/*
* RISC-V translation routines for the RVV Standard Extension.
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tcg/tcg-op-gvec.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
static bool trans_vsetvl(DisasContext *ctx, arg_vsetvl *a)
{
TCGv s1, s2, dst;
if (!has_ext(ctx, RVV)) {
return false;
}
s2 = tcg_temp_new();
dst = tcg_temp_new();
/* Using x0 as the rs1 register specifier, encodes an infinite AVL */
if (a->rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_const_tl(RV_VLEN_MAX);
} else {
s1 = tcg_temp_new();
gen_get_gpr(s1, a->rs1);
}
gen_get_gpr(s2, a->rs2);
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(a->rd, dst);
tcg_gen_movi_tl(cpu_pc, ctx->pc_succ_insn);
lookup_and_goto_ptr(ctx);
ctx->base.is_jmp = DISAS_NORETURN;
tcg_temp_free(s1);
tcg_temp_free(s2);
tcg_temp_free(dst);
return true;
}
static bool trans_vsetvli(DisasContext *ctx, arg_vsetvli *a)
{
TCGv s1, s2, dst;
if (!has_ext(ctx, RVV)) {
return false;
}
s2 = tcg_const_tl(a->zimm);
dst = tcg_temp_new();
/* Using x0 as the rs1 register specifier, encodes an infinite AVL */
if (a->rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_const_tl(RV_VLEN_MAX);
} else {
s1 = tcg_temp_new();
gen_get_gpr(s1, a->rs1);
}
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(a->rd, dst);
gen_goto_tb(ctx, 0, ctx->pc_succ_insn);
ctx->base.is_jmp = DISAS_NORETURN;
tcg_temp_free(s1);
tcg_temp_free(s2);
tcg_temp_free(dst);
return true;
}
/* vector register offset from env */
static uint32_t vreg_ofs(DisasContext *s, int reg)
{
return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8;
}
/* check functions */
/*
* In cpu_get_tb_cpu_state(), set VILL if RVV was not present.
* So RVV is also be checked in this function.
*/
static bool vext_check_isa_ill(DisasContext *s)
{
return !s->vill;
}
/*
* There are two rules check here.
*
* 1. Vector register numbers are multiples of LMUL. (Section 3.2)
*
* 2. For all widening instructions, the destination LMUL value must also be
* a supported LMUL value. (Section 11.2)
*/
static bool vext_check_reg(DisasContext *s, uint32_t reg, bool widen)
{
/*
* The destination vector register group results are arranged as if both
* SEW and LMUL were at twice their current settings. (Section 11.2).
*/
int legal = widen ? 2 << s->lmul : 1 << s->lmul;
return !((s->lmul == 0x3 && widen) || (reg % legal));
}
/*
* There are two rules check here.
*
* 1. The destination vector register group for a masked vector instruction can
* only overlap the source mask register (v0) when LMUL=1. (Section 5.3)
*
* 2. In widen instructions and some other insturctions, like vslideup.vx,
* there is no need to check whether LMUL=1.
*/
static bool vext_check_overlap_mask(DisasContext *s, uint32_t vd, bool vm,
bool force)
{
return (vm != 0 || vd != 0) || (!force && (s->lmul == 0));
}
/* The LMUL setting must be such that LMUL * NFIELDS <= 8. (Section 7.8) */
static bool vext_check_nf(DisasContext *s, uint32_t nf)
{
return (1 << s->lmul) * nf <= 8;
}
/*
* The destination vector register group cannot overlap a source vector register
* group of a different element width. (Section 11.2)
*/
static inline bool vext_check_overlap_group(int rd, int dlen, int rs, int slen)
{
return ((rd >= rs + slen) || (rs >= rd + dlen));
}
/* common translation macro */
#define GEN_VEXT_TRANS(NAME, SEQ, ARGTYPE, OP, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE *a)\
{ \
if (CHECK(s, a)) { \
return OP(s, a, SEQ); \
} \
return false; \
}
/*
*** unit stride load and store
*/
typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_env, TCGv_i32);
static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
/*
* As simd_desc supports at most 256 bytes, and in this implementation,
* the max vector group length is 2048 bytes. So split it into two parts.
*
* The first part is vlen in bytes, encoded in maxsz of simd_desc.
* The second part is lmul, encoded in data of simd_desc.
*/
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][7][4] = {
/* masked unit stride load */
{ { gen_helper_vlb_v_b_mask, gen_helper_vlb_v_h_mask,
gen_helper_vlb_v_w_mask, gen_helper_vlb_v_d_mask },
{ NULL, gen_helper_vlh_v_h_mask,
gen_helper_vlh_v_w_mask, gen_helper_vlh_v_d_mask },
{ NULL, NULL,
gen_helper_vlw_v_w_mask, gen_helper_vlw_v_d_mask },
{ gen_helper_vle_v_b_mask, gen_helper_vle_v_h_mask,
gen_helper_vle_v_w_mask, gen_helper_vle_v_d_mask },
{ gen_helper_vlbu_v_b_mask, gen_helper_vlbu_v_h_mask,
gen_helper_vlbu_v_w_mask, gen_helper_vlbu_v_d_mask },
{ NULL, gen_helper_vlhu_v_h_mask,
gen_helper_vlhu_v_w_mask, gen_helper_vlhu_v_d_mask },
{ NULL, NULL,
gen_helper_vlwu_v_w_mask, gen_helper_vlwu_v_d_mask } },
/* unmasked unit stride load */
{ { gen_helper_vlb_v_b, gen_helper_vlb_v_h,
gen_helper_vlb_v_w, gen_helper_vlb_v_d },
{ NULL, gen_helper_vlh_v_h,
gen_helper_vlh_v_w, gen_helper_vlh_v_d },
{ NULL, NULL,
gen_helper_vlw_v_w, gen_helper_vlw_v_d },
{ gen_helper_vle_v_b, gen_helper_vle_v_h,
gen_helper_vle_v_w, gen_helper_vle_v_d },
{ gen_helper_vlbu_v_b, gen_helper_vlbu_v_h,
gen_helper_vlbu_v_w, gen_helper_vlbu_v_d },
{ NULL, gen_helper_vlhu_v_h,
gen_helper_vlhu_v_w, gen_helper_vlhu_v_d },
{ NULL, NULL,
gen_helper_vlwu_v_w, gen_helper_vlwu_v_d } }
};
fn = fns[a->vm][seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s);
}
static bool ld_us_check(DisasContext *s, arg_r2nfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vlb_v, 0, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlh_v, 1, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlw_v, 2, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle_v, 3, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlbu_v, 4, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlhu_v, 5, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vlwu_v, 6, r2nfvm, ld_us_op, ld_us_check)
static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4][4] = {
/* masked unit stride load and store */
{ { gen_helper_vsb_v_b_mask, gen_helper_vsb_v_h_mask,
gen_helper_vsb_v_w_mask, gen_helper_vsb_v_d_mask },
{ NULL, gen_helper_vsh_v_h_mask,
gen_helper_vsh_v_w_mask, gen_helper_vsh_v_d_mask },
{ NULL, NULL,
gen_helper_vsw_v_w_mask, gen_helper_vsw_v_d_mask },
{ gen_helper_vse_v_b_mask, gen_helper_vse_v_h_mask,
gen_helper_vse_v_w_mask, gen_helper_vse_v_d_mask } },
/* unmasked unit stride store */
{ { gen_helper_vsb_v_b, gen_helper_vsb_v_h,
gen_helper_vsb_v_w, gen_helper_vsb_v_d },
{ NULL, gen_helper_vsh_v_h,
gen_helper_vsh_v_w, gen_helper_vsh_v_d },
{ NULL, NULL,
gen_helper_vsw_v_w, gen_helper_vsw_v_d },
{ gen_helper_vse_v_b, gen_helper_vse_v_h,
gen_helper_vse_v_w, gen_helper_vse_v_d } }
};
fn = fns[a->vm][seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s);
}
static bool st_us_check(DisasContext *s, arg_r2nfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vsb_v, 0, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vsh_v, 1, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vsw_v, 2, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse_v, 3, r2nfvm, st_us_op, st_us_check)
/*
*** stride load and store
*/
typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv,
TCGv, TCGv_env, TCGv_i32);
static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2,
uint32_t data, gen_helper_ldst_stride *fn,
DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base, stride;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
stride = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
gen_get_gpr(stride, rs2);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, stride, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free(stride);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[7][4] = {
{ gen_helper_vlsb_v_b, gen_helper_vlsb_v_h,
gen_helper_vlsb_v_w, gen_helper_vlsb_v_d },
{ NULL, gen_helper_vlsh_v_h,
gen_helper_vlsh_v_w, gen_helper_vlsh_v_d },
{ NULL, NULL,
gen_helper_vlsw_v_w, gen_helper_vlsw_v_d },
{ gen_helper_vlse_v_b, gen_helper_vlse_v_h,
gen_helper_vlse_v_w, gen_helper_vlse_v_d },
{ gen_helper_vlsbu_v_b, gen_helper_vlsbu_v_h,
gen_helper_vlsbu_v_w, gen_helper_vlsbu_v_d },
{ NULL, gen_helper_vlshu_v_h,
gen_helper_vlshu_v_w, gen_helper_vlshu_v_d },
{ NULL, NULL,
gen_helper_vlswu_v_w, gen_helper_vlswu_v_d },
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool ld_stride_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vlsb_v, 0, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsh_v, 1, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsw_v, 2, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse_v, 3, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlsbu_v, 4, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlshu_v, 5, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlswu_v, 6, rnfvm, ld_stride_op, ld_stride_check)
static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4][4] = {
/* masked stride store */
{ gen_helper_vssb_v_b, gen_helper_vssb_v_h,
gen_helper_vssb_v_w, gen_helper_vssb_v_d },
{ NULL, gen_helper_vssh_v_h,
gen_helper_vssh_v_w, gen_helper_vssh_v_d },
{ NULL, NULL,
gen_helper_vssw_v_w, gen_helper_vssw_v_d },
{ gen_helper_vsse_v_b, gen_helper_vsse_v_h,
gen_helper_vsse_v_w, gen_helper_vsse_v_d }
};
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool st_stride_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vssb_v, 0, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vssh_v, 1, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vssw_v, 2, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse_v, 3, rnfvm, st_stride_op, st_stride_check)
/*
*** index load and store
*/
typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_ptr, TCGv_env, TCGv_i32);
static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_ldst_index *fn,
DisasContext *s)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[7][4] = {
{ gen_helper_vlxb_v_b, gen_helper_vlxb_v_h,
gen_helper_vlxb_v_w, gen_helper_vlxb_v_d },
{ NULL, gen_helper_vlxh_v_h,
gen_helper_vlxh_v_w, gen_helper_vlxh_v_d },
{ NULL, NULL,
gen_helper_vlxw_v_w, gen_helper_vlxw_v_d },
{ gen_helper_vlxe_v_b, gen_helper_vlxe_v_h,
gen_helper_vlxe_v_w, gen_helper_vlxe_v_d },
{ gen_helper_vlxbu_v_b, gen_helper_vlxbu_v_h,
gen_helper_vlxbu_v_w, gen_helper_vlxbu_v_d },
{ NULL, gen_helper_vlxhu_v_h,
gen_helper_vlxhu_v_w, gen_helper_vlxhu_v_d },
{ NULL, NULL,
gen_helper_vlxwu_v_w, gen_helper_vlxwu_v_d },
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool ld_index_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vlxb_v, 0, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxh_v, 1, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxw_v, 2, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxe_v, 3, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxbu_v, 4, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxhu_v, 5, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxwu_v, 6, rnfvm, ld_index_op, ld_index_check)
static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
{ gen_helper_vsxb_v_b, gen_helper_vsxb_v_h,
gen_helper_vsxb_v_w, gen_helper_vsxb_v_d },
{ NULL, gen_helper_vsxh_v_h,
gen_helper_vsxh_v_w, gen_helper_vsxh_v_d },
{ NULL, NULL,
gen_helper_vsxw_v_w, gen_helper_vsxw_v_d },
{ gen_helper_vsxe_v_b, gen_helper_vsxe_v_h,
gen_helper_vsxe_v_w, gen_helper_vsxe_v_d }
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
static bool st_index_check(DisasContext *s, arg_rnfvm* a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_nf(s, a->nf));
}
GEN_VEXT_TRANS(vsxb_v, 0, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxh_v, 1, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxw_v, 2, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxe_v, 3, rnfvm, st_index_op, st_index_check)
/*
*** unit stride fault-only-first load
*/
static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[7][4] = {
{ gen_helper_vlbff_v_b, gen_helper_vlbff_v_h,
gen_helper_vlbff_v_w, gen_helper_vlbff_v_d },
{ NULL, gen_helper_vlhff_v_h,
gen_helper_vlhff_v_w, gen_helper_vlhff_v_d },
{ NULL, NULL,
gen_helper_vlwff_v_w, gen_helper_vlwff_v_d },
{ gen_helper_vleff_v_b, gen_helper_vleff_v_h,
gen_helper_vleff_v_w, gen_helper_vleff_v_d },
{ gen_helper_vlbuff_v_b, gen_helper_vlbuff_v_h,
gen_helper_vlbuff_v_w, gen_helper_vlbuff_v_d },
{ NULL, gen_helper_vlhuff_v_h,
gen_helper_vlhuff_v_w, gen_helper_vlhuff_v_d },
{ NULL, NULL,
gen_helper_vlwuff_v_w, gen_helper_vlwuff_v_d }
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldff_trans(a->rd, a->rs1, data, fn, s);
}
GEN_VEXT_TRANS(vlbff_v, 0, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlhff_v, 1, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlwff_v, 2, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vleff_v, 3, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlbuff_v, 4, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlhuff_v, 5, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vlwuff_v, 6, r2nfvm, ldff_op, ld_us_check)
/*
*** vector atomic operation
*/
typedef void gen_helper_amo(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool amo_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_amo *fn, DisasContext *s)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = tcg_temp_new();
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
gen_get_gpr(base, rs1);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
tcg_temp_free(base);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool amo_op(DisasContext *s, arg_rwdvm *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_amo *fn;
static gen_helper_amo *const fnsw[9] = {
/* no atomic operation */
gen_helper_vamoswapw_v_w,
gen_helper_vamoaddw_v_w,
gen_helper_vamoxorw_v_w,
gen_helper_vamoandw_v_w,
gen_helper_vamoorw_v_w,
gen_helper_vamominw_v_w,
gen_helper_vamomaxw_v_w,
gen_helper_vamominuw_v_w,
gen_helper_vamomaxuw_v_w
};
#ifdef TARGET_RISCV64
static gen_helper_amo *const fnsd[18] = {
gen_helper_vamoswapw_v_d,
gen_helper_vamoaddw_v_d,
gen_helper_vamoxorw_v_d,
gen_helper_vamoandw_v_d,
gen_helper_vamoorw_v_d,
gen_helper_vamominw_v_d,
gen_helper_vamomaxw_v_d,
gen_helper_vamominuw_v_d,
gen_helper_vamomaxuw_v_d,
gen_helper_vamoswapd_v_d,
gen_helper_vamoaddd_v_d,
gen_helper_vamoxord_v_d,
gen_helper_vamoandd_v_d,
gen_helper_vamoord_v_d,
gen_helper_vamomind_v_d,
gen_helper_vamomaxd_v_d,
gen_helper_vamominud_v_d,
gen_helper_vamomaxud_v_d
};
#endif
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
gen_helper_exit_atomic(cpu_env);
s->base.is_jmp = DISAS_NORETURN;
return true;
} else {
if (s->sew == 3) {
#ifdef TARGET_RISCV64
fn = fnsd[seq];
#else
/* Check done in amo_check(). */
g_assert_not_reached();
#endif
} else {
fn = fnsw[seq];
}
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, WD, a->wd);
return amo_trans(a->rd, a->rs1, a->rs2, data, fn, s);
}
/*
* There are two rules check here.
*
* 1. SEW must be at least as wide as the AMO memory element size.
*
* 2. If SEW is greater than XLEN, an illegal instruction exception is raised.
*/
static bool amo_check(DisasContext *s, arg_rwdvm* a)
{
return (!s->vill && has_ext(s, RVA) &&
(!a->wd || vext_check_overlap_mask(s, a->rd, a->vm, false)) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
((1 << s->sew) <= sizeof(target_ulong)) &&
((1 << s->sew) >= 4));
}
GEN_VEXT_TRANS(vamoswapw_v, 0, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoaddw_v, 1, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoxorw_v, 2, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoandw_v, 3, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoorw_v, 4, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominw_v, 5, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxw_v, 6, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominuw_v, 7, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxuw_v, 8, rwdvm, amo_op, amo_check)
#ifdef TARGET_RISCV64
GEN_VEXT_TRANS(vamoswapd_v, 9, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoaddd_v, 10, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoxord_v, 11, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoandd_v, 12, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamoord_v, 13, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomind_v, 14, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxd_v, 15, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamominud_v, 16, rwdvm, amo_op, amo_check)
GEN_VEXT_TRANS(vamomaxud_v, 17, rwdvm, amo_op, amo_check)
#endif
/*
*** Vector Integer Arithmetic Instructions
*/
#define MAXSZ(s) (s->vlen >> (3 - s->lmul))
static bool opivv_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false));
}
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
static inline bool
do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn,
gen_helper_gvec_4_ptr *fn)
{
TCGLabel *over = gen_new_label();
if (!opivv_check(s, a)) {
return false;
}
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
if (a->vm && s->vl_eq_vlmax) {
gvec_fn(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8, data, fn);
}
gen_set_label(over);
return true;
}
/* OPIVV with GVEC IR */
#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVV_GVEC_TRANS(vadd_vv, add)
GEN_OPIVV_GVEC_TRANS(vsub_vv, sub)
typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = tcg_temp_new();
gen_get_gpr(src1, rs1);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(src1);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
static bool opivx_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, false) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false));
}
typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
TCGv_i64 src1 = tcg_temp_new_i64();
TCGv tmp = tcg_temp_new();
gen_get_gpr(tmp, a->rs1);
tcg_gen_ext_tl_i64(src1, tmp);
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i64(src1);
tcg_temp_free(tmp);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
/* OPIVX with GVEC IR */
#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_TRANS(vadd_vx, adds)
GEN_OPIVX_GVEC_TRANS(vsub_vx, subs)
static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub8_i64(d, b, a);
}
static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub8_i64(d, b, a);
}
static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2)
{
tcg_gen_sub_i32(ret, arg2, arg1);
}
static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2)
{
tcg_gen_sub_i64(ret, arg2, arg1);
}
static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
tcg_gen_sub_vec(vece, r, b, a);
}
static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs,
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen2s rsub_op[4] = {
{ .fni8 = gen_vec_rsub8_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs8,
.vece = MO_8 },
{ .fni8 = gen_vec_rsub16_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs16,
.vece = MO_16 },
{ .fni4 = gen_rsub_i32,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs32,
.vece = MO_32 },
{ .fni8 = gen_rsub_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs64,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]);
}
GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs)
static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s, int zx)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
if (zx) {
src1 = tcg_const_tl(imm);
} else {
src1 = tcg_const_tl(sextract64(imm, 0, 5));
}
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_const_i32(simd_desc(0, s->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free(src1);
tcg_temp_free_i32(desc);
gen_set_label(over);
return true;
}
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
static inline bool
do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn,
gen_helper_opivx *fn, int zx)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
if (zx) {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
extract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s));
} else {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
sextract64(a->rs1, 0, 5), MAXSZ(s), MAXSZ(s));
}
} else {
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, zx);
}
return true;
}
/* OPIVI with GVEC IR */
#define GEN_OPIVI_GVEC_TRANS(NAME, ZX, OPIVX, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \
fns[s->sew], ZX); \
}
GEN_OPIVI_GVEC_TRANS(vadd_vi, 0, vadd_vx, addi)
static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t c, uint32_t oprsz, uint32_t maxsz)
{
TCGv_i64 tmp = tcg_const_i64(c);
tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz);
tcg_temp_free_i64(tmp);
}
GEN_OPIVI_GVEC_TRANS(vrsub_vi, 0, vrsub_vx, rsubi)
/* Vector Widening Integer Add/Subtract */
/* OPIVV with WIDEN */
static bool opivv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opivv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmrr *))
{
if (checkfn(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8,
data, fn);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivv_widen(s, a, fns[s->sew], CHECK); \
}
GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check)
/* OPIVX with WIDEN */
static bool opivx_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs2,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opivx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opivx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return true;
}
#define GEN_OPIVX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivx_widen(s, a, fns[s->sew]); \
}
GEN_OPIVX_WIDEN_TRANS(vwaddu_vx)
GEN_OPIVX_WIDEN_TRANS(vwadd_vx)
GEN_OPIVX_WIDEN_TRANS(vwsubu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsub_vx)
/* WIDEN OPIVV with WIDEN */
static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 2 << s->lmul, a->rs1,
1 << s->lmul) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn)
{
if (opiwv_widen_check(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, MLEN, s->mlen);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, 0, s->vlen / 8, data, fn);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwv_widen(s, a, fns[s->sew]); \
}
GEN_OPIWV_WIDEN_TRANS(vwaddu_wv)
GEN_OPIWV_WIDEN_TRANS(vwadd_wv)
GEN_OPIWV_WIDEN_TRANS(vwsubu_wv)
GEN_OPIWV_WIDEN_TRANS(vwsub_wv)
/* WIDEN OPIVX with WIDEN */
static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_overlap_mask(s, a->rd, a->vm, true) &&
vext_check_reg(s, a->rd, true) &&
vext_check_reg(s, a->rs2, true) &&
(s->lmul < 0x3) && (s->sew < 0x3));
}
static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opiwx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIWX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwx_widen(s, a, fns[s->sew]); \
}
GEN_OPIWX_WIDEN_TRANS(vwaddu_wx)
GEN_OPIWX_WIDEN_TRANS(vwadd_wx)
GEN_OPIWX_WIDEN_TRANS(vwsubu_wx)
GEN_OPIWX_WIDEN_TRANS(vwsub_wx)
/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
/* OPIVV without GVEC IR */
#define GEN_OPIVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, MLEN, s->mlen); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, 0, \
s->vlen / 8, data, fns[s->sew]); \
gen_set_label(over); \
return true; \
} \
return false; \
}
/*
* For vadc and vsbc, an illegal instruction exception is raised if the
* destination vector register is v0 and LMUL > 1. (Section 12.3)
*/
static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
((a->rd != 0) || (s->lmul == 0)));
}
GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check)
GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check)
/*
* For vmadc and vmsbc, an illegal instruction exception is raised if the
* destination vector register overlaps a source vector register group.
*/
static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_reg(s, a->rs1, false) &&
vext_check_overlap_group(a->rd, 1, a->rs1, 1 << s->lmul) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul));
}
GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check)
GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check)
static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rd, false) &&
vext_check_reg(s, a->rs2, false) &&
((a->rd != 0) || (s->lmul == 0)));
}
/* OPIVX without GVEC IR */
#define GEN_OPIVX_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check)
GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check)
static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return (vext_check_isa_ill(s) &&
vext_check_reg(s, a->rs2, false) &&
vext_check_overlap_group(a->rd, 1, a->rs2, 1 << s->lmul));
}
GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check)
GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check)
/* OPIVI without GVEC IR */
#define GEN_OPIVI_TRANS(NAME, ZX, OPIVX, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, ZX); \
} \
return false; \
}
GEN_OPIVI_TRANS(vadc_vim, 0, vadc_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmadc_vim, 0, vmadc_vxm, opivx_vmadc_check)
/* Vector Bitwise Logical Instructions */
GEN_OPIVV_GVEC_TRANS(vand_vv, and)
GEN_OPIVV_GVEC_TRANS(vor_vv, or)
GEN_OPIVV_GVEC_TRANS(vxor_vv, xor)
GEN_OPIVX_GVEC_TRANS(vand_vx, ands)
GEN_OPIVX_GVEC_TRANS(vor_vx, ors)
GEN_OPIVX_GVEC_TRANS(vxor_vx, xors)
GEN_OPIVI_GVEC_TRANS(vand_vi, 0, vand_vx, andi)
GEN_OPIVI_GVEC_TRANS(vor_vi, 0, vor_vx, ori)
GEN_OPIVI_GVEC_TRANS(vxor_vi, 0, vxor_vx, xori)