/*
* PMU emulation helpers for TCG IBM POWER chips
*
* Copyright IBM Corp. 2021
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "power8-pmu.h"
#include "cpu.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "hw/ppc/ppc.h"
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
static bool pmc_is_inactive(CPUPPCState *env, int sprn)
{
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
return true;
}
if (sprn < SPR_POWER_PMC5) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
}
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{
if (sprn == SPR_POWER_PMC1) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
}
/*
* For PMCs 1-4, IBM POWER chips has support for an implementation
* dependent event, 0x1E, that enables cycle counting. The Linux kernel
* makes extensive use of 0x1E, so let's also support it.
*
* Likewise, event 0x2 is an implementation-dependent event that IBM
* POWER chips implement (at least since POWER8) that is equivalent to
* PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
*/
static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
{
uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
PMUEventType evt_type = PMU_EVENT_INVALID;
uint8_t pmcsel;
int i;
if (pmc_is_inactive(env, sprn)) {
return PMU_EVENT_INACTIVE;
}
if (sprn == SPR_POWER_PMC5) {
return PMU_EVENT_INSTRUCTIONS;
}
if (sprn == SPR_POWER_PMC6) {
return PMU_EVENT_CYCLES;
}
i = sprn - SPR_POWER_PMC1;
pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
MMCR1_EVT_SIZE);
switch (pmcsel) {
case 0x2:
evt_type = PMU_EVENT_INSTRUCTIONS;
break;
case 0x1E:
evt_type = PMU_EVENT_CYCLES;
break;
case 0xF0:
/*
* PMC1SEL = 0xF0 is the architected PowerISA v3.1
* event that counts cycles using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_CYCLES;
}
break;
case 0xFA:
/*
* PMC4SEL = 0xFA is the "instructions completed
* with run latch set" event.
*/
if (sprn == SPR_POWER_PMC4) {
evt_type = PMU_EVENT_INSN_RUN_LATCH;
}
break;
case 0xFE:
/*
* PMC1SEL = 0xFE is the architected PowerISA v3.1
* event to sample instructions using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_INSTRUCTIONS;
}
break;
default:
break;
}
return evt_type;
}
bool pmu_insn_cnt_enabled(CPUPPCState *env)
{
int sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
if (pmc_get_event(env, sprn) == PMU_EVENT_INSTRUCTIONS ||
pmc_get_event(env, sprn) == PMU_EVENT_INSN_RUN_LATCH) {
return true;
}
}
return false;
}
static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
{
bool overflow_triggered = false;
int sprn;
/* PMC6 never counts instructions */
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
PMUEventType evt_type = pmc_get_event(env, sprn);
bool insn_event = evt_type == PMU_EVENT_INSTRUCTIONS ||
evt_type == PMU_EVENT_INSN_RUN_LATCH;
if (pmc_is_inactive(env, sprn) || !insn_event) {
continue;
}
if (evt_type == PMU_EVENT_INSTRUCTIONS) {
env->spr[sprn] += num_insns;
}
if (evt_type == PMU_EVENT_INSN_RUN_LATCH &&
env->spr[SPR_CTRL] & CTRL_RUN) {
env->spr[sprn] += num_insns;
}
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL &&
pmc_has_overflow_enabled(env, sprn)) {
overflow_triggered = true;
/*
* The real PMU will always trigger a counter overflow with
* PMC_COUNTER_NEGATIVE_VAL. We don't have an easy way to
* do that since we're counting block of instructions at
* the end of each translation block, and we're probably
* passing this value at this point.
*
* Let's write PMC_COUNTER_NEGATIVE_VAL to the overflowed
* counter to simulate what the real hardware would do.
*/
env->spr[sprn] = PMC_COUNTER_NEGATIVE_VAL;
}
}
return overflow_triggered;
}
static void pmu_update_cycles(CPUPPCState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time;
int sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) {
continue;
}
/*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
}
/* Update base_time for future calculations */
env->pmu_base_time = now;
}
/*
* Helper function to retrieve the cycle overflow timer of the
* 'sprn' counter.
*/
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
{
return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
}
static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
{
QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
int64_t timeout;
/*
* PMC5 does not have an overflow timer and this pointer
* will be NULL.
*/
if (!pmc_overflow_timer) {
return;
}
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES ||
!pmc_has_overflow_enabled(env, sprn)) {
/* Overflow timer is not needed for this counter */
timer_del(pmc_overflow_timer);
return;
}
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
timeout = 0;
} else {
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
}
/*
* Use timer_mod_anticipate() because an overflow timer might
* be already running for this PMC.
*/
timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
}
static void pmu_update_overflow_timers(CPUPPCState *env)
{
int sprn;
/*
* Scroll through all PMCs and start counter overflow timers for
* PM_CYC events, if needed.
*/
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
pmc_update_overflow_timer(env, sprn);
}
}
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR0] = value;
/* MMCR0 writes can change HFLAGS_PMCCCLEAR and HFLAGS_INSN_CNT */
hreg_compute_hflags(env);
/* Update cycle overflow timers with the current MMCR0 state */
pmu_update_overflow_timers(env);
}
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR1] = value;
/* MMCR1 writes can change HFLAGS_INSN_CNT */
hreg_compute_hflags(env);
}
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
{
pmu_update_cycles(env);
return env->spr[sprn];
}
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
{
pmu_update_cycles(env);
env->spr[sprn] = value;
pmc_update_overflow_timer(env, sprn);
}
static void fire_PMC_interrupt(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
return;
}
/* PMC interrupt not implemented yet */
return;
}
/* This helper assumes that the PMC is running. */
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
{
bool overflow_triggered;
PowerPCCPU *cpu;
overflow_triggered = pmu_increment_insns(env, num_insns);
if (overflow_triggered) {
cpu = env_archcpu(env);
fire_PMC_interrupt(cpu);
}
}
static void cpu_ppc_pmu_timer_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
fire_PMC_interrupt(cpu);
}
void cpu_ppc_pmu_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
int i, sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (sprn == SPR_POWER_PMC5) {
continue;
}
i = sprn - SPR_POWER_PMC1;
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_pmu_timer_cb,
cpu);
}
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */