/*
* RX helper functions
*
* Copyright (c) 2019 Yoshinori Sato
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
static inline void QEMU_NORETURN raise_exception(CPURXState *env, int index,
uintptr_t retaddr);
static void _set_psw(CPURXState *env, uint32_t psw, uint32_t rte)
{
uint32_t prev_u;
prev_u = env->psw_u;
rx_cpu_unpack_psw(env, psw, rte);
if (prev_u != env->psw_u) {
/* switch r0 */
if (env->psw_u) {
env->isp = env->regs[0];
env->regs[0] = env->usp;
} else {
env->usp = env->regs[0];
env->regs[0] = env->isp;
}
}
}
void helper_set_psw(CPURXState *env, uint32_t psw)
{
_set_psw(env, psw, 0);
}
void helper_set_psw_rte(CPURXState *env, uint32_t psw)
{
_set_psw(env, psw, 1);
}
uint32_t helper_pack_psw(CPURXState *env)
{
return rx_cpu_pack_psw(env);
}
#define SET_FPSW(b) \
do { \
env->fpsw = FIELD_DP32(env->fpsw, FPSW, C ## b, 1); \
if (!FIELD_EX32(env->fpsw, FPSW, E ## b)) { \
env->fpsw = FIELD_DP32(env->fpsw, FPSW, F ## b, 1); \
} \
} while (0)
/* fp operations */
static void update_fpsw(CPURXState *env, float32 ret, uintptr_t retaddr)
{
int xcpt, cause, enable;
env->psw_z = ret & ~(1 << 31); /* mask sign bit */
env->psw_s = ret;
xcpt = get_float_exception_flags(&env->fp_status);
/* Clear the cause entries */
env->fpsw = FIELD_DP32(env->fpsw, FPSW, CAUSE, 0);
/* set FPSW */
if (unlikely(xcpt)) {
if (xcpt & float_flag_invalid) {
SET_FPSW(V);
}
if (xcpt & float_flag_divbyzero) {
SET_FPSW(Z);
}
if (xcpt & float_flag_overflow) {
SET_FPSW(O);
}
if (xcpt & float_flag_underflow) {
SET_FPSW(U);
}
if (xcpt & float_flag_inexact) {
SET_FPSW(X);
}
if ((xcpt & (float_flag_input_denormal
| float_flag_output_denormal))
&& !FIELD_EX32(env->fpsw, FPSW, DN)) {
env->fpsw = FIELD_DP32(env->fpsw, FPSW, CE, 1);
}
/* update FPSW_FLAG_S */
if (FIELD_EX32(env->fpsw, FPSW, FLAGS) != 0) {
env->fpsw = FIELD_DP32(env->fpsw, FPSW, FS, 1);
}
/* Generate an exception if enabled */
cause = FIELD_EX32(env->fpsw, FPSW, CAUSE);
enable = FIELD_EX32(env->fpsw, FPSW, ENABLE);
enable |= 1 << 5; /* CE always enabled */
if (cause & enable) {
raise_exception(env, 21, retaddr);
}
}
}
void helper_set_fpsw(CPURXState *env, uint32_t val)
{
static const int roundmode[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down,
};
uint32_t fpsw = env->fpsw;
fpsw |= 0x7fffff03;
val &= ~0x80000000;
fpsw &= val;
FIELD_DP32(fpsw, FPSW, FS, FIELD_EX32(fpsw, FPSW, FLAGS) != 0);
env->fpsw = fpsw;
set_float_rounding_mode(roundmode[FIELD_EX32(env->fpsw, FPSW, RM)],
&env->fp_status);
}
#define FLOATOP(op, func) \
float32 helper_##op(CPURXState *env, float32 t0, float32 t1) \
{ \
float32 ret; \
ret = func(t0, t1, &env->fp_status); \
update_fpsw(env, *(uint32_t *)&ret, GETPC()); \
return ret; \
}
FLOATOP(fadd, float32_add)
FLOATOP(fsub, float32_sub)
FLOATOP(fmul, float32_mul)
FLOATOP(fdiv, float32_div)
void helper_fcmp(CPURXState *env, float32 t0, float32 t1)
{
int st;
st = float32_compare(t0, t1, &env->fp_status);
update_fpsw(env, 0, GETPC());
env->psw_z = 1;
env->psw_s = env->psw_o = 0;
switch (st) {
case float_relation_equal:
env->psw_z = 0;
break;
case float_relation_less:
env->psw_s = -1;
break;
case float_relation_unordered:
env->psw_o = -1;
break;
}
}
uint32_t helper_ftoi(CPURXState *env, float32 t0)
{
uint32_t ret;
ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
update_fpsw(env, ret, GETPC());
return ret;
}
uint32_t helper_round(CPURXState *env, float32 t0)
{
uint32_t ret;
ret = float32_to_int32(t0, &env->fp_status);
update_fpsw(env, ret, GETPC());
return ret;
}
float32 helper_itof(CPURXState *env, uint32_t t0)
{
float32 ret;
ret = int32_to_float32(t0, &env->fp_status);
update_fpsw(env, ret, GETPC());
return ret;
}
/* string operations */
void helper_scmpu(CPURXState *env)
{
uint8_t tmp0, tmp1;
if (env->regs[3] == 0) {
return;
}
do {
tmp0 = cpu_ldub_data_ra(env, env->regs[1]++, GETPC());
tmp1 = cpu_ldub_data_ra(env, env->regs[2]++, GETPC());
env->regs[3]--;
if (tmp0 != tmp1 || tmp0 == '\0') {
break;
}
} while (env->regs[3] != 0);
env->psw_z = tmp0 - tmp1;
env->psw_c = (tmp0 >= tmp1);
}
static uint32_t (* const cpu_ldufn[])(CPUArchState *env,
target_ulong ptr,
uintptr_t retaddr) = {
cpu_ldub_data_ra, cpu_lduw_data_ra, cpu_ldl_data_ra,
};
static uint32_t (* const cpu_ldfn[])(CPUArchState *env,
target_ulong ptr,
uintptr_t retaddr) = {
cpu_ldub_data_ra, cpu_lduw_data_ra, cpu_ldl_data_ra,
};
static void (* const cpu_stfn[])(CPUArchState *env,
target_ulong ptr,
uint32_t val,
uintptr_t retaddr) = {
cpu_stb_data_ra, cpu_stw_data_ra, cpu_stl_data_ra,
};
void helper_sstr(CPURXState *env, uint32_t sz)
{
tcg_debug_assert(sz < 3);
while (env->regs[3] != 0) {
cpu_stfn[sz](env, env->regs[1], env->regs[2], GETPC());
env->regs[1] += 1 << sz;
env->regs[3]--;
}
}
#define OP_SMOVU 1
#define OP_SMOVF 0
#define OP_SMOVB 2
static void smov(uint32_t mode, CPURXState *env)
{
uint8_t tmp;
int dir;
dir = (mode & OP_SMOVB) ? -1 : 1;
while (env->regs[3] != 0) {
tmp = cpu_ldub_data_ra(env, env->regs[2], GETPC());
cpu_stb_data_ra(env, env->regs[1], tmp, GETPC());
env->regs[1] += dir;
env->regs[2] += dir;
env->regs[3]--;
if ((mode & OP_SMOVU) && tmp == 0) {
break;
}
}
}
void helper_smovu(CPURXState *env)
{
smov(OP_SMOVU, env);
}
void helper_smovf(CPURXState *env)
{
smov(OP_SMOVF, env);
}
void helper_smovb(CPURXState *env)
{
smov(OP_SMOVB, env);
}
void helper_suntil(CPURXState *env, uint32_t sz)
{
uint32_t tmp;
tcg_debug_assert(sz < 3);
if (env->regs[3] == 0) {
return ;
}
do {
tmp = cpu_ldufn[sz](env, env->regs[1], GETPC());
env->regs[1] += 1 << sz;
env->regs[3]--;
if (tmp == env->regs[2]) {
break;
}
} while (env->regs[3] != 0);
env->psw_z = tmp - env->regs[2];
env->psw_c = (tmp <= env->regs[2]);
}
void helper_swhile(CPURXState *env, uint32_t sz)
{
uint32_t tmp;
tcg_debug_assert(sz < 3);
if (env->regs[3] == 0) {
return ;
}
do {
tmp = cpu_ldufn[sz](env, env->regs[1], GETPC());
env->regs[1] += 1 << sz;
env->regs[3]--;
if (tmp != env->regs[2]) {
break;
}
} while (env->regs[3] != 0);
env->psw_z = env->regs[3];
env->psw_c = (tmp <= env->regs[2]);
}
/* accumulator operations */
void helper_rmpa(CPURXState *env, uint32_t sz)
{
uint64_t result_l, prev;
int32_t result_h;
int64_t tmp0, tmp1;
if (env->regs[3] == 0) {
return;
}
result_l = env->regs[5];
result_l <<= 32;
result_l |= env->regs[4];
result_h = env->regs[6];
env->psw_o = 0;
while (env->regs[3] != 0) {
tmp0 = cpu_ldfn[sz](env, env->regs[1], GETPC());
tmp1 = cpu_ldfn[sz](env, env->regs[2], GETPC());
tmp0 *= tmp1;
prev = result_l;
result_l += tmp0;
/* carry / bollow */
if (tmp0 < 0) {
if (prev > result_l) {
result_h--;
}
} else {
if (prev < result_l) {
result_h++;
}
}
env->regs[1] += 1 << sz;
env->regs[2] += 1 << sz;
}
env->psw_s = result_h;
env->psw_o = (result_h != 0 && result_h != -1) << 31;
env->regs[6] = result_h;
env->regs[5] = result_l >> 32;
env->regs[4] = result_l & 0xffffffff;
}
void helper_racw(CPURXState *env, uint32_t imm)
{
int64_t acc;
acc = env->acc;
acc <<= (imm + 1);
acc += 0x0000000080000000LL;
if (acc > 0x00007fff00000000LL) {
acc = 0x00007fff00000000LL;
} else if (acc < -0x800000000000LL) {
acc = -0x800000000000LL;
} else {
acc &= 0xffffffff00000000LL;
}
env->acc = acc;
}
void helper_satr(CPURXState *env)
{
if (env->psw_o >> 31) {
if ((int)env->psw_s < 0) {
env->regs[6] = 0x00000000;
env->regs[5] = 0x7fffffff;
env->regs[4] = 0xffffffff;
} else {
env->regs[6] = 0xffffffff;
env->regs[5] = 0x80000000;
env->regs[4] = 0x00000000;
}
}
}
/* div */
uint32_t helper_div(CPURXState *env, uint32_t num, uint32_t den)
{
uint32_t ret = num;
if (!((num == INT_MIN && den == -1) || den == 0)) {
ret = (int32_t)num / (int32_t)den;
env->psw_o = 0;
} else {
env->psw_o = -1;
}
return ret;
}
uint32_t helper_divu(CPURXState *env, uint32_t num, uint32_t den)
{
uint32_t ret = num;
if (den != 0) {
ret = num / den;
env->psw_o = 0;
} else {
env->psw_o = -1;
}
return ret;
}
/* exception */
static inline void QEMU_NORETURN raise_exception(CPURXState *env, int index,
uintptr_t retaddr)
{
CPUState *cs = env_cpu(env);
cs->exception_index = index;
cpu_loop_exit_restore(cs, retaddr);
}
void QEMU_NORETURN helper_raise_privilege_violation(CPURXState *env)
{
raise_exception(env, 20, GETPC());
}
void QEMU_NORETURN helper_raise_access_fault(CPURXState *env)
{
raise_exception(env, 21, GETPC());
}
void QEMU_NORETURN helper_raise_illegal_instruction(CPURXState *env)
{
raise_exception(env, 23, GETPC());
}
void QEMU_NORETURN helper_wait(CPURXState *env)
{
CPUState *cs = env_cpu(env);
cs->halted = 1;
env->in_sleep = 1;
raise_exception(env, EXCP_HLT, 0);
}
void QEMU_NORETURN helper_rxint(CPURXState *env, uint32_t vec)
{
raise_exception(env, 0x100 + vec, 0);
}
void QEMU_NORETURN helper_rxbrk(CPURXState *env)
{
raise_exception(env, 0x100, 0);
}