#!/usr/bin/env bash
# group: rw auto
#
# Test qcow2 images with extended L2 entries
#
# Copyright (C) 2019-2020 Igalia, S.L.
# Author: Alberto Garcia <berto@igalia.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# creator
owner=berto@igalia.com
seq="$(basename $0)"
echo "QA output created by $seq"
here="$PWD"
status=1 # failure is the default!
_cleanup()
{
_cleanup_test_img
rm -f "$TEST_IMG.raw"
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# get standard environment, filters and checks
. ./common.rc
. ./common.filter
_supported_fmt qcow2
_supported_proto file nfs
_supported_os Linux
_unsupported_imgopts extended_l2 compat=0.10 cluster_size data_file refcount_bits=1[^0-9]
l2_offset=$((0x40000))
_verify_img()
{
$QEMU_IMG compare "$TEST_IMG" "$TEST_IMG.raw" | grep -v 'Images are identical'
$QEMU_IMG check "$TEST_IMG" | _filter_qemu_img_check | \
grep -v 'No errors were found on the image'
}
# Compare the bitmap of an extended L2 entry against an expected value
_verify_l2_bitmap()
{
entry_no="$1" # L2 entry number, starting from 0
expected_alloc="$alloc" # Space-separated list of allocated subcluster indexes
expected_zero="$zero" # Space-separated list of zero subcluster indexes
offset=$(($l2_offset + $entry_no * 16))
entry=$(peek_file_be "$TEST_IMG" $offset 8)
offset=$(($offset + 8))
bitmap=$(peek_file_be "$TEST_IMG" $offset 8)
expected_bitmap=0
for bit in $expected_alloc; do
expected_bitmap=$(($expected_bitmap | (1 << $bit)))
done
for bit in $expected_zero; do
expected_bitmap=$(($expected_bitmap | (1 << (32 + $bit))))
done
printf -v expected_bitmap "%u" $expected_bitmap # Convert to unsigned
printf "L2 entry #%d: 0x%016x %016x\n" "$entry_no" "$entry" "$bitmap"
if [ "$bitmap" != "$expected_bitmap" ]; then
printf "ERROR: expecting bitmap 0x%016x\n" "$expected_bitmap"
fi
}
# This should be called as _run_test c=XXX sc=XXX off=XXX len=XXX cmd=XXX
# c: cluster number (0 if unset)
# sc: subcluster number inside cluster @c (0 if unset)
# off: offset inside subcluster @sc, in kilobytes (0 if unset)
# len: request length, passed directly to qemu-io (e.g: 256, 4k, 1M, ...)
# cmd: the command to pass to qemu-io, must be one of
# write -> write
# zero -> write -z
# unmap -> write -z -u
# compress -> write -c
# discard -> discard
_run_test()
{
unset c sc off len cmd
for var in "$@"; do eval "$var"; done
case "${cmd:-write}" in
zero)
cmd="write -q -z";;
unmap)
cmd="write -q -z -u";;
compress)
pat=$((${pat:-0} + 1))
cmd="write -q -c -P ${pat}";;
write)
pat=$((${pat:-0} + 1))
cmd="write -q -P ${pat}";;
discard)
cmd="discard -q";;
*)
echo "Unknown option $cmd"
exit 1;;
esac
c="${c:-0}"
sc="${sc:-0}"
off="${off:-0}"
offset="$(($c * 64 + $sc * 2 + $off))"
[ "$offset" != 0 ] && offset="${offset}k"
cmd="$cmd ${offset} ${len}"
raw_cmd=$(echo $cmd | sed s/-c//) # Raw images don't support -c
echo $cmd | sed 's/-P [0-9][0-9]\?/-P PATTERN/'
$QEMU_IO -c "$cmd" "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c "$raw_cmd" -f raw "$TEST_IMG.raw" | _filter_qemu_io
_verify_img
_verify_l2_bitmap "$c"
}
_reset_img()
{
size="$1"
$QEMU_IMG create -f raw "$TEST_IMG.raw" "$size" | _filter_img_create
if [ "$use_backing_file" = "yes" ]; then
$QEMU_IMG create -f raw "$TEST_IMG.base" "$size" | _filter_img_create
$QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.base" | _filter_qemu_io
$QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.raw" | _filter_qemu_io
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" "$size"
else
_make_test_img -o extended_l2=on "$size"
fi
}
############################################################
############################################################
############################################################
# Test that writing to an image with subclusters produces the expected
# results, in images with and without backing files
for use_backing_file in yes no; do
echo
echo "### Standard write tests (backing file: $use_backing_file) ###"
echo
_reset_img 1M
### Write subcluster #0 (beginning of subcluster) ###
alloc="0"; zero=""
_run_test sc=0 len=1k
### Write subcluster #1 (middle of subcluster) ###
alloc="0 1"; zero=""
_run_test sc=1 off=1 len=512
### Write subcluster #2 (end of subcluster) ###
alloc="0 1 2"; zero=""
_run_test sc=2 off=1 len=1k
### Write subcluster #3 (full subcluster) ###
alloc="0 1 2 3"; zero=""
_run_test sc=3 len=2k
### Write subclusters #4-6 (full subclusters) ###
alloc="$(seq 0 6)"; zero=""
_run_test sc=4 len=6k
### Write subclusters #7-9 (partial subclusters) ###
alloc="$(seq 0 9)"; zero=""
_run_test sc=7 off=1 len=4k
### Write subcluster #16 (partial subcluster) ###
alloc="$(seq 0 9) 16"; zero=""
_run_test sc=16 len=1k
### Write subcluster #31-#33 (cluster overlap) ###
alloc="$(seq 0 9) 16 31"; zero=""
_run_test sc=31 off=1 len=4k
alloc="0 1" ; zero=""
_verify_l2_bitmap 1
### Zero subcluster #1
alloc="0 $(seq 2 9) 16 31"; zero="1"
_run_test sc=1 len=2k cmd=zero
### Zero cluster #0
alloc=""; zero="$(seq 0 31)"
_run_test sc=0 len=64k cmd=zero
### Fill cluster #0 with data
alloc="$(seq 0 31)"; zero=""
_run_test sc=0 len=64k
### Zero and unmap half of cluster #0 (this won't unmap it)
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
_run_test sc=0 len=32k cmd=unmap
### Zero and unmap cluster #0
alloc=""; zero="$(seq 0 31)"
_run_test sc=0 len=64k cmd=unmap
### Write subcluster #1 (middle of subcluster)
alloc="1"; zero="0 $(seq 2 31)"
_run_test sc=1 off=1 len=512
### Fill cluster #0 with data
alloc="$(seq 0 31)"; zero=""
_run_test sc=0 len=64k
### Discard cluster #0
alloc=""; zero="$(seq 0 31)"
_run_test sc=0 len=64k cmd=discard
### Write compressed data to cluster #0
alloc=""; zero=""
_run_test sc=0 len=64k cmd=compress
### Write subcluster #1 (middle of subcluster)
alloc="$(seq 0 31)"; zero=""
_run_test sc=1 off=1 len=512
done
############################################################
############################################################
############################################################
# calculate_l2_meta() checks if none of the clusters affected by a
# write operation need COW or changes to their L2 metadata and simply
# returns when they don't. This is a test for that optimization.
# Here clusters #0-#3 are overwritten but only #1 and #2 need changes.
echo
echo '### Overwriting several clusters without COW ###'
echo
use_backing_file="no" _reset_img 1M
# Write cluster #0, subclusters #12-#31
alloc="$(seq 12 31)"; zero=""
_run_test sc=12 len=40k
# Write cluster #1, subcluster #13
alloc="13"; zero=""
_run_test c=1 sc=13 len=2k
# Zeroize cluster #2, subcluster #14
alloc="14"; zero=""
_run_test c=2 sc=14 len=2k
alloc=""; zero="14"
_run_test c=2 sc=14 len=2k cmd=zero
# Write cluster #3, subclusters #0-#16
alloc="$(seq 0 16)"; zero=""
_run_test c=3 sc=0 len=34k
# Write from cluster #0, subcluster #12 to cluster #3, subcluster #11
alloc="$(seq 12 31)"; zero=""
_run_test sc=12 len=192k
alloc="$(seq 0 31)"; zero=""
_verify_l2_bitmap 1
_verify_l2_bitmap 2
alloc="$(seq 0 16)"; zero=""
_verify_l2_bitmap 3
############################################################
############################################################
############################################################
# Test different patterns of writing zeroes
for use_backing_file in yes no; do
echo
echo "### Writing zeroes 1: unallocated clusters (backing file: $use_backing_file) ###"
echo
# Note that the image size is not a multiple of the cluster size
_reset_img 2083k
# Cluster-aligned request from clusters #0 to #2
alloc=""; zero="$(seq 0 31)"
_run_test c=0 sc=0 len=192k cmd=zero
_verify_l2_bitmap 1
_verify_l2_bitmap 2
# Subcluster-aligned request from clusters #3 to #5
alloc=""; zero="$(seq 16 31)"
_run_test c=3 sc=16 len=128k cmd=zero
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 4
alloc=""; zero="$(seq 0 15)"
_verify_l2_bitmap 5
# Unaligned request from clusters #6 to #8
if [ "$use_backing_file" = "yes" ]; then
alloc="15"; zero="$(seq 16 31)" # copy-on-write happening here
else
alloc=""; zero="$(seq 15 31)"
fi
_run_test c=6 sc=15 off=1 len=128k cmd=zero
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 7
if [ "$use_backing_file" = "yes" ]; then
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
else
alloc=""; zero="$(seq 0 15)"
fi
_verify_l2_bitmap 8
echo
echo "### Writing zeroes 2: allocated clusters (backing file: $use_backing_file) ###"
echo
alloc="$(seq 0 31)"; zero=""
_run_test c=9 sc=0 len=576k
_verify_l2_bitmap 10
_verify_l2_bitmap 11
_verify_l2_bitmap 12
_verify_l2_bitmap 13
_verify_l2_bitmap 14
_verify_l2_bitmap 15
_verify_l2_bitmap 16
_verify_l2_bitmap 17
# Cluster-aligned request from clusters #9 to #11
alloc=""; zero="$(seq 0 31)"
_run_test c=9 sc=0 len=192k cmd=zero
_verify_l2_bitmap 10
_verify_l2_bitmap 11
# Subcluster-aligned request from clusters #12 to #14
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=12 sc=16 len=128k cmd=zero
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 13
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
_verify_l2_bitmap 14
# Unaligned request from clusters #15 to #17
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=15 sc=15 off=1 len=128k cmd=zero
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 16
alloc="$(seq 15 31)"; zero="$(seq 0 14)"
_verify_l2_bitmap 17
echo
echo "### Writing zeroes 3: compressed clusters (backing file: $use_backing_file) ###"
echo
alloc=""; zero=""
for c in $(seq 18 28); do
_run_test c=$c sc=0 len=64k cmd=compress
done
# Cluster-aligned request from clusters #18 to #20
alloc=""; zero="$(seq 0 31)"
_run_test c=18 sc=0 len=192k cmd=zero
_verify_l2_bitmap 19
_verify_l2_bitmap 20
# Subcluster-aligned request from clusters #21 to #23.
# We cannot partially zero a compressed cluster so the code
# returns -ENOTSUP, which means copy-on-write of the compressed
# data and fill the rest with actual zeroes on disk.
# TODO: cluster #22 should use the 'all zeroes' bits.
alloc="$(seq 0 31)"; zero=""
_run_test c=21 sc=16 len=128k cmd=zero
_verify_l2_bitmap 22
_verify_l2_bitmap 23
# Unaligned request from clusters #24 to #26
# In this case QEMU internally sends a 1k request followed by a
# subcluster-aligned 128k request. The first request decompresses
# cluster #24, but that's not enough to perform the second request
# efficiently because it partially writes to cluster #26 (which is
# compressed) so we hit the same problem as before.
alloc="$(seq 0 31)"; zero=""
_run_test c=24 sc=15 off=1 len=129k cmd=zero
_verify_l2_bitmap 25
_verify_l2_bitmap 26
# Unaligned request from clusters #27 to #29
# Similar to the previous case, but this time the tail of the
# request does not correspond to a compressed cluster, so it can
# be zeroed efficiently.
# Note that the very last subcluster is partially written, so if
# there's a backing file we need to perform cow.
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=27 sc=15 off=1 len=128k cmd=zero
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 28
if [ "$use_backing_file" = "yes" ]; then
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
else
alloc=""; zero="$(seq 0 15)"
fi
_verify_l2_bitmap 29
echo
echo "### Writing zeroes 4: other tests (backing file: $use_backing_file) ###"
echo
# Unaligned request in the middle of cluster #30.
# If there's a backing file we need to allocate and do
# copy-on-write on the partially zeroed subclusters.
# If not we can set the 'all zeroes' bit on them.
if [ "$use_backing_file" = "yes" ]; then
alloc="15 19"; zero="$(seq 16 18)" # copy-on-write happening here
else
alloc=""; zero="$(seq 15 19)"
fi
_run_test c=30 sc=15 off=1 len=8k cmd=zero
# Fill the last cluster with zeroes, up to the end of the image
# (the image size is not a multiple of the cluster or subcluster size).
alloc=""; zero="$(seq 0 17)"
_run_test c=32 sc=0 len=35k cmd=zero
done
############################################################
############################################################
############################################################
# Zero + unmap
for use_backing_file in yes no; do
echo
echo "### Zero + unmap 1: allocated clusters (backing file: $use_backing_file) ###"
echo
# Note that the image size is not a multiple of the cluster size
_reset_img 2083k
alloc="$(seq 0 31)"; zero=""
_run_test c=9 sc=0 len=576k
_verify_l2_bitmap 10
_verify_l2_bitmap 11
_verify_l2_bitmap 12
_verify_l2_bitmap 13
_verify_l2_bitmap 14
_verify_l2_bitmap 15
_verify_l2_bitmap 16
_verify_l2_bitmap 17
# Cluster-aligned request from clusters #9 to #11
alloc=""; zero="$(seq 0 31)"
_run_test c=9 sc=0 len=192k cmd=unmap
_verify_l2_bitmap 10
_verify_l2_bitmap 11
# Subcluster-aligned request from clusters #12 to #14
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=12 sc=16 len=128k cmd=unmap
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 13
alloc="$(seq 16 31)"; zero="$(seq 0 15)"
_verify_l2_bitmap 14
# Unaligned request from clusters #15 to #17
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=15 sc=15 off=1 len=128k cmd=unmap
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 16
alloc="$(seq 15 31)"; zero="$(seq 0 14)"
_verify_l2_bitmap 17
echo
echo "### Zero + unmap 2: compressed clusters (backing file: $use_backing_file) ###"
echo
alloc=""; zero=""
for c in $(seq 18 28); do
_run_test c=$c sc=0 len=64k cmd=compress
done
# Cluster-aligned request from clusters #18 to #20
alloc=""; zero="$(seq 0 31)"
_run_test c=18 sc=0 len=192k cmd=unmap
_verify_l2_bitmap 19
_verify_l2_bitmap 20
# Subcluster-aligned request from clusters #21 to #23.
# We cannot partially zero a compressed cluster so the code
# returns -ENOTSUP, which means copy-on-write of the compressed
# data and fill the rest with actual zeroes on disk.
# TODO: cluster #22 should use the 'all zeroes' bits.
alloc="$(seq 0 31)"; zero=""
_run_test c=21 sc=16 len=128k cmd=unmap
_verify_l2_bitmap 22
_verify_l2_bitmap 23
# Unaligned request from clusters #24 to #26
# In this case QEMU internally sends a 1k request followed by a
# subcluster-aligned 128k request. The first request decompresses
# cluster #24, but that's not enough to perform the second request
# efficiently because it partially writes to cluster #26 (which is
# compressed) so we hit the same problem as before.
alloc="$(seq 0 31)"; zero=""
_run_test c=24 sc=15 off=1 len=129k cmd=unmap
_verify_l2_bitmap 25
_verify_l2_bitmap 26
# Unaligned request from clusters #27 to #29
# Similar to the previous case, but this time the tail of the
# request does not correspond to a compressed cluster, so it can
# be zeroed efficiently.
# Note that the very last subcluster is partially written, so if
# there's a backing file we need to perform cow.
alloc="$(seq 0 15)"; zero="$(seq 16 31)"
_run_test c=27 sc=15 off=1 len=128k cmd=unmap
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 28
if [ "$use_backing_file" = "yes" ]; then
alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here
else
alloc=""; zero="$(seq 0 15)"
fi
_verify_l2_bitmap 29
done
############################################################
############################################################
############################################################
# Test qcow2_cluster_discard() with full and normal discards
for use_backing_file in yes no; do
echo
echo "### Discarding clusters with non-zero bitmaps (backing file: $use_backing_file) ###"
echo
if [ "$use_backing_file" = "yes" ]; then
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 1M
else
_make_test_img -o extended_l2=on 1M
fi
# Write clusters #0-#2 and then discard them
$QEMU_IO -c 'write -q 0 128k' "$TEST_IMG"
$QEMU_IO -c 'discard -q 0 128k' "$TEST_IMG"
# 'qemu-io discard' doesn't do a full discard, it zeroizes the
# cluster, so both clusters have all zero bits set now
alloc=""; zero="$(seq 0 31)"
_verify_l2_bitmap 0
_verify_l2_bitmap 1
# Now mark the 2nd half of the subclusters from cluster #0 as unallocated
poke_file "$TEST_IMG" $(($l2_offset+8)) "\x00\x00"
# Discard cluster #0 again to see how the zero bits have changed
$QEMU_IO -c 'discard -q 0 64k' "$TEST_IMG"
# And do a full discard of cluster #1 by shrinking and growing the image
$QEMU_IMG resize --shrink "$TEST_IMG" 64k
$QEMU_IMG resize "$TEST_IMG" 1M
# A normal discard sets all 'zero' bits only if the image has a
# backing file, otherwise it won't touch them.
if [ "$use_backing_file" = "yes" ]; then
alloc=""; zero="$(seq 0 31)"
else
alloc=""; zero="$(seq 0 15)"
fi
_verify_l2_bitmap 0
# A full discard should clear the L2 entry completely. However
# when growing an image with a backing file the new clusters are
# zeroized to hide the stale data from the backing file
if [ "$use_backing_file" = "yes" ]; then
alloc=""; zero="$(seq 0 31)"
else
alloc=""; zero=""
fi
_verify_l2_bitmap 1
done
############################################################
############################################################
############################################################
# Test that corrupted L2 entries are detected in both read and write
# operations
for corruption_test_cmd in read write; do
echo
echo "### Corrupted L2 entries - $corruption_test_cmd test (allocated) ###"
echo
echo "# 'cluster is zero' bit set on the standard cluster descriptor"
echo
# We actually don't consider this a corrupted image.
# The 'cluster is zero' bit is unused in extended L2 entries so
# QEMU ignores it.
# TODO: maybe treat the image as corrupted and make qemu-img check fix it?
_make_test_img -o extended_l2=on 1M
$QEMU_IO -c 'write -q -P 0x11 0 2k' "$TEST_IMG"
poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01"
alloc="0"; zero=""
_verify_l2_bitmap 0
$QEMU_IO -c "$corruption_test_cmd -q -P 0x11 0 1k" "$TEST_IMG"
if [ "$corruption_test_cmd" = "write" ]; then
alloc="0"; zero=""
fi
_verify_l2_bitmap 0
echo
echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set"
echo
_make_test_img -o extended_l2=on 1M
# Write from the middle of cluster #0 to the middle of cluster #2
$QEMU_IO -c 'write -q 32k 128k' "$TEST_IMG"
# Corrupt the L2 entry from cluster #1
poke_file_be "$TEST_IMG" $(($l2_offset+24)) 4 1
alloc="$(seq 0 31)"; zero="0"
_verify_l2_bitmap 1
$QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG"
echo
echo "### Corrupted L2 entries - $corruption_test_cmd test (unallocated) ###"
echo
echo "# 'cluster is zero' bit set on the standard cluster descriptor"
echo
# We actually don't consider this a corrupted image.
# The 'cluster is zero' bit is unused in extended L2 entries so
# QEMU ignores it.
# TODO: maybe treat the image as corrupted and make qemu-img check fix it?
_make_test_img -o extended_l2=on 1M
# We want to modify the (empty) L2 entry from cluster #0,
# but we write to #4 in order to initialize the L2 table first
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01"
alloc=""; zero=""
_verify_l2_bitmap 0
$QEMU_IO -c "$corruption_test_cmd -q 0 1k" "$TEST_IMG"
if [ "$corruption_test_cmd" = "write" ]; then
alloc="0"; zero=""
fi
_verify_l2_bitmap 0
echo
echo "# 'subcluster is allocated' bit set"
echo
_make_test_img -o extended_l2=on 1M
# We want to corrupt the (empty) L2 entry from cluster #0,
# but we write to #4 in order to initialize the L2 table first
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
poke_file "$TEST_IMG" $(($l2_offset+15)) "\x01"
alloc="0"; zero=""
_verify_l2_bitmap 0
$QEMU_IO -c "$corruption_test_cmd 0 1k" "$TEST_IMG"
echo
echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set"
echo
_make_test_img -o extended_l2=on 1M
# We want to corrupt the (empty) L2 entry from cluster #1,
# but we write to #4 in order to initialize the L2 table first
$QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG"
# Corrupt the L2 entry from cluster #1
poke_file_be "$TEST_IMG" $(($l2_offset+24)) 8 $(((1 << 32) | 1))
alloc="0"; zero="0"
_verify_l2_bitmap 1
$QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG"
echo
echo "### Compressed cluster with subcluster bitmap != 0 - $corruption_test_cmd test ###"
echo
# We actually don't consider this a corrupted image.
# The bitmap in compressed clusters is unused so QEMU should just ignore it.
_make_test_img -o extended_l2=on 1M
$QEMU_IO -c 'write -q -P 11 -c 0 64k' "$TEST_IMG"
# Change the L2 bitmap to allocate subcluster #31 and zeroize subcluster #0
poke_file "$TEST_IMG" $(($l2_offset+11)) "\x01\x80"
alloc="31"; zero="0"
_verify_l2_bitmap 0
$QEMU_IO -c "$corruption_test_cmd -P 11 0 64k" "$TEST_IMG" | _filter_qemu_io
# Writing allocates a new uncompressed cluster so we get a new bitmap
if [ "$corruption_test_cmd" = "write" ]; then
alloc="$(seq 0 31)"; zero=""
fi
_verify_l2_bitmap 0
done
############################################################
############################################################
############################################################
echo
echo "### Detect and repair unaligned clusters ###"
echo
# Create a backing file and fill it with data
$QEMU_IMG create -f raw "$TEST_IMG.base" 128k | _filter_img_create
$QEMU_IO -c "write -q -P 0xff 0 128k" -f raw "$TEST_IMG.base" | _filter_qemu_io
echo "# Corrupted L2 entry, allocated subcluster #"
# Create a new image, allocate a cluster and write some data to it
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base"
$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG"
# Corrupt the L2 entry by making the offset unaligned
poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02"
# This cannot be repaired, qemu-img check will fail to fix it
_check_test_img -r all
# Attempting to read the image will still show that it's corrupted
$QEMU_IO -c 'read -q 0 2k' "$TEST_IMG"
echo "# Corrupted L2 entry, no allocated subclusters #"
# Create a new image, allocate a cluster and zeroize subcluster #2
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base"
$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG"
$QEMU_IO -c 'write -q -z 4k 2k' "$TEST_IMG"
# Corrupt the L2 entry by making the offset unaligned
poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02"
# This time none of the subclusters are allocated so we can repair the image
_check_test_img -r all
# And the data can be read normally
$QEMU_IO -c 'read -q -P 0xff 0 4k' "$TEST_IMG"
$QEMU_IO -c 'read -q -P 0x00 4k 2k' "$TEST_IMG"
$QEMU_IO -c 'read -q -P 0xff 6k 122k' "$TEST_IMG"
############################################################
############################################################
############################################################
echo
echo "### Image creation options ###"
echo
echo "# cluster_size < 16k"
_make_test_img -o extended_l2=on,cluster_size=8k 1M
echo "# backing file and preallocation=metadata"
# For preallocation with backing files, create a backing file first
$QEMU_IMG create -f raw "$TEST_IMG.base" 1M | _filter_img_create
$QEMU_IO -c "write -q -P 0xff 0 1M" -f raw "$TEST_IMG.base" | _filter_qemu_io
_make_test_img -o extended_l2=on,preallocation=metadata -F raw -b "$TEST_IMG.base" 512k
$QEMU_IMG resize "$TEST_IMG" 1M
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
echo "# backing file and preallocation=falloc"
_make_test_img -o extended_l2=on,preallocation=falloc -F raw -b "$TEST_IMG.base" 512k
$QEMU_IMG resize "$TEST_IMG" 1M
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
echo "# backing file and preallocation=full"
_make_test_img -o extended_l2=on,preallocation=full -F raw -b "$TEST_IMG.base" 512k
$QEMU_IMG resize "$TEST_IMG" 1M
$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG map "$TEST_IMG" | _filter_testdir
echo
echo "### Image resizing with preallocation and backing files ###"
echo
# In this case the new subclusters must have the 'all zeroes' bit set
echo "# resize --preallocation=metadata"
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
# In this case and the next one the new subclusters must be allocated
echo "# resize --preallocation=falloc"
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
echo "# resize --preallocation=full"
_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k
$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
echo
echo "### Image resizing with preallocation without backing files ###"
echo
# In this case the new subclusters must have the 'all zeroes' bit set
echo "# resize --preallocation=metadata"
_make_test_img -o extended_l2=on 503k
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
# In this case and the next one the new subclusters must be allocated
echo "# resize --preallocation=falloc"
_make_test_img -o extended_l2=on 503k
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
echo "# resize --preallocation=full"
_make_test_img -o extended_l2=on 503k
$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k
$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io
$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io
echo
echo "### qemu-img measure ###"
echo
echo "# 512MB, extended_l2=off" # This needs one L2 table
$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=off
echo "# 512MB, extended_l2=on" # This needs two L2 tables
$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=on
echo "# 16K clusters, 64GB, extended_l2=off" # This needs one full L1 table cluster
$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=off
echo "# 16K clusters, 64GB, extended_l2=on" # This needs two full L2 table clusters
$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=on
echo "# 8k clusters" # This should fail
$QEMU_IMG measure --size 1M -O qcow2 -o cluster_size=8k,extended_l2=on
echo "# 1024 TB" # Maximum allowed size with extended_l2=on and 64K clusters
$QEMU_IMG measure --size 1024T -O qcow2 -o extended_l2=on
echo "# 1025 TB" # This should fail
$QEMU_IMG measure --size 1025T -O qcow2 -o extended_l2=on
echo
echo "### qemu-img amend ###"
echo
_make_test_img -o extended_l2=on 1M
$QEMU_IMG amend -o extended_l2=off "$TEST_IMG" && echo "Unexpected pass"
_make_test_img -o extended_l2=off 1M
$QEMU_IMG amend -o extended_l2=on "$TEST_IMG" && echo "Unexpected pass"
echo
echo "### Test copy-on-write on an image with snapshots ###"
echo
_make_test_img -o extended_l2=on 1M
# For each cluster from #0 to #9 this loop zeroes subcluster #7
# and allocates subclusters #13 and #18.
alloc="13 18"; zero="7"
for c in $(seq 0 9); do
$QEMU_IO -c "write -q -z $((64*$c+14))k 2k" \
-c "write -q -P $((0xd0+$c)) $((64*$c+26))k 2k" \
-c "write -q -P $((0xe0+$c)) $((64*$c+36))k 2k" "$TEST_IMG"
_verify_l2_bitmap "$c"
done
# Create a snapshot and set l2_offset to the new L2 table
$QEMU_IMG snapshot -c snap1 "$TEST_IMG"
l2_offset=$((0x110000))
# Write different patterns to each one of the clusters
# in order to see how copy-on-write behaves in each case.
$QEMU_IO -c "write -q -P 0xf0 $((64*0+30))k 1k" \
-c "write -q -P 0xf1 $((64*1+20))k 1k" \
-c "write -q -P 0xf2 $((64*2+40))k 1k" \
-c "write -q -P 0xf3 $((64*3+26))k 1k" \
-c "write -q -P 0xf4 $((64*4+14))k 1k" \
-c "write -q -P 0xf5 $((64*5+1))k 1k" \
-c "write -q -z $((64*6+30))k 3k" \
-c "write -q -z $((64*7+26))k 2k" \
-c "write -q -z $((64*8+26))k 1k" \
-c "write -q -z $((64*9+12))k 1k" \
"$TEST_IMG"
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 0
alloc="$(seq 10 18)"; zero="7" _verify_l2_bitmap 1
alloc="$(seq 13 20)"; zero="7" _verify_l2_bitmap 2
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 3
alloc="$(seq 7 18)"; zero="" _verify_l2_bitmap 4
alloc="$(seq 0 18)"; zero="" _verify_l2_bitmap 5
alloc="13 18"; zero="7 15 16" _verify_l2_bitmap 6
alloc="18"; zero="7 13" _verify_l2_bitmap 7
alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 8
alloc="13 18"; zero="6 7" _verify_l2_bitmap 9
echo
echo "### Test concurrent requests ###"
echo
_concurrent_io()
{
# Allocate three subclusters in the same cluster.
# This works because handle_dependencies() checks whether the requests
# allocate the same cluster, even if the COW regions don't overlap (in
# this case they don't).
cat <<EOF
open -o driver=$IMGFMT blkdebug::$TEST_IMG
break write_aio A
aio_write -P 10 30k 2k
wait_break A
aio_write -P 11 20k 2k
aio_write -P 12 40k 2k
resume A
aio_flush
EOF
}
_concurrent_verify()
{
cat <<EOF
open -o driver=$IMGFMT $TEST_IMG
read -q -P 10 30k 2k
read -q -P 11 20k 2k
read -q -P 12 40k 2k
EOF
}
_make_test_img -o extended_l2=on 1M
# Second and third writes in _concurrent_io() are independent and may finish in
# different order. So, filter offset out to match both possible variants.
_concurrent_io | $QEMU_IO | _filter_qemu_io | \
sed -e 's/\(20480\|40960\)/OFFSET/'
_concurrent_verify | $QEMU_IO | _filter_qemu_io
# success, all done
echo "*** done"
rm -f $seq.full
status=0