2, mask,
tlb->mas7_3, tlb->mas8);
/* Check PID */
tlb_pid = (tlb->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT;
if (tlb_pid != 0 && tlb_pid != pid) {
return -1;
}
/* Check effective address */
if ((address & mask) != (tlb->mas2 & MAS2_EPN_MASK)) {
return -1;
}
if (raddrp) {
*raddrp = (tlb->mas7_3 & mask) | (address & ~mask);
}
return 0;
}
static bool is_epid_mmu(int mmu_idx)
{
return mmu_idx == PPC_TLB_EPID_STORE || mmu_idx == PPC_TLB_EPID_LOAD;
}
static uint32_t mmubooke206_esr(int mmu_idx, MMUAccessType access_type)
{
uint32_t esr = 0;
if (access_type == MMU_DATA_STORE) {
esr |= ESR_ST;
}
if (is_epid_mmu(mmu_idx)) {
esr |= ESR_EPID;
}
return esr;
}
/*
* Get EPID register given the mmu_idx. If this is regular load,
* construct the EPID access bits from current processor state
*
* Get the effective AS and PR bits and the PID. The PID is returned
* only if EPID load is requested, otherwise the caller must detect
* the correct EPID. Return true if valid EPID is returned.
*/
static bool mmubooke206_get_as(CPUPPCState *env,
int mmu_idx, uint32_t *epid_out,
bool *as_out, bool *pr_out)
{
if (is_epid_mmu(mmu_idx)) {
uint32_t epidr;
if (mmu_idx == PPC_TLB_EPID_STORE) {
epidr = env->spr[SPR_BOOKE_EPSC];
} else {
epidr = env->spr[SPR_BOOKE_EPLC];
}
*epid_out = (epidr & EPID_EPID) >> EPID_EPID_SHIFT;
*as_out = !!(epidr & EPID_EAS);
*pr_out = !!(epidr & EPID_EPR);
return true;
} else {
*as_out = msr_ds;
*pr_out = msr_pr;
return false;
}
}
/* Check if the tlb found by hashing really matches */
static int mmubooke206_check_tlb(CPUPPCState *env, ppcmas_tlb_t *tlb,
hwaddr *raddr, int *prot,
target_ulong address,
MMUAccessType access_type, int mmu_idx)
{
int prot2 = 0;
uint32_t epid;
bool as, pr;
bool use_epid = mmubooke206_get_as(env, mmu_idx, &epid, &as, &pr);
if (!use_epid) {
if (ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID]) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID1] &&
ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID1]) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID2] &&
ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID2]) >= 0) {
goto found_tlb;
}
} else {
if (ppcmas_tlb_check(env, tlb, raddr, address, epid) >= 0) {
goto found_tlb;
}
}
qemu_log_mask(CPU_LOG_MMU, "%s: TLB entry not found\n", __func__);
return -1;
found_tlb:
if (pr) {
if (tlb->mas7_3 & MAS3_UR) {
prot2 |= PAGE_READ;
}
if (tlb->mas7_3 & MAS3_UW) {
prot2 |= PAGE_WRITE;
}
if (tlb->mas7_3 & MAS3_UX) {
prot2 |= PAGE_EXEC;
}
} else {
if (tlb->mas7_3 & MAS3_SR) {
prot2 |= PAGE_READ;
}
if (tlb->mas7_3 & MAS3_SW) {
prot2 |= PAGE_WRITE;
}
if (tlb->mas7_3 & MAS3_SX) {
prot2 |= PAGE_EXEC;
}
}
/* Check the address space and permissions */
if (access_type == MMU_INST_FETCH) {
/* There is no way to fetch code using epid load */
assert(!use_epid);
as = msr_ir;
}
if (as != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) {
qemu_log_mask(CPU_LOG_MMU, "%s: AS doesn't match\n", __func__);
return -1;
}
*prot = prot2;
if (prot2 & prot_for_access_type(access_type)) {
qemu_log_mask(CPU_LOG_MMU, "%s: good TLB!\n", __func__);
return 0;
}
qemu_log_mask(CPU_LOG_MMU, "%s: no prot match: %x\n", __func__, prot2);
return access_type == MMU_INST_FETCH ? -3 : -2;
}
static int mmubooke206_get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong address,
MMUAccessType access_type,
int mmu_idx)
{
ppcmas_tlb_t *tlb;
hwaddr raddr;
int i, j, ret;
ret = -1;
raddr = (hwaddr)-1ULL;
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
int ways = booke206_tlb_ways(env, i);
for (j = 0; j < ways; j++) {
tlb = booke206_get_tlbm(env, i, address, j);
if (!tlb) {
continue;
}
ret = mmubooke206_check_tlb(env, tlb, &raddr, &ctx->prot, address,
access_type, mmu_idx);
if (ret != -1) {
goto found_tlb;
}
}
}
found_tlb:
if (ret >= 0) {
ctx->raddr = raddr;
qemu_log_mask(CPU_LOG_MMU, "%s: access granted " TARGET_FMT_lx
" => " TARGET_FMT_plx " %d %d\n", __func__, address,
ctx->raddr, ctx->prot, ret);
} else {
qemu_log_mask(CPU_LOG_MMU, "%s: access refused " TARGET_FMT_lx
" => " TARGET_FMT_plx " %d %d\n", __func__, address,
raddr, ctx->prot, ret);
}
return ret;
}
static const char *book3e_tsize_to_str[32] = {
"1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K",
"1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M",
"1G", "2G", "4G", "8G", "16G", "32G", "64G", "128G", "256G", "512G",
"1T", "2T"
};
static void mmubooke_dump_mmu(CPUPPCState *env)
{
ppcemb_tlb_t *entry;
int i;
if (kvm_enabled() && !env->kvm_sw_tlb) {
qemu_printf("Cannot access KVM TLB\n");
return;
}
qemu_printf("\nTLB:\n");
qemu_printf("Effective Physical Size PID Prot "
"Attr\n");
entry = &env->tlb.tlbe[0];
for (i = 0; i < env->nb_tlb; i++, entry++) {
hwaddr ea, pa;
target_ulong mask;
uint64_t size = (uint64_t)entry->size;
char size_buf[20];
/* Check valid flag */
if (!(entry->prot & PAGE_VALID)) {
continue;
}
mask = ~(entry->size - 1);
ea = entry->EPN & mask;
pa = entry->RPN & mask;
/* Extend the physical address to 36 bits */
pa |= (hwaddr)(entry->RPN & 0xF) << 32;
if (size >= 1 * MiB) {
snprintf(size_buf, sizeof(size_buf), "%3" PRId64 "M", size / MiB);
} else {
snprintf(size_buf, sizeof(size_buf), "%3" PRId64 "k", size / KiB);
}
qemu_printf("0x%016" PRIx64 " 0x%016" PRIx64 " %s %-5u %08x %08x\n",
(uint64_t)ea, (uint64_t)pa, size_buf, (uint32_t)entry->PID,
entry->prot, entry->attr);
}
}
static void mmubooke206_dump_one_tlb(CPUPPCState *env, int tlbn, int offset,
int tlbsize)
{
ppcmas_tlb_t *entry;
int i;
qemu_printf("\nTLB%d:\n", tlbn);
qemu_printf("Effective Physical Size TID TS SRWX"
" URWX WIMGE U0123\n");
entry = &env->tlb.tlbm[offset];
for (i = 0; i < tlbsize; i++, entry++) {
hwaddr ea, pa, size;
int tsize;
if (!(entry->mas1 & MAS1_VALID)) {
continue;
}
tsize = (entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
size = 1024ULL << tsize;
ea = entry->mas2 & ~(size - 1);
pa = entry->mas7_3 & ~(size - 1);
qemu_printf("0x%016" PRIx64 " 0x%016" PRIx64 " %4s %-5u %1u S%c%c%c"
"U%c%c%c %c%c%c%c%c U%c%c%c%c\n",
(uint64_t)ea, (uint64_t)pa,
book3e_tsize_to_str[tsize],
(entry->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT,
(entry->mas1 & MAS1_TS) >> MAS1_TS_SHIFT,
entry->mas7_3 & MAS3_SR ? 'R' : '-',
entry->mas7_3 & MAS3_SW ? 'W' : '-',
entry->mas7_3 & MAS3_SX ? 'X' : '-',
entry->mas7_3 & MAS3_UR ? 'R' : '-',
entry->mas7_3 & MAS3_UW ? 'W' : '-',
entry->mas7_3 & MAS3_UX ? 'X' : '-',
entry->mas2 & MAS2_W ? 'W' : '-',
entry->mas2 & MAS2_I ? 'I' : '-',
entry->mas2 & MAS2_M ? 'M' : '-',
entry->mas2 & MAS2_G ? 'G' : '-',
entry->mas2 & MAS2_E ? 'E' : '-',
entry->mas7_3 & MAS3_U0 ? '0' : '-',
entry->mas7_3 & MAS3_U1 ? '1' : '-',
entry->mas7_3 & MAS3_U2 ? '2' : '-',
entry->mas7_3 & MAS3_U3 ? '3' : '-');
}
}
static void mmubooke206_dump_mmu(CPUPPCState *env)
{
int offset = 0;
int i;
if (kvm_enabled() && !env->kvm_sw_tlb) {
qemu_printf("Cannot access KVM TLB\n");
return;
}
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
int size = booke206_tlb_size(env, i);
if (size == 0) {
continue;
}
mmubooke206_dump_one_tlb(env, i, offset, size);
offset += size;
}
}
static void mmu6xx_dump_BATs(CPUPPCState *env, int type)
{
target_ulong *BATlt, *BATut, *BATu, *BATl;
target_ulong BEPIl, BEPIu, bl;
int i;
switch (type) {
case ACCESS_CODE:
BATlt = env->IBAT[1];
BATut = env->IBAT[0];
break;
default:
BATlt = env->DBAT[1];
BATut = env->DBAT[0];
break;
}
for (i = 0; i < env->nb_BATs; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & 0xF0000000;
BEPIl = *BATu & 0x0FFE0000;
bl = (*BATu & 0x00001FFC) << 15;
qemu_printf("%s BAT%d BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
TARGET_FMT_lx " " TARGET_FMT_lx "\n",
type == ACCESS_CODE ? "code" : "data", i,
*BATu, *BATl, BEPIu, BEPIl, bl);
}
}
static void mmu6xx_dump_mmu(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc6xx_tlb_t *tlb;
target_ulong sr;
int type, way, entry, i;
qemu_printf("HTAB base = 0x%"HWADDR_PRIx"\n", ppc_hash32_hpt_base(cpu));
qemu_printf("HTAB mask = 0x%"HWADDR_PRIx"\n", ppc_hash32_hpt_mask(cpu));
qemu_printf("\nSegment registers:\n");
for (i = 0; i < 32; i++) {
sr = env->sr[i];
if (sr & 0x80000000) {
qemu_printf("%02d T=%d Ks=%d Kp=%d BUID=0x%03x "
"CNTLR_SPEC=0x%05x\n", i,
sr & 0x80000000 ? 1 : 0, sr & 0x40000000 ? 1 : 0,
sr & 0x20000000 ? 1 : 0, (uint32_t)((sr >> 20) & 0x1FF),
(uint32_t)(sr & 0xFFFFF));
} else {
qemu_printf("%02d T=%d Ks=%d Kp=%d N=%d VSID=0x%06x\n", i,
sr & 0x80000000 ? 1 : 0, sr & 0x40000000 ? 1 : 0,
sr & 0x20000000 ? 1 : 0, sr & 0x10000000 ? 1 : 0,
(uint32_t)(sr & 0x00FFFFFF));
}
}
qemu_printf("\nBATs:\n");
mmu6xx_dump_BATs(env, ACCESS_INT);
mmu6xx_dump_BATs(env, ACCESS_CODE);
if (env->id_tlbs != 1) {
qemu_printf("ERROR: 6xx MMU should have separated TLB"
" for code and data\n");
}
qemu_printf("\nTLBs [EPN EPN + SIZE]\n");
for (type = 0; type < 2; type++) {
for (way = 0; way < env->nb_ways; way++) {
for (entry = env->nb_tlb * type + env->tlb_per_way * way;
entry < (env->nb_tlb * type + env->tlb_per_way * (way + 1));
entry++) {
tlb = &env->tlb.tlb6[entry];
qemu_printf("%s TLB %02d/%02d way:%d %s ["
TARGET_FMT_lx " " TARGET_FMT_lx "]\n",
type ? "code" : "data", entry % env->nb_tlb,
env->nb_tlb, way,
pte_is_valid(tlb->pte0) ? "valid" : "inval",
tlb->EPN, tlb->EPN + TARGET_PAGE_SIZE);
}
}
}
}
void dump_mmu(CPUPPCState *env)
{
switch (env->mmu_model) {
case POWERPC_MMU_BOOKE:
mmubooke_dump_mmu(env);
break;
case POWERPC_MMU_BOOKE206:
mmubooke206_dump_mmu(env);
break;
case POWERPC_MMU_SOFT_6xx:
mmu6xx_dump_mmu(env);
break;
#if defined(TARGET_PPC64)
case POWERPC_MMU_64B:
case POWERPC_MMU_2_03:
case POWERPC_MMU_2_06:
case POWERPC_MMU_2_07:
dump_slb(env_archcpu(env));
break;
case POWERPC_MMU_3_00:
if (ppc64_v3_radix(env_archcpu(env))) {
qemu_log_mask(LOG_UNIMP, "%s: the PPC64 MMU is unsupported\n",
__func__);
} else {
dump_slb(env_archcpu(env));
}
break;
#endif
default:
qemu_log_mask(LOG_UNIMP, "%s: unimplemented\n", __func__);
}
}
static int check_physical(CPUPPCState *env, mmu_ctx_t *ctx, target_ulong eaddr,
MMUAccessType access_type)
{
ctx->raddr = eaddr;
ctx->prot = PAGE_READ | PAGE_EXEC;
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_REAL:
case POWERPC_MMU_BOOKE:
ctx->prot |= PAGE_WRITE;
break;
default:
/* Caller's checks mean we should never get here for other models */
g_assert_not_reached();
}
return 0;
}
int get_physical_address_wtlb(CPUPPCState *env, mmu_ctx_t *ctx,
target_ulong eaddr,
MMUAccessType access_type, int type,
int mmu_idx)
{
int ret = -1;
bool real_mode = (type == ACCESS_CODE && msr_ir == 0)
|| (type != ACCESS_CODE && msr_dr == 0);
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
if (real_mode) {
ret = check_physical(env, ctx, eaddr, access_type);
} else {
/* Try to find a BAT */
if (env->nb_BATs != 0) {
ret = get_bat_6xx_tlb(env, ctx, eaddr, access_type);
}
if (ret < 0) {
/* We didn't match any BAT entry or don't have BATs */
ret = get_segment_6xx_tlb(env, ctx, eaddr, access_type, type);
}
}
break;
case POWERPC_MMU_SOFT_4xx:
if (real_mode) {
ret = check_physical(env, ctx, eaddr, access_type);
} else {
ret = mmu40x_get_physical_address(env, ctx, eaddr, access_type);
}
break;
case POWERPC_MMU_BOOKE:
ret = mmubooke_get_physical_address(env, ctx, eaddr, access_type);
break;
case POWERPC_MMU_BOOKE206:
ret = mmubooke206_get_physical_address(env, ctx, eaddr, access_type,
mmu_idx);
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env_cpu(env), "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_REAL:
if (real_mode) {
ret = check_physical(env, ctx, eaddr, access_type);
} else {
cpu_abort(env_cpu(env),
"PowerPC in real mode do not do any translation\n");
}
return -1;
default:
cpu_abort(env_cpu(env), "Unknown or invalid MMU model\n");
return -1;
}
return ret;
}
static void booke206_update_mas_tlb_miss(CPUPPCState *env, target_ulong address,
MMUAccessType access_type, int mmu_idx)
{
uint32_t epid;
bool as, pr;
uint32_t missed_tid = 0;
bool use_epid = mmubooke206_get_as(env, mmu_idx, &epid, &as, &pr);
if (access_type == MMU_INST_FETCH) {
as = msr_ir;
}
env->spr[SPR_BOOKE_MAS0] = env->spr[SPR_BOOKE_MAS4] & MAS4_TLBSELD_MASK;
env->spr[SPR_BOOKE_MAS1] = env->spr[SPR_BOOKE_MAS4] & MAS4_TSIZED_MASK;
env->spr[SPR_BOOKE_MAS2] = env->spr[SPR_BOOKE_MAS4] & MAS4_WIMGED_MASK;
env->spr[SPR_BOOKE_MAS3] = 0;
env->spr[SPR_BOOKE_MAS6] = 0;
env->spr[SPR_BOOKE_MAS7] = 0;
/* AS */
if (as) {
env->spr[SPR_BOOKE_MAS1] |= MAS1_TS;
env->spr[SPR_BOOKE_MAS6] |= MAS6_SAS;
}
env->spr[SPR_BOOKE_MAS1] |= MAS1_VALID;
env->spr[SPR_BOOKE_MAS2] |= address & MAS2_EPN_MASK;
if (!use_epid) {
switch (env->spr[SPR_BOOKE_MAS4] & MAS4_TIDSELD_PIDZ) {
case MAS4_TIDSELD_PID0:
missed_tid = env->spr[SPR_BOOKE_PID];
break;
case MAS4_TIDSELD_PID1:
missed_tid = env->spr[SPR_BOOKE_PID1];
break;
case MAS4_TIDSELD_PID2:
missed_tid = env->spr[SPR_BOOKE_PID2];
break;
}
env->spr[SPR_BOOKE_MAS6] |= env->spr[SPR_BOOKE_PID] << 16;
} else {
missed_tid = epid;
env->spr[SPR_BOOKE_MAS6] |= missed_tid << 16;
}
env->spr[SPR_BOOKE_MAS1] |= (missed_tid << MAS1_TID_SHIFT);
/* next victim logic */
env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_ESEL_SHIFT;
env->last_way++;
env->last_way &= booke206_tlb_ways(env, 0) - 1;
env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT;
}
/* Perform address translation */
/* TODO: Split this by mmu_model. */
static bool ppc_jumbo_xlate(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp,
int mmu_idx, bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
mmu_ctx_t ctx;
int type;
int ret;
if (access_type == MMU_INST_FETCH) {
/* code access */
type = ACCESS_CODE;
} else if (guest_visible) {
/* data access */
type = env->access_type;
} else {
type = ACCESS_INT;
}
ret = get_physical_address_wtlb(env, &ctx, eaddr, access_type,
type, mmu_idx);
if (ret == 0) {
*raddrp = ctx.raddr;
*protp = ctx.prot;
*psizep = TARGET_PAGE_BITS;
return true;
}
if (guest_visible) {
log_cpu_state_mask(CPU_LOG_MMU, cs, 0);
if (type == ACCESS_CODE) {
switch (ret) {
case -1:
/* No matches in page tables or TLB */
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
cs->exception_index = POWERPC_EXCP_IFTLB;
env->error_code = 1 << 18;
env->spr[SPR_IMISS] = eaddr;
env->spr[SPR_ICMP] = 0x80000000 | ctx.ptem;
goto tlb_miss;
case POWERPC_MMU_SOFT_4xx:
cs->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = eaddr;
env->spr[SPR_40x_ESR] = 0x00000000;
break;
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, eaddr, 2, mmu_idx);
/* fall through */
case POWERPC_MMU_BOOKE:
cs->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, MMU_DATA_LOAD);
break;
case POWERPC_MMU_MPC8xx:
cpu_abort(cs, "MPC8xx MMU model is not implemented\n");
case POWERPC_MMU_REAL:
cpu_abort(cs, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
default:
cpu_abort(cs, "Unknown or invalid MMU model\n");
}
break;
case -2:
/* Access rights violation */
cs->exception_index = POWERPC_EXCP_ISI;
if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->error_code = 0;
} else {
env->error_code = 0x08000000;
}
break;
case -3:
/* No execute protection violation */
if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->spr[SPR_BOOKE_ESR] = 0x00000000;
env->error_code = 0;
} else {
env->error_code = 0x10000000;
}
cs->exception_index = POWERPC_EXCP_ISI;
break;
case -4:
/* Direct store exception */
/* No code fetch is allowed in direct-store areas */
cs->exception_index = POWERPC_EXCP_ISI;
if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->error_code = 0;
} else {
env->error_code = 0x10000000;
}
break;
}
} else {
switch (ret) {
case -1:
/* No matches in page tables or TLB */
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
if (access_type == MMU_DATA_STORE) {
cs->exception_index = POWERPC_EXCP_DSTLB;
env->error_code = 1 << 16;
} else {
cs->exception_index = POWERPC_EXCP_DLTLB;
env->error_code = 0;
}
env->spr[SPR_DMISS] = eaddr;
env->spr[SPR_DCMP] = 0x80000000 | ctx.ptem;
tlb_miss:
env->error_code |= ctx.key << 19;
env->spr[SPR_HASH1] = ppc_hash32_hpt_base(cpu) +
get_pteg_offset32(cpu, ctx.hash[0]);
env->spr[SPR_HASH2] = ppc_hash32_hpt_base(cpu) +
get_pteg_offset32(cpu, ctx.hash[1]);
break;
case POWERPC_MMU_SOFT_4xx:
cs->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_40x_ESR] = 0x00800000;
} else {
env->spr[SPR_40x_ESR] = 0x00000000;
}
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(cs, "MPC8xx MMU model is not implemented\n");
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, eaddr, access_type, mmu_idx);
/* fall through */
case POWERPC_MMU_BOOKE:
cs->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, access_type);
break;
case POWERPC_MMU_REAL:
cpu_abort(cs, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
default:
cpu_abort(cs, "Unknown or invalid MMU model\n");
}
break;
case -2:
/* Access rights violation */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
if (env->mmu_model == POWERPC_MMU_SOFT_4xx) {
env->spr[SPR_40x_DEAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_40x_ESR] |= 0x00800000;
}
} else if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, access_type);
} else {
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0A000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
break;
case -4:
/* Direct store exception */
switch (type) {
case ACCESS_FLOAT:
/* Floating point load/store */
cs->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = POWERPC_EXCP_ALIGN_FP;
env->spr[SPR_DAR] = eaddr;
break;
case ACCESS_RES:
/* lwarx, ldarx or stwcx. */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06000000;
} else {
env->spr[SPR_DSISR] = 0x04000000;
}
break;
case ACCESS_EXT:
/* eciwx or ecowx */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06100000;
} else {
env->spr[SPR_DSISR] = 0x04100000;
}
break;
default:
printf("DSI: invalid exception (%d)\n", ret);
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code =
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL;
env->spr[SPR_DAR] = eaddr;
break;
}
break;
}
}
}
return false;
}
/*****************************************************************************/
bool ppc_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp,
int mmu_idx, bool guest_visible)
{
switch (cpu->env.mmu_model) {
#if defined(TARGET_PPC64)
case POWERPC_MMU_3_00:
if (ppc64_v3_radix(cpu)) {
return ppc_radix64_xlate(cpu, eaddr, access_type, raddrp,
psizep, protp, mmu_idx, guest_visible);
}
/* fall through */
case POWERPC_MMU_64B:
case POWERPC_MMU_2_03:
case POWERPC_MMU_2_06:
case POWERPC_MMU_2_07:
return ppc_hash64_xlate(cpu, eaddr, access_type,
raddrp, psizep, protp, mmu_idx, guest_visible);
#endif
case POWERPC_MMU_32B:
return ppc_hash32_xlate(cpu, eaddr, access_type, raddrp,
psizep, protp, mmu_idx, guest_visible);
default:
return ppc_jumbo_xlate(cpu, eaddr, access_type, raddrp,
psizep, protp, mmu_idx, guest_visible);
}
}
hwaddr ppc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
hwaddr raddr;
int s, p;
/*
* Some MMUs have separate TLBs for code and data. If we only
* try an MMU_DATA_LOAD, we may not be able to read instructions
* mapped by code TLBs, so we also try a MMU_INST_FETCH.
*/
if (ppc_xlate(cpu, addr, MMU_DATA_LOAD, &raddr, &s, &p,
cpu_mmu_index(&cpu->env, false), false) ||
ppc_xlate(cpu, addr, MMU_INST_FETCH, &raddr, &s, &p,
cpu_mmu_index(&cpu->env, true), false)) {
return raddr & TARGET_PAGE_MASK;
}
return -1;
}