/*
* x86 CPU test
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <math.h>
#include <signal.h>
#include <setjmp.h>
#include <errno.h>
#include <sys/ucontext.h>
#include <sys/mman.h>
#if !defined(__x86_64__)
//#define TEST_VM86
#define TEST_SEGS
#endif
//#define LINUX_VM86_IOPL_FIX
//#define TEST_P4_FLAGS
#ifdef __SSE__
#define TEST_SSE
#define TEST_CMOV 1
#define TEST_FCOMI 1
#else
#undef TEST_SSE
#define TEST_CMOV 1
#define TEST_FCOMI 1
#endif
#if defined(__x86_64__)
#define FMT64X "%016lx"
#define FMTLX "%016lx"
#define X86_64_ONLY(x) x
#else
#define FMT64X "%016" PRIx64
#define FMTLX "%08lx"
#define X86_64_ONLY(x)
#endif
#ifdef TEST_VM86
#include <asm/vm86.h>
#endif
#define xglue(x, y) x ## y
#define glue(x, y) xglue(x, y)
#define stringify(s) tostring(s)
#define tostring(s) #s
#define CC_C 0x0001
#define CC_P 0x0004
#define CC_A 0x0010
#define CC_Z 0x0040
#define CC_S 0x0080
#define CC_O 0x0800
#define __init_call __attribute__ ((unused,__section__ ("initcall")))
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
#if defined(__x86_64__)
static inline long i2l(long v)
{
return v | ((v ^ 0xabcd) << 32);
}
#else
static inline long i2l(long v)
{
return v;
}
#endif
#define OP add
#include "test-i386.h"
#define OP sub
#include "test-i386.h"
#define OP xor
#include "test-i386.h"
#define OP and
#include "test-i386.h"
#define OP or
#include "test-i386.h"
#define OP cmp
#include "test-i386.h"
#define OP adc
#define OP_CC
#include "test-i386.h"
#define OP sbb
#define OP_CC
#include "test-i386.h"
#define OP inc
#define OP_CC
#define OP1
#include "test-i386.h"
#define OP dec
#define OP_CC
#define OP1
#include "test-i386.h"
#define OP neg
#define OP_CC
#define OP1
#include "test-i386.h"
#define OP not
#define OP_CC
#define OP1
#include "test-i386.h"
#undef CC_MASK
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
#define OP shl
#include "test-i386-shift.h"
#define OP shr
#include "test-i386-shift.h"
#define OP sar
#include "test-i386-shift.h"
#define OP rol
#include "test-i386-shift.h"
#define OP ror
#include "test-i386-shift.h"
#define OP rcr
#define OP_CC
#include "test-i386-shift.h"
#define OP rcl
#define OP_CC
#include "test-i386-shift.h"
#define OP shld
#define OP_SHIFTD
#define OP_NOBYTE
#include "test-i386-shift.h"
#define OP shrd
#define OP_SHIFTD
#define OP_NOBYTE
#include "test-i386-shift.h"
/* XXX: should be more precise ? */
#undef CC_MASK
#define CC_MASK (CC_C)
#define OP bt
#define OP_NOBYTE
#include "test-i386-shift.h"
#define OP bts
#define OP_NOBYTE
#include "test-i386-shift.h"
#define OP btr
#define OP_NOBYTE
#include "test-i386-shift.h"
#define OP btc
#define OP_NOBYTE
#include "test-i386-shift.h"
/* lea test (modrm support) */
#define TEST_LEAQ(STR)\
{\
asm("lea " STR ", %0"\
: "=r" (res)\
: "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
printf("lea %s = " FMTLX "\n", STR, res);\
}
#define TEST_LEA(STR)\
{\
asm("lea " STR ", %0"\
: "=r" (res)\
: "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
printf("lea %s = " FMTLX "\n", STR, res);\
}
#define TEST_LEA16(STR)\
{\
asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
: "=r" (res)\
: "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
printf("lea %s = %08lx\n", STR, res);\
}
void test_lea(void)
{
long eax, ebx, ecx, edx, esi, edi, res;
eax = i2l(0x0001);
ebx = i2l(0x0002);
ecx = i2l(0x0004);
edx = i2l(0x0008);
esi = i2l(0x0010);
edi = i2l(0x0020);
TEST_LEA("0x4000");
TEST_LEA("(%%eax)");
TEST_LEA("(%%ebx)");
TEST_LEA("(%%ecx)");
TEST_LEA("(%%edx)");
TEST_LEA("(%%esi)");
TEST_LEA("(%%edi)");
TEST_LEA("0x40(%%eax)");
TEST_LEA("0x40(%%ebx)");
TEST_LEA("0x40(%%ecx)");
TEST_LEA("0x40(%%edx)");
TEST_LEA("0x40(%%esi)");
TEST_LEA("0x40(%%edi)");
TEST_LEA("0x4000(%%eax)");
TEST_LEA("0x4000(%%ebx)");
TEST_LEA("0x4000(%%ecx)");
TEST_LEA("0x4000(%%edx)");
TEST_LEA("0x4000(%%esi)");
TEST_LEA("0x4000(%%edi)");
TEST_LEA("(%%eax, %%ecx)");
TEST_LEA("(%%ebx, %%edx)");
TEST_LEA("(%%ecx, %%ecx)");
TEST_LEA("(%%edx, %%ecx)");
TEST_LEA("(%%esi, %%ecx)");
TEST_LEA("(%%edi, %%ecx)");
TEST_LEA("0x40(%%eax, %%ecx)");
TEST_LEA("0x4000(%%ebx, %%edx)");
TEST_LEA("(%%ecx, %%ecx, 2)");
TEST_LEA("(%%edx, %%ecx, 4)");
TEST_LEA("(%%esi, %%ecx, 8)");
TEST_LEA("(,%%eax, 2)");
TEST_LEA("(,%%ebx, 4)");
TEST_LEA("(,%%ecx, 8)");
TEST_LEA("0x40(,%%eax, 2)");
TEST_LEA("0x40(,%%ebx, 4)");
TEST_LEA("0x40(,%%ecx, 8)");
TEST_LEA("-10(%%ecx, %%ecx, 2)");
TEST_LEA("-10(%%edx, %%ecx, 4)");
TEST_LEA("-10(%%esi, %%ecx, 8)");
TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
TEST_LEA("0x4000(%%edx, %%ecx, 4)");
TEST_LEA("0x4000(%%esi, %%ecx, 8)");
#if defined(__x86_64__)
TEST_LEAQ("0x4000");
TEST_LEAQ("0x4000(%%rip)");
TEST_LEAQ("(%%rax)");
TEST_LEAQ("(%%rbx)");
TEST_LEAQ("(%%rcx)");
TEST_LEAQ("(%%rdx)");
TEST_LEAQ("(%%rsi)");
TEST_LEAQ("(%%rdi)");
TEST_LEAQ("0x40(%%rax)");
TEST_LEAQ("0x40(%%rbx)");
TEST_LEAQ("0x40(%%rcx)");
TEST_LEAQ("0x40(%%rdx)");
TEST_LEAQ("0x40(%%rsi)");
TEST_LEAQ("0x40(%%rdi)");
TEST_LEAQ("0x4000(%%rax)");
TEST_LEAQ("0x4000(%%rbx)");
TEST_LEAQ("0x4000(%%rcx)");
TEST_LEAQ("0x4000(%%rdx)");
TEST_LEAQ("0x4000(%%rsi)");
TEST_LEAQ("0x4000(%%rdi)");
TEST_LEAQ("(%%rax, %%rcx)");
TEST_LEAQ("(%%rbx, %%rdx)");
TEST_LEAQ("(%%rcx, %%rcx)");
TEST_LEAQ("(%%rdx, %%rcx)");
TEST_LEAQ("(%%rsi, %%rcx)");
TEST_LEAQ("(%%rdi, %%rcx)");
TEST_LEAQ("0x40(%%rax, %%rcx)");
TEST_LEAQ("0x4000(%%rbx, %%rdx)");
TEST_LEAQ("(%%rcx, %%rcx, 2)");
TEST_LEAQ("(%%rdx, %%rcx, 4)");
TEST_LEAQ("(%%rsi, %%rcx, 8)");
TEST_LEAQ("(,%%rax, 2)");
TEST_LEAQ("(,%%rbx, 4)");
TEST_LEAQ("(,%%rcx, 8)");
TEST_LEAQ("0x40(,%%rax, 2)");
TEST_LEAQ("0x40(,%%rbx, 4)");
TEST_LEAQ("0x40(,%%rcx, 8)");
TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
#else
/* limited 16 bit addressing test */
TEST_LEA16("0x4000");
TEST_LEA16("(%%bx)");
TEST_LEA16("(%%si)");
TEST_LEA16("(%%di)");
TEST_LEA16("0x40(%%bx)");
TEST_LEA16("0x40(%%si)");
TEST_LEA16("0x40(%%di)");
TEST_LEA16("0x4000(%%bx)");
TEST_LEA16("0x4000(%%si)");
TEST_LEA16("(%%bx,%%si)");
TEST_LEA16("(%%bx,%%di)");
TEST_LEA16("0x40(%%bx,%%si)");
TEST_LEA16("0x40(%%bx,%%di)");
TEST_LEA16("0x4000(%%bx,%%si)");
TEST_LEA16("0x4000(%%bx,%%di)");
#endif
}
#define TEST_JCC(JCC, v1, v2)\
{\
int res;\
asm("movl $1, %0\n\t"\
"cmpl %2, %1\n\t"\
"j" JCC " 1f\n\t"\
"movl $0, %0\n\t"\
"1:\n\t"\
: "=r" (res)\
: "r" (v1), "r" (v2));\
printf("%-10s %d\n", "j" JCC, res);\
\
asm("movl $0, %0\n\t"\
"cmpl %2, %1\n\t"\
"set" JCC " %b0\n\t"\
: "=r" (res)\
: "r" (v1), "r" (v2));\
printf("%-10s %d\n", "set" JCC, res);\
if (TEST_CMOV) {\
long val = i2l(1);\
long res = i2l(0x12345678);\
X86_64_ONLY(\
asm("cmpl %2, %1\n\t"\
"cmov" JCC "q %3, %0\n\t"\
: "=r" (res)\
: "r" (v1), "r" (v2), "m" (val), "0" (res));\
printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
asm("cmpl %2, %1\n\t"\
"cmov" JCC "l %k3, %k0\n\t"\
: "=r" (res)\
: "r" (v1), "r" (v2), "m" (val), "0" (res));\
printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
asm("cmpl %2, %1\n\t"\
"cmov" JCC "w %w3, %w0\n\t"\
: "=r" (res)\
: "r" (v1), "r" (v2), "r" (1), "0" (res));\
printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
} \
}
/* various jump tests */
void test_jcc(void)
{
TEST_JCC("ne", 1, 1);
TEST_JCC("ne", 1, 0);
TEST_JCC("e", 1, 1);
TEST_JCC("e", 1, 0);
TEST_JCC("l", 1, 1);
TEST_JCC("l", 1, 0);
TEST_JCC("l", 1, -1);
TEST_JCC("le", 1, 1);
TEST_JCC("le", 1, 0);
TEST_JCC("le", 1, -1);
TEST_JCC("ge", 1, 1);
TEST_JCC("ge", 1, 0);
TEST_JCC("ge", -1, 1);
TEST_JCC("g", 1, 1);
TEST_JCC("g", 1, 0);
TEST_JCC("g", 1, -1);
TEST_JCC("b", 1, 1);
TEST_JCC("b", 1, 0);
TEST_JCC("b", 1, -1);
TEST_JCC("be", 1, 1);
TEST_JCC("be", 1, 0);
TEST_JCC("be", 1, -1);
TEST_JCC("ae", 1, 1);
TEST_JCC("ae", 1, 0);
TEST_JCC("ae", 1, -1);
TEST_JCC("a", 1, 1);
TEST_JCC("a", 1, 0);
TEST_JCC("a", 1, -1);
TEST_JCC("p", 1, 1);
TEST_JCC("p", 1, 0);
TEST_JCC("np", 1, 1);
TEST_JCC("np", 1, 0);
TEST_JCC("o", 0x7fffffff, 0);
TEST_JCC("o", 0x7fffffff, -1);
TEST_JCC("no", 0x7fffffff, 0);
TEST_JCC("no", 0x7fffffff, -1);
TEST_JCC("s", 0, 1);
TEST_JCC("s", 0, -1);
TEST_JCC("s", 0, 0);
TEST_JCC("ns", 0, 1);
TEST_JCC("ns", 0, -1);
TEST_JCC("ns", 0, 0);
}
#define TEST_LOOP(insn) \
{\
for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
ecx = ecx_vals[i];\
for(zf = 0; zf < 2; zf++) {\
asm("test %2, %2\n\t"\
"movl $1, %0\n\t"\
insn " 1f\n\t" \
"movl $0, %0\n\t"\
"1:\n\t"\
: "=a" (res)\
: "c" (ecx), "b" (!zf)); \
printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res); \
}\
}\
}
void test_loop(void)
{
long ecx, zf;
const long ecx_vals[] = {
0,
1,
0x10000,
0x10001,
#if defined(__x86_64__)
0x100000000L,
0x100000001L,
#endif
};
int i, res;
#if !defined(__x86_64__)
TEST_LOOP("jcxz");
TEST_LOOP("loopw");
TEST_LOOP("loopzw");
TEST_LOOP("loopnzw");
#endif
TEST_LOOP("jecxz");
TEST_LOOP("loopl");
TEST_LOOP("loopzl");
TEST_LOOP("loopnzl");
}
#undef CC_MASK
#ifdef TEST_P4_FLAGS
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
#else
#define CC_MASK (CC_O | CC_C)
#endif
#define OP mul
#include "test-i386-muldiv.h"
#define OP imul
#include "test-i386-muldiv.h"
void test_imulw2(long op0, long op1)
{
long res, s1, s0, flags;
s0 = op0;
s1 = op1;
res = s0;
flags = 0;
asm volatile ("push %4\n\t"
"popf\n\t"
"imulw %w2, %w0\n\t"
"pushf\n\t"
"pop %1\n\t"
: "=q" (res), "=g" (flags)
: "q" (s1), "0" (res), "1" (flags));
printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
"imulw", s0, s1, res, flags & CC_MASK);
}
void test_imull2(long op0, long op1)
{
long res, s1, s0, flags;
s0 = op0;
s1 = op1;
res = s0;
flags = 0;
asm volatile ("push %4\n\t"
"popf\n\t"
"imull %k2, %k0\n\t"
"pushf\n\t"
"pop %1\n\t"
: "=q" (res), "=g" (flags)
: "q" (s1), "0" (res), "1" (flags));
printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
"imull", s0, s1, res, flags & CC_MASK);
}
#if defined(__x86_64__)
void test_imulq2(long op0, long op1)
{
long res, s1, s0, flags;
s0 = op0;
s1 = op1;
res = s0;
flags = 0;
asm volatile ("push %4\n\t"
"popf\n\t"
"imulq %2, %0\n\t"
"pushf\n\t"
"pop %1\n\t"
: "=q" (res), "=g" (flags)
: "q" (s1), "0" (res), "1" (flags));
printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
"imulq", s0, s1, res, flags & CC_MASK);
}
#endif
#define TEST_IMUL_IM(size, rsize, op0, op1)\
{\
long res, flags, s1;\
flags = 0;\
res = 0;\
s1 = op1;\
asm volatile ("push %3\n\t"\
"popf\n\t"\
"imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
"pushf\n\t"\
"pop %1\n\t"\
: "=r" (res), "=g" (flags)\
: "r" (s1), "1" (flags), "0" (res));\
printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
"imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
}
#undef CC_MASK
#define CC_MASK (0)
#define OP div
#include "test-i386-muldiv.h"
#define OP idiv
#include "test-i386-muldiv.h"
void test_mul(void)
{
test_imulb(0x1234561d, 4);
test_imulb(3, -4);
test_imulb(0x80, 0x80);
test_imulb(0x10, 0x10);
test_imulw(0, 0x1234001d, 45);
test_imulw(0, 23, -45);
test_imulw(0, 0x8000, 0x8000);
test_imulw(0, 0x100, 0x100);
test_imull(0, 0x1234001d, 45);
test_imull(0, 23, -45);
test_imull(0, 0x80000000, 0x80000000);
test_imull(0, 0x10000, 0x10000);
test_mulb(0x1234561d, 4);
test_mulb(3, -4);
test_mulb(0x80, 0x80);
test_mulb(0x10, 0x10);
test_mulw(0, 0x1234001d, 45);
test_mulw(0, 23, -45);
test_mulw(0, 0x8000, 0x8000);
test_mulw(0, 0x100, 0x100);
test_mull(0, 0x1234001d, 45);
test_mull(0, 23, -45);
test_mull(0, 0x80000000, 0x80000000);
test_mull(0, 0x10000, 0x10000);
test_imulw2(0x1234001d, 45);
test_imulw2(23, -45);
test_imulw2(0x8000, 0x8000);
test_imulw2(0x100, 0x100);
test_imull2(0x1234001d, 45);
test_imull2(23, -45);
test_imull2(0x80000000, 0x80000000);
test_imull2(0x10000, 0x10000);
TEST_IMUL_IM("w", "w", 45, 0x1234);
TEST_IMUL_IM("w", "w", -45, 23);
TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
TEST_IMUL_IM("l", "k", 45, 0x1234);
TEST_IMUL_IM("l", "k", -45, 23);
TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
test_idivb(0x12341678, 0x127e);
test_idivb(0x43210123, -5);
test_idivb(0x12340004, -1);
test_idivw(0, 0x12345678, 12347);
test_idivw(0, -23223, -45);
test_idivw(0, 0x12348000, -1);
test_idivw(0x12343, 0x12345678, 0x81238567);
test_idivl(0, 0x12345678, 12347);
test_idivl(0, -233223, -45);
test_idivl(0, 0x80000000, -1);
test_idivl(0x12343, 0x12345678, 0x81234567);
test_divb(0x12341678, 0x127e);
test_divb(0x43210123, -5);
test_divb(0x12340004, -1);
test_divw(0, 0x12345678, 12347);
test_divw(0, -23223, -45);
test_divw(0, 0x12348000, -1);
test_divw(0x12343, 0x12345678, 0x81238567);
test_divl(0, 0x12345678, 12347);
test_divl(0, -233223, -45);
test_divl(0, 0x80000000, -1);
test_divl(0x12343, 0x12345678, 0x81234567);
#if defined(__x86_64__)
test_imulq(0, 0x1234001d1234001d, 45);
test_imulq(0, 23, -45);
test_imulq(0, 0x8000000000000000, 0x8000000000000000);
test_imulq(0, 0x100000000, 0x100000000);
test_mulq(0, 0x1234001d1234001d, 45);
test_mulq(0, 23, -45);
test_mulq(0, 0x8000000000000000, 0x8000000000000000);
test_mulq(0, 0x100000000, 0x100000000);
test_imulq2(0x1234001d1234001d, 45);
test_imulq2(23, -45);
test_imulq2(0x8000000000000000, 0x8000000000000000);
test_imulq2(0x100000000, 0x100000000);
TEST_IMUL_IM("q", "", 45, 0x12341234);
TEST_IMUL_IM("q", "", -45, 23);
TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
test_idivq(0, 0x12345678abcdef, 12347);
test_idivq(0, -233223, -45);
test_idivq(0, 0x8000000000000000, -1);
test_idivq(0x12343, 0x12345678, 0x81234567);
test_divq(0, 0x12345678abcdef, 12347);
test_divq(0, -233223, -45);
test_divq(0, 0x8000000000000000, -1);
test_divq(0x12343, 0x12345678, 0x81234567);
#endif
}
#define TEST_BSX(op, size, op0)\
{\
long res, val, resz;\
val = op0;\
asm("xor %1, %1\n"\
"mov $0x12345678, %0\n"\
#op " %" size "2, %" size "0 ; setz %b1" \
: "=&r" (res), "=&q" (resz)\
: "r" (val));\
printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
}
void test_bsx(void)
{
TEST_BSX(bsrw, "w", 0);
TEST_BSX(bsrw, "w", 0x12340128);
TEST_BSX(bsfw, "w", 0);
TEST_BSX(bsfw, "w", 0x12340128);
TEST_BSX(bsrl, "k", 0);
TEST_BSX(bsrl, "k", 0x00340128);
TEST_BSX(bsfl, "k", 0);
TEST_BSX(bsfl, "k", 0x00340128);
#if defined(__x86_64__)
TEST_BSX(bsrq, "", 0);
TEST_BSX(bsrq, "", 0x003401281234);
TEST_BSX(bsfq, "", 0);
TEST_BSX(bsfq, "", 0x003401281234);
#endif
}
/**********************************************/
union float64u {
double d;
uint64_t l;
};
union float64u q_nan = { .l = 0xFFF8000000000000LL };
union float64u s_nan = { .l = 0xFFF0000000000000LL };
void test_fops(double a, double b)
{
printf("a=%f b=%f a+b=%f\n", a, b, a + b);
printf("a=%f b=%f a-b=%f\n", a, b, a - b);
printf("a=%f b=%f a*b=%f\n", a, b, a * b);
printf("a=%f b=%f a/b=%f\n", a, b, a / b);
printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
printf("a=%f sin(a)=%f\n", a, sin(a));
printf("a=%f cos(a)=%f\n", a, cos(a));
printf("a=%f tan(a)=%f\n", a, tan(a));
printf("a=%f log(a)=%f\n", a, log(a));
printf("a=%f exp(a)=%f\n", a, exp(a));
printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
/* just to test some op combining */
printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
}
void fpu_clear_exceptions(void)
{
struct QEMU_PACKED {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
uint16_t dummy2;
uint16_t fptag;
uint16_t dummy3;
uint32_t ignored[4];
long double fpregs[8];
} float_env32;
asm volatile ("fnstenv %0\n" : "=m" (float_env32));
float_env32.fpus &= ~0x7f;
asm volatile ("fldenv %0\n" : : "m" (float_env32));
}
/* XXX: display exception bits when supported */
#define FPUS_EMASK 0x0000
//#define FPUS_EMASK 0x007f
void test_fcmp(double a, double b)
{
long eflags, fpus;
fpu_clear_exceptions();
asm("fcom %2\n"
"fstsw %%ax\n"
: "=a" (fpus)
: "t" (a), "u" (b));
printf("fcom(%f %f)=%04lx\n",
a, b, fpus & (0x4500 | FPUS_EMASK));
fpu_clear_exceptions();
asm("fucom %2\n"
"fstsw %%ax\n"
: "=a" (fpus)
: "t" (a), "u" (b));
printf("fucom(%f %f)=%04lx\n",
a, b, fpus & (0x4500 | FPUS_EMASK));
if (TEST_FCOMI) {
/* test f(u)comi instruction */
fpu_clear_exceptions();
asm("fcomi %3, %2\n"
"fstsw %%ax\n"
"pushf\n"
"pop %0\n"
: "=r" (eflags), "=a" (fpus)
: "t" (a), "u" (b));
printf("fcomi(%f %f)=%04lx %02lx\n",
a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
fpu_clear_exceptions();
asm("fucomi %3, %2\n"
"fstsw %%ax\n"
"pushf\n"
"pop %0\n"
: "=r" (eflags), "=a" (fpus)
: "t" (a), "u" (b));
printf("fucomi(%f %f)=%04lx %02lx\n",
a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
}
fpu_clear_exceptions();
asm volatile("fxam\n"
"fstsw %%ax\n"
: "=a" (fpus)
: "t" (a));
printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
fpu_clear_exceptions();
}
void test_fcvt(double a)
{
float fa;
long double la;
int16_t fpuc;
int i;
int64_t lla;
int ia;
int16_t wa;
double ra;
fa = a;
la = a;
printf("(float)%f = %f\n", a, fa);
printf("(long double)%f = %Lf\n", a, la);
printf("a=" FMT64X "\n", *(uint64_t *)&a);
printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
*(unsigned short *)((char *)(&la) + 8));
/* test all roundings */
asm volatile ("fstcw %0" : "=m" (fpuc));
for(i=0;i<4;i++) {
uint16_t val16;
val16 = (fpuc & ~0x0c00) | (i << 10);
asm volatile ("fldcw %0" : : "m" (val16));
asm volatile ("fist %0" : "=m" (wa) : "t" (a));
asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
asm volatile ("fldcw %0" : : "m" (fpuc));
printf("(short)a = %d\n", wa);
printf("(int)a = %d\n", ia);
printf("(int64_t)a = " FMT64X "\n", lla);
printf("rint(a) = %f\n", ra);
}
}
#define TEST(N) \
asm("fld" #N : "=t" (a)); \
printf("fld" #N "= %f\n", a);
void test_fconst(void)
{
double a;
TEST(1);
TEST(l2t);
TEST(l2e);
TEST(pi);
TEST(lg2);
TEST(ln2);
TEST(z);
}
void test_fbcd(double a)
{
unsigned short bcd[5];
double b;
asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
}
#define TEST_ENV(env, save, restore)\
{\
memset((env), 0xaa, sizeof(*(env)));\
for(i=0;i<5;i++)\
asm volatile ("fldl %0" : : "m" (dtab[i]));\
asm volatile (save " %0\n" : : "m" (*(env)));\
asm volatile (restore " %0\n": : "m" (*(env)));\
for(i=0;i<5;i++)\
asm volatile ("fstpl %0" : "=m" (rtab[i]));\
for(i=0;i<5;i++)\
printf("res[%d]=%f\n", i, rtab[i]);\
printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
(env)->fpuc,\
(env)->fpus & 0xff00,\
(env)->fptag);\
}
void test_fenv(void)
{
struct __attribute__((__packed__)) {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
uint16_t dummy2;
uint16_t fptag;
uint16_t dummy3;
uint32_t ignored[4];
long double fpregs[8];
} float_env32;
struct __attribute__((__packed__)) {
uint16_t fpuc;
uint16_t fpus;
uint16_t fptag;
uint16_t ignored[4];
long double fpregs[8];
} float_env16;
double dtab[8];
double rtab[8];
int i;
for(i=0;i<8;i++)
dtab[i] = i + 1;
TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
TEST_ENV(&float_env32, "fnstenv", "fldenv");
TEST_ENV(&float_env32, "fnsave", "frstor");
/* test for ffree */
for(i=0;i<5;i++)
asm volatile ("fldl %0" : : "m" (dtab[i]));
asm volatile("ffree %st(2)");
asm volatile ("fnstenv %0\n" : : "m" (float_env32));
asm volatile ("fninit");
printf("fptag=%04x\n", float_env32.fptag);
}
#define TEST_FCMOV(a, b, eflags, CC)\
{\
double res;\
asm("push %3\n"\
"popf\n"\
"fcmov" CC " %2, %0\n"\
: "=t" (res)\
: "0" (a), "u" (b), "g" (eflags));\
printf("fcmov%s eflags=0x%04lx-> %f\n", \
CC, (long)eflags, res);\
}
void test_fcmov(void)
{
double a, b;
long eflags, i;
a = 1.0;
b = 2.0;
for(i = 0; i < 4; i++) {
eflags = 0;
if (i & 1)
eflags |= CC_C;
if (i & 2)
eflags |= CC_Z;
TEST_FCMOV(a, b, eflags, "b");
TEST_FCMOV(a, b, eflags, "e");
TEST_FCMOV(a, b, eflags, "be");
TEST_FCMOV(a, b, eflags, "nb");
TEST_FCMOV(a, b, eflags, "ne");
TEST_FCMOV(a, b, eflags, "nbe");
}
TEST_FCMOV(a, b, 0, "u");
TEST_FCMOV(a, b, CC_P, "u");
TEST_FCMOV(a, b, 0, "nu");
TEST_FCMOV(a, b, CC_P, "nu");
}
void test_floats(void)
{
test_fops(2, 3);
test_fops(1.4, -5);
test_fcmp(2, -1);
test_fcmp(2, 2);
test_fcmp(2, 3);
test_fcmp(2, q_nan.d);
test_fcmp(q_nan.d, -1);
test_fcmp(-1.0/0.0, -1);
test_fcmp(1.0/0.0, -1);
test_fcvt(0.5);
test_fcvt(-0.5);
test_fcvt(1.0/7.0);
test_fcvt(-1.0/9.0);
test_fcvt(32768);
test_fcvt(-1e20);
test_fcvt(-1.0/0.0);
test_fcvt(1.0/0.0);
test_fcvt(q_nan.d);
test_fconst();
test_fbcd(1234567890123456.0);
test_fbcd(-123451234567890.0);
test_fenv();
if (TEST_CMOV) {
test_fcmov();
}
}
/**********************************************/
#if !defined(__x86_64__)
#define TEST_BCD(op, op0, cc_in, cc_mask)\
{\
int res, flags;\
res = op0;\
flags = cc_in;\
asm ("push %3\n\t"\
"popf\n\t"\
#op "\n\t"\
"pushf\n\t"\
"pop %1\n\t"\
: "=a" (res), "=g" (flags)\
: "0" (res), "1" (flags));\
printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
#op, op0, res, cc_in, flags & cc_mask);\
}
void test_bcd(void)
{
TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
}
#endif
#define TEST_XCHG(op, size, opconst)\
{\
long op0, op1;\
op0 = i2l(0x12345678);\
op1 = i2l(0xfbca7654);\
asm(#op " %" size "0, %" size "1" \
: "=q" (op0), opconst (op1) \
: "0" (op0));\
printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
#op, op0, op1);\
}
#define TEST_CMPXCHG(op, size, opconst, eax)\
{\
long op0, op1, op2;\
op0 = i2l(0x12345678);\
op1 = i2l(0xfbca7654);\
op2 = i2l(eax);\
asm(#op " %" size "0, %" size "1" \
: "=q" (op0), opconst (op1) \
: "0" (op0), "a" (op2));\
printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
#op, op2, op0, op1);\
}
void test_xchg(void)
{
#if defined(__x86_64__)
TEST_XCHG(xchgq, "", "+q");
#endif
TEST_XCHG(xchgl, "k", "+q");
TEST_XCHG(xchgw, "w", "+q");
TEST_XCHG(xchgb, "b", "+q");
#if defined(__x86_64__)
TEST_XCHG(xchgq, "", "=m");
#endif
TEST_XCHG(xchgl, "k", "+m");
TEST_XCHG(xchgw, "w", "+m");
TEST_XCHG(xchgb, "b", "+m");
#if defined(__x86_64__)
TEST_XCHG(xaddq, "", "+q");
#endif
TEST_XCHG(xaddl, "k", "+q");
TEST_XCHG(xaddw, "w", "+q");
TEST_XCHG(xaddb, "b", "+q");
{
int res;
res = 0x12345678;
asm("xaddl %1, %0" : "=r" (res) : "0" (res));
printf("xaddl same res=%08x\n", res);
}
#if defined(__x86_64__)
TEST_XCHG(xaddq, "", "+m");
#endif
TEST_XCHG(xaddl, "k", "+m");
TEST_XCHG(xaddw, "w", "+m");
TEST_XCHG(xaddb, "b", "+m");
#if defined(__x86_64__)
TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
#endif
TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
#if defined(__x86_64__)
TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
#endif
TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
#if defined(__x86_64__)
TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
#endif
TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
#if defined(__x86_64__)
TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
#endif
TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
{
uint64_t op0, op1, op2;
long eax, edx;
long i, eflags;
for(i = 0; i < 2; i++) {
op0 = 0x123456789abcdLL;
eax = i2l(op0 & 0xffffffff);
edx = i2l(op0 >> 32);
if (i == 0)
op1 = 0xfbca765423456LL;
else
op1 = op0;
op2 = 0x6532432432434LL;
asm("cmpxchg8b %2\n"
"pushf\n"
"pop %3\n"
: "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
: "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
eax, edx, op1, eflags & CC_Z);
}
}
}
#ifdef TEST_SEGS
/**********************************************/
/* segmentation tests */
#include <sys/syscall.h>
#include <unistd.h>
#include <asm/ldt.h>
#include <linux/version.h>
static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
{
return syscall(__NR_modify_ldt, func, ptr, bytecount);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
#define modify_ldt_ldt_s user_desc
#endif
#define MK_SEL(n) (((n) << 3) | 7)
uint8_t seg_data1[4096];
uint8_t seg_data2[4096];
#define TEST_LR(op, size, seg, mask)\
{\
int res, res2;\
uint16_t mseg = seg;\
res = 0x12345678;\
asm (op " %" size "2, %" size "0\n" \
"movl $0, %1\n"\
"jnz 1f\n"\
"movl $1, %1\n"\
"1:\n"\
: "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
}
#define TEST_ARPL(op, size, op1, op2)\
{\
long a, b, c; \
a = (op1); \
b = (op2); \
asm volatile(op " %" size "3, %" size "0\n"\
"movl $0,%1\n"\
"jnz 1f\n"\
"movl $1,%1\n"\
"1:\n"\
: "=r" (a), "=r" (c) : "0" (a), "r" (b)); \
printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
(long)(op1), (long)(op2), a, c);\
}
/* NOTE: we use Linux modify_ldt syscall */
void test_segs(void)
{
struct modify_ldt_ldt_s ldt;
long long ldt_table[3];
int res, res2;
char tmp;
struct {
uint32_t offset;
uint16_t seg;
} __attribute__((__packed__)) segoff;
ldt.entry_number = 1;
ldt.base_addr = (unsigned long)&seg_data1;
ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
ldt.seg_32bit = 1;
ldt.contents = MODIFY_LDT_CONTENTS_DATA;
ldt.read_exec_only = 0;
ldt.limit_in_pages = 1;
ldt.seg_not_present = 0;
ldt.useable = 1;
modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
ldt.entry_number = 2;
ldt.base_addr = (unsigned long)&seg_data2;
ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
ldt.seg_32bit = 1;
ldt.contents = MODIFY_LDT_CONTENTS_DATA;
ldt.read_exec_only = 0;
ldt.limit_in_pages = 1;
ldt.seg_not_present = 0;
ldt.useable = 1;
modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
#if 0
{
int i;
for(i=0;i<3;i++)
printf("%d: %016Lx\n", i, ldt_table[i]);
}
#endif
/* do some tests with fs or gs */
asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
seg_data1[1] = 0xaa;
seg_data2[1] = 0x55;
asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
printf("FS[1] = %02x\n", res);
asm volatile ("pushl %%gs\n"
"movl %1, %%gs\n"
"gs movzbl 0x1, %0\n"
"popl %%gs\n"
: "=r" (res)
: "r" (MK_SEL(2)));
printf("GS[1] = %02x\n", res);
/* tests with ds/ss (implicit segment case) */
tmp = 0xa5;
asm volatile ("pushl %%ebp\n\t"
"pushl %%ds\n\t"
"movl %2, %%ds\n\t"
"movl %3, %%ebp\n\t"
"movzbl 0x1, %0\n\t"
"movzbl (%%ebp), %1\n\t"
"popl %%ds\n\t"
"popl %%ebp\n\t"
: "=r" (res), "=r" (res2)
: "r" (MK_SEL(1)), "r" (&tmp));
printf("DS[1] = %02x\n", res);
printf("SS[tmp] = %02x\n", res2);
segoff.seg = MK_SEL(2);
segoff.offset = 0xabcdef12;
asm volatile("lfs %2, %0\n\t"
"movl %%fs, %1\n\t"
: "=r" (res), "=g" (res2)
: "m" (segoff));
printf("FS:reg = %04x:%08x\n", res2, res);
TEST_LR("larw", "w", MK_SEL(2), 0x0100);
TEST_LR("larl", "", MK_SEL(2), 0x0100);
TEST_LR("lslw", "w", MK_SEL(2), 0);
TEST_LR("lsll", "", MK_SEL(2), 0);
TEST_LR("larw", "w", 0xfff8, 0);
TEST_LR("larl", "", 0xfff8, 0);
TEST_LR("lslw", "w", 0xfff8, 0);
TEST_LR("lsll", "", 0xfff8, 0);
TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
}
/* 16 bit code test */
extern char code16_start, code16_end;
extern char code16_func1;
extern char code16_func2;
extern char code16_func3;
void test_code16(void)
{
struct modify_ldt_ldt_s ldt;
int res, res2;
/* build a code segment */
ldt.entry_number = 1;
ldt.base_addr = (unsigned long)&code16_start;
ldt.limit = &code16_end - &code16_start;
ldt.seg_32bit = 0;
ldt.contents = MODIFY_LDT_CONTENTS_CODE;
ldt.read_exec_only = 0;
ldt.limit_in_pages = 0;
ldt.seg_not_present = 0;
ldt.useable = 1;
modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
/* call the first function */
asm volatile ("lcall %1, %2"
: "=a" (res)
: "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
printf("func1() = 0x%08x\n", res);
asm volatile ("lcall %2, %3"
: "=a" (res), "=c" (res2)
: "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
printf("func2() = 0x%08x spdec=%d\n", res, res2);
asm volatile ("lcall %1, %2"
: "=a" (res)
: "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
printf("func3() = 0x%08x\n", res);
}
#endif
#if defined(__x86_64__)
asm(".globl func_lret\n"
"func_lret:\n"
"movl $0x87654641, %eax\n"
"lretq\n");
#else
asm(".globl func_lret\n"
"func_lret:\n"
"movl $0x87654321, %eax\n"
"lret\n"
".globl func_iret\n"
"func_iret:\n"
"movl $0xabcd4321, %eax\n"
"iret\n");
#endif
extern char func_lret;
extern char func_iret;
void test_misc(void)
{
char table[256];
long res, i;
for(i=0;i<256;i++) table[i] = 256 - i;
res = 0x12345678;
asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
printf("xlat: EAX=" FMTLX "\n", res);
#if defined(__x86_64__)
#if 0
{
/* XXX: see if Intel Core2 and AMD64 behavior really
differ. Here we implemented the Intel way which is not
compatible yet with QEMU. */
static struct QEMU_PACKED {
uint64_t offset;
uint16_t seg;
} desc;
long cs_sel;
asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
asm volatile ("push %1\n"
"call func_lret\n"
: "=a" (res)
: "r" (cs_sel) : "memory", "cc");
printf("func_lret=" FMTLX "\n", res);
desc.offset = (long)&func_lret;
desc.seg = cs_sel;
asm volatile ("xor %%rax, %%rax\n"
"rex64 lcall *(%%rcx)\n"
: "=a" (res)
: "c" (&desc)
: "memory", "cc");
printf("func_lret2=" FMTLX "\n", res);
asm volatile ("push %2\n"
"mov $ 1f, %%rax\n"
"push %%rax\n"
"rex64 ljmp *(%%rcx)\n"
"1:\n"
: "=a" (res)
: "c" (&desc), "b" (cs_sel)
: "memory", "cc");
printf("func_lret3=" FMTLX "\n", res);
}
#endif
#else
asm volatile ("push %%cs ; call %1"
: "=a" (res)
: "m" (func_lret): "memory", "cc");
printf("func_lret=" FMTLX "\n", res);
asm volatile ("pushf ; push %%cs ; call %1"
: "=a" (res)
: "m" (func_iret): "memory", "cc");
printf("func_iret=" FMTLX "\n", res);
#endif
#if defined(__x86_64__)
/* specific popl test */
asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
: "=g" (res));
printf("popl esp=" FMTLX "\n", res);
#else
/* specific popl test */
asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
: "=g" (res));
printf("popl esp=" FMTLX "\n", res);
/* specific popw test */
asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
: "=g" (res));
printf("popw esp=" FMTLX "\n", res);
#endif
}
uint8_t str_buffer[4096];
#define TEST_STRING1(OP, size, DF, REP)\
{\
long esi, edi, eax, ecx, eflags;\
\
esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
eax = i2l(0x12345678);\
ecx = 17;\
\
asm volatile ("push $0\n\t"\
"popf\n\t"\
DF "\n\t"\
REP #OP size "\n\t"\
"cld\n\t"\
"pushf\n\t"\
"pop %4\n\t"\
: "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
: "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
REP #OP size, esi, edi, eax, ecx,\
(int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
}
#define TEST_STRING(OP, REP)\
TEST_STRING1(OP, "b", "", REP);\
TEST_STRING1(OP, "w", "", REP);\
TEST_STRING1(OP, "l", "", REP);\
X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
TEST_STRING1(OP, "b", "std", REP);\
TEST_STRING1(OP, "w", "std", REP);\
TEST_STRING1(OP, "l", "std", REP);\
X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
void test_string(void)
{
int i;
for(i = 0;i < sizeof(str_buffer); i++)
str_buffer[i] = i + 0x56;
TEST_STRING(stos, "");
TEST_STRING(stos, "rep ");
TEST_STRING(lods, ""); /* to verify stos */
TEST_STRING(lods, "rep ");
TEST_STRING(movs, "");
TEST_STRING(movs, "rep ");
TEST_STRING(lods, ""); /* to verify stos */
/* XXX: better tests */
TEST_STRING(scas, "");
TEST_STRING(scas, "repz ");
TEST_STRING(scas, "repnz ");
TEST_STRING(cmps, "");
TEST_STRING(cmps, "repz ");
TEST_STRING(cmps, "repnz ");
}
#ifdef TEST_VM86
/* VM86 test */
static inline void set_bit(uint8_t *a, unsigned int bit)
{
a[bit / 8] |= (1 << (bit % 8));
}
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
{
return (uint8_t *)((seg << 4) + (reg & 0xffff));
}
static inline void pushw(struct vm86_regs *r, int val)
{
r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
*(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
}
static inline int vm86(int func, struct vm86plus_struct *v86)
{
return syscall(__NR_vm86, func, v86);
}
extern char vm86_code_start;
extern char vm86_code_end;
#define VM86_CODE_CS 0x100
#define VM86_CODE_IP 0x100
void test_vm86(void)
{
struct vm86plus_struct ctx;
struct vm86_regs *r;
uint8_t *vm86_mem;
int seg, ret;
vm86_mem = mmap((void *)0x00000000, 0x110000,
PROT_WRITE | PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
if (vm86_mem == MAP_FAILED) {
printf("ERROR: could not map vm86 memory");
return;
}
memset(&ctx, 0, sizeof(ctx));
/* init basic registers */
r = &ctx.regs;
r->eip = VM86_CODE_IP;
r->esp = 0xfffe;
seg = VM86_CODE_CS;
r->cs = seg;
r->ss = seg;
r->ds = seg;
r->es = seg;
r->fs = seg;
r->gs = seg;
r->eflags = VIF_MASK;
/* move code to proper address. We use the same layout as a .com
dos program. */
memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
&vm86_code_start, &vm86_code_end - &vm86_code_start);
/* mark int 0x21 as being emulated */
set_bit((uint8_t *)&ctx.int_revectored, 0x21);
for(;;) {
ret = vm86(VM86_ENTER, &ctx);
switch(VM86_TYPE(ret)) {
case VM86_INTx:
{
int int_num, ah, v;
int_num = VM86_ARG(ret);
if (int_num != 0x21)
goto unknown_int;
ah = (r->eax >> 8) & 0xff;
switch(ah) {
case 0x00: /* exit */
goto the_end;
case 0x02: /* write char */
{
uint8_t c = r->edx;
putchar(c);
}
break;
case 0x09: /* write string */
{
uint8_t c, *ptr;
ptr = seg_to_linear(r->ds, r->edx);
for(;;) {
c = *ptr++;
if (c == '$')
break;
putchar(c);
}
r->eax = (r->eax & ~0xff) | '$';
}
break;
case 0xff: /* extension: write eflags number in edx */
v = (int)r->edx;
#ifndef LINUX_VM86_IOPL_FIX
v &= ~0x3000;
#endif
printf("%08x\n", v);
break;
default:
unknown_int:
printf("unsupported int 0x%02x\n", int_num);
goto the_end;
}
}
break;
case VM86_SIGNAL:
/* a signal came, we just ignore that */
break;
case VM86_STI:
break;
default:
printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
goto the_end;
}
}
the_end:
printf("VM86 end\n");
munmap(vm86_mem, 0x110000);
}
#endif
/* exception tests */
#if defined(__i386__) && !defined(REG_EAX)
#define REG_EAX EAX
#define REG_EBX EBX
#define REG_ECX ECX
#define REG_EDX EDX
#define REG_ESI ESI
#define REG_EDI EDI
#define REG_EBP EBP
#define REG_ESP ESP
#define REG_EIP EIP
#define REG_EFL EFL
#define REG_TRAPNO TRAPNO
#define REG_ERR ERR
#endif
#if defined(__x86_64__)
#define REG_EIP REG_RIP
#endif
jmp_buf jmp_env;
int v1;
int tab[2];
void sig_handler(int sig, siginfo_t *info, void *puc)
{
ucontext_t *uc = puc;
printf("si_signo=%d si_errno=%d si_code=%d",
info->si_signo, info->si_errno, info->si_code);
printf(" si_addr=0x%08lx",
(unsigned long)info->si_addr);
printf("\n");
printf("trapno=" FMTLX " err=" FMTLX,
(long)uc->uc_mcontext.gregs[REG_TRAPNO],
(long)uc->uc_mcontext.gregs[REG_ERR]);
printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
printf("\n");
longjmp(jmp_env, 1);
}
void test_exceptions(void)
{
struct sigaction act;
volatile int val;
act.sa_sigaction = sig_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO | SA_NODEFER;
sigaction(SIGFPE, &act, NULL);
sigaction(SIGILL, &act, NULL);
sigaction(SIGSEGV, &act, NULL);
sigaction(SIGBUS, &act, NULL);
sigaction(SIGTRAP, &act, NULL);
/* test division by zero reporting */
printf("DIVZ exception:\n");
if (setjmp(jmp_env) == 0) {
/* now divide by zero */
v1 = 0;
v1 = 2 / v1;
}
#if !defined(__x86_64__)
printf("BOUND exception:\n");
if (setjmp(jmp_env) == 0) {
/* bound exception */
tab[0] = 1;
tab[1] = 10;
asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
}
#endif
#ifdef TEST_SEGS
printf("segment exceptions:\n");
if (setjmp(jmp_env) == 0) {
/* load an invalid segment */
asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
}
if (setjmp(jmp_env) == 0) {
/* null data segment is valid */
asm volatile ("movl %0, %%fs" : : "r" (3));
/* null stack segment */
asm volatile ("movl %0, %%ss" : : "r" (3));
}
{
struct modify_ldt_ldt_s ldt;
ldt.entry_number = 1;
ldt.base_addr = (unsigned long)&seg_data1;
ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
ldt.seg_32bit = 1;
ldt.contents = MODIFY_LDT_CONTENTS_DATA;
ldt.read_exec_only = 0;
ldt.limit_in_pages = 1;
ldt.seg_not_present = 1;
ldt.useable = 1;
modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
if (setjmp(jmp_env) == 0) {
/* segment not present */
asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
}
}
#endif
/* test SEGV reporting */
printf("PF exception:\n");
if (setjmp(jmp_env) == 0) {
val = 1;
/* we add a nop to test a weird PC retrieval case */
asm volatile ("nop");
/* now store in an invalid address */
*(char *)0x1234 = 1;
}
/* test SEGV reporting */
printf("PF exception:\n");
if (setjmp(jmp_env) == 0) {
val = 1;
/* read from an invalid address */
v1 = *(char *)0x1234;
}
/* test illegal instruction reporting */
printf("UD2 exception:\n");
if (setjmp(jmp_env) == 0) {
/* now execute an invalid instruction */
asm volatile("ud2");
}
printf("lock nop exception:\n");
if (setjmp(jmp_env) == 0) {
/* now execute an invalid instruction */
asm volatile(".byte 0xf0, 0x90");
}
printf("INT exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("int $0xfd");
}
if (setjmp(jmp_env) == 0) {
asm volatile ("int $0x01");
}
if (setjmp(jmp_env) == 0) {
asm volatile (".byte 0xcd, 0x03");
}
if (setjmp(jmp_env) == 0) {
asm volatile ("int $0x04");
}
if (setjmp(jmp_env) == 0) {
asm volatile ("int $0x05");
}
printf("INT3 exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("int3");
}
printf("CLI exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("cli");
}
printf("STI exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("cli");
}
#if !defined(__x86_64__)
printf("INTO exception:\n");
if (setjmp(jmp_env) == 0) {
/* overflow exception */
asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
}
#endif
printf("OUTB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
}
printf("INB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
}
printf("REP OUTSB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
}
printf("REP INSB exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
}
printf("HLT exception:\n");
if (setjmp(jmp_env) == 0) {
asm volatile ("hlt");
}
printf("single step exception:\n");
val = 0;
if (setjmp(jmp_env) == 0) {
asm volatile ("pushf\n"
"orl $0x00100, (%%esp)\n"
"popf\n"
"movl $0xabcd, %0\n"
"movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
}
printf("val=0x%x\n", val);
}
#if !defined(__x86_64__)
/* specific precise single step test */
void sig_trap_handler(int sig, siginfo_t *info, void *puc)
{
ucontext_t *uc = puc;
printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
}
const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
uint8_t sstep_buf2[4];
void test_single_step(void)
{
struct sigaction act;
volatile int val;
int i;
val = 0;
act.sa_sigaction = sig_trap_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGTRAP, &act, NULL);
asm volatile ("pushf\n"
"orl $0x00100, (%%esp)\n"
"popf\n"
"movl $0xabcd, %0\n"
/* jmp test */
"movl $3, %%ecx\n"
"1:\n"
"addl $1, %0\n"
"decl %%ecx\n"
"jnz 1b\n"
/* movsb: the single step should stop at each movsb iteration */
"movl $sstep_buf1, %%esi\n"
"movl $sstep_buf2, %%edi\n"
"movl $0, %%ecx\n"
"rep movsb\n"
"movl $3, %%ecx\n"
"rep movsb\n"
"movl $1, %%ecx\n"
"rep movsb\n"
/* cmpsb: the single step should stop at each cmpsb iteration */
"movl $sstep_buf1, %%esi\n"
"movl $sstep_buf2, %%edi\n"
"movl $0, %%ecx\n"
"rep cmpsb\n"
"movl $4, %%ecx\n"
"rep cmpsb\n"
/* getpid() syscall: single step should skip one
instruction */
"movl $20, %%eax\n"
"int $0x80\n"
"movl $0, %%eax\n"
/* when modifying SS, trace is not done on the next
instruction */
"movl %%ss, %%ecx\n"
"movl %%ecx, %%ss\n"
"addl $1, %0\n"
"movl $1, %%eax\n"
"movl %%ecx, %%ss\n"
"jmp 1f\n"
"addl $1, %0\n"
"1:\n"
"movl $1, %%eax\n"
"pushl %%ecx\n"
"popl %%ss\n"
"addl $1, %0\n"
"movl $1, %%eax\n"
"pushf\n"
"andl $~0x00100, (%%esp)\n"
"popf\n"
: "=m" (val)
:
: "cc", "memory", "eax", "ecx", "esi", "edi");
printf("val=%d\n", val);
for(i = 0; i < 4; i++)
printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
}
/* self modifying code test */
uint8_t code[] = {
0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
0xc3, /* ret */
};
asm(".section \".data\"\n"
"smc_code2:\n"
"movl 4(%esp), %eax\n"
"movl %eax, smc_patch_addr2 + 1\n"
"nop\n"
"nop\n"
"nop\n"
"nop\n"
"nop\n"
"nop\n"
"nop\n"
"nop\n"
"smc_patch_addr2:\n"
"movl $1, %eax\n"
"ret\n"
".previous\n"
);
typedef int FuncType(void);
extern int smc_code2(int);
void test_self_modifying_code(void)
{
int i;
printf("self modifying code:\n");
printf("func1 = 0x%x\n", ((FuncType *)code)());
for(i = 2; i <= 4; i++) {
code[1] = i;
printf("func%d = 0x%x\n", i, ((FuncType *)code)());
}
/* more difficult test : the modified code is just after the
modifying instruction. It is forbidden in Intel specs, but it
is used by old DOS programs */
for(i = 2; i <= 4; i++) {
printf("smc_code2(%d) = %d\n", i, smc_code2(i));
}
}
#endif
long enter_stack[4096];
#if defined(__x86_64__)
#define RSP "%%rsp"
#define RBP "%%rbp"
#else
#define RSP "%%esp"
#define RBP "%%ebp"
#endif
#if !defined(__x86_64__)
/* causes an infinite loop, disable it for now. */
#define TEST_ENTER(size, stack_type, level)
#else
#define TEST_ENTER(size, stack_type, level)\
{\
long esp_save, esp_val, ebp_val, ebp_save, i;\
stack_type *ptr, *stack_end, *stack_ptr;\
memset(enter_stack, 0, sizeof(enter_stack));\
stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
ebp_val = (long)stack_ptr;\
for(i=1;i<=32;i++)\
*--stack_ptr = i;\
esp_val = (long)stack_ptr;\
asm("mov " RSP ", %[esp_save]\n"\
"mov " RBP ", %[ebp_save]\n"\
"mov %[esp_val], " RSP "\n"\
"mov %[ebp_val], " RBP "\n"\
"enter" size " $8, $" #level "\n"\
"mov " RSP ", %[esp_val]\n"\
"mov " RBP ", %[ebp_val]\n"\
"mov %[esp_save], " RSP "\n"\
"mov %[ebp_save], " RBP "\n"\
: [esp_save] "=r" (esp_save),\
[ebp_save] "=r" (ebp_save),\
[esp_val] "=r" (esp_val),\
[ebp_val] "=r" (ebp_val)\
: "[esp_val]" (esp_val),\
"[ebp_val]" (ebp_val));\
printf("level=%d:\n", level);\
printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
printf(FMTLX "\n", (long)ptr[0]);\
}
#endif
static void test_enter(void)
{
#if defined(__x86_64__)
TEST_ENTER("q", uint64_t, 0);
TEST_ENTER("q", uint64_t, 1);
TEST_ENTER("q", uint64_t, 2);
TEST_ENTER("q", uint64_t, 31);
#else
TEST_ENTER("l", uint32_t, 0);
TEST_ENTER("l", uint32_t, 1);
TEST_ENTER("l", uint32_t, 2);
TEST_ENTER("l", uint32_t, 31);
#endif
TEST_ENTER("w", uint16_t, 0);
TEST_ENTER("w", uint16_t, 1);
TEST_ENTER("w", uint16_t, 2);
TEST_ENTER("w", uint16_t, 31);
}
#ifdef TEST_SSE
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
typedef float __m128 __attribute__ ((__mode__(__V4SF__)));
typedef union {
double d[2];
float s[4];
uint32_t l[4];
uint64_t q[2];
__m128 dq;
} XMMReg;
static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
{ 0x456723c698694873, 0xdc515cff944a58ec },
{ 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
{ 0x007c62c2085427f8, 0x231be9e8cde7438d },
{ 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
};
#define SSE_OP(op)\
{\
asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
b.q[1], b.q[0],\
r.q[1], r.q[0]);\
}
#define SSE_OP2(op)\
{\
int i;\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
a.q[1] = test_values[2*i][1];\
b.q[0] = test_values[2*i+1][0];\
b.q[1] = test_values[2*i+1][1];\
SSE_OP(op);\
}\
}
#define MMX_OP2(op)\
{\
int i;\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
b.q[0] = test_values[2*i+1][0];\
asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
#op,\
a.q[0],\
b.q[0],\
r.q[0]);\
}\
SSE_OP2(op);\
}
#define SHUF_OP(op, ib)\
{\
a.q[0] = test_values[0][0];\
a.q[1] = test_values[0][1];\
b.q[0] = test_values[1][0];\
b.q[1] = test_values[1][1];\
asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
b.q[1], b.q[0],\
ib,\
r.q[1], r.q[0]);\
}
#define PSHUF_OP(op, ib)\
{\
int i;\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
a.q[1] = test_values[2*i][1];\
asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
ib,\
r.q[1], r.q[0]);\
}\
}
#define SHIFT_IM(op, ib)\
{\
int i;\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
a.q[1] = test_values[2*i][1];\
asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
ib,\
r.q[1], r.q[0]);\
}\
}
#define SHIFT_OP(op, ib)\
{\
int i;\
SHIFT_IM(op, ib);\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
a.q[1] = test_values[2*i][1];\
b.q[0] = ib;\
b.q[1] = 0;\
asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
b.q[1], b.q[0],\
r.q[1], r.q[0]);\
}\
}
#define MOVMSK(op)\
{\
int i, reg;\
for(i=0;i<2;i++) {\
a.q[0] = test_values[2*i][0];\
a.q[1] = test_values[2*i][1];\
asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
#op,\
a.q[1], a.q[0],\
reg);\
}\
}
#define SSE_OPS(a) \
SSE_OP(a ## ps);\
SSE_OP(a ## ss);
#define SSE_OPD(a) \
SSE_OP(a ## pd);\
SSE_OP(a ## sd);
#define SSE_COMI(op, field)\
{\
unsigned long eflags;\
XMMReg a, b;\
a.field[0] = a1;\
b.field[0] = b1;\
asm volatile (#op " %2, %1\n"\
"pushf\n"\
"pop %0\n"\
: "=rm" (eflags)\
: "x" (a.dq), "x" (b.dq));\
printf("%-9s: a=%f b=%f cc=%04x\n",\
#op, a1, b1,\
eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
}
void test_sse_comi(double a1, double b1)
{
SSE_COMI(ucomiss, s);
SSE_COMI(ucomisd, d);
SSE_COMI(comiss, s);
SSE_COMI(comisd, d);
}
#define CVT_OP_XMM(op)\
{\
asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
r.q[1], r.q[0]);\
}
/* Force %xmm0 usage to avoid the case where both register index are 0
to test instruction decoding more extensively */
#define CVT_OP_XMM2MMX(op)\
{\
asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
: "%xmm0"); \
asm volatile("emms\n"); \
printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
#op,\
a.q[1], a.q[0],\
r.q[0]);\
}
#define CVT_OP_MMX2XMM(op)\
{\
asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
asm volatile("emms\n"); \
printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
#op,\
a.q[0],\
r.q[1], r.q[0]);\
}
#define CVT_OP_REG2XMM(op)\
{\
asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
#op,\
a.l[0],\
r.q[1], r.q[0]);\
}
#define CVT_OP_XMM2REG(op)\
{\
asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
#op,\
a.q[1], a.q[0],\
r.l[0]);\
}
struct fpxstate {
uint16_t fpuc;
uint16_t fpus;
uint16_t fptag;
uint16_t fop;
uint32_t fpuip;
uint16_t cs_sel;
uint16_t dummy0;
uint32_t fpudp;
uint16_t ds_sel;
uint16_t dummy1;
uint32_t mxcsr;
uint32_t mxcsr_mask;
uint8_t fpregs1[8 * 16];
uint8_t xmm_regs[8 * 16];
uint8_t dummy2[224];
};
static struct fpxstate fpx_state __attribute__((aligned(16)));
static struct fpxstate fpx_state2 __attribute__((aligned(16)));
void test_fxsave(void)
{
struct fpxstate *fp = &fpx_state;
struct fpxstate *fp2 = &fpx_state2;
int i, nb_xmm;
XMMReg a, b;
a.q[0] = test_values[0][0];
a.q[1] = test_values[0][1];
b.q[0] = test_values[1][0];
b.q[1] = test_values[1][1];
asm("movdqa %2, %%xmm0\n"
"movdqa %3, %%xmm7\n"
#if defined(__x86_64__)
"movdqa %2, %%xmm15\n"
#endif
" fld1\n"
" fldpi\n"
" fldln2\n"
" fxsave %0\n"
" fxrstor %0\n"
" fxsave %1\n"
" fninit\n"
: "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
: "m" (a), "m" (b));
printf("fpuc=%04x\n", fp->fpuc);
printf("fpus=%04x\n", fp->fpus);
printf("fptag=%04x\n", fp->fptag);
for(i = 0; i < 3; i++) {
printf("ST%d: " FMT64X " %04x\n",
i,
*(uint64_t *)&fp->fpregs1[i * 16],
*(uint16_t *)&fp->fpregs1[i * 16 + 8]);
}
printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
#if defined(__x86_64__)
nb_xmm = 16;
#else
nb_xmm = 8;
#endif
for(i = 0; i < nb_xmm; i++) {
printf("xmm%d: " FMT64X "" FMT64X "\n",
i,
*(uint64_t *)&fp->xmm_regs[i * 16],
*(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
}
}
void test_sse(void)
{
XMMReg r, a, b;
int i;
MMX_OP2(punpcklbw);
MMX_OP2(punpcklwd);
MMX_OP2(punpckldq);
MMX_OP2(packsswb);
MMX_OP2(pcmpgtb);
MMX_OP2(pcmpgtw);
MMX_OP2(pcmpgtd);
MMX_OP2(packuswb);
MMX_OP2(punpckhbw);
MMX_OP2(punpckhwd);
MMX_OP2(punpckhdq);
MMX_OP2(packssdw);
MMX_OP2(pcmpeqb);
MMX_OP2(pcmpeqw);
MMX_OP2(pcmpeqd);
MMX_OP2(paddq);
MMX_OP2(pmullw);
MMX_OP2(psubusb);
MMX_OP2(psubusw);
MMX_OP2(pminub);
MMX_OP2(pand);
MMX_OP2(paddusb);
MMX_OP2(paddusw);
MMX_OP2(pmaxub);
MMX_OP2(pandn);
MMX_OP2(pmulhuw);
MMX_OP2(pmulhw);
MMX_OP2(psubsb);
MMX_OP2(psubsw);
MMX_OP2(pminsw);
MMX_OP2(por);
MMX_OP2(paddsb);
MMX_OP2(paddsw);
MMX_OP2(pmaxsw);
MMX_OP2(pxor);
MMX_OP2(pmuludq);
MMX_OP2(pmaddwd);
MMX_OP2(psadbw);
MMX_OP2(psubb);
MMX_OP2(psubw);
MMX_OP2(psubd);
MMX_OP2(psubq);
MMX_OP2(paddb);
MMX_OP2(paddw);
MMX_OP2(paddd);
MMX_OP2(pavgb);
MMX_OP2(pavgw);
asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
a.q[0] = test_values[0][0];
a.q[1] = test_values[0][1];
asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
{
r.q[0] = -1;
r.q[1] = -1;
a.q[0] = test_values[0][0];
a.q[1] = test_values[0][1];
b.q[0] = test_values[1][0];
b.q[1] = test_values[1][1];
asm volatile("maskmovq %1, %0" :
: "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
: "memory");
printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
"maskmov",
r.q[0],
a.q[0],
b.q[0]);
asm volatile("maskmovdqu %1, %0" :
: "x" (a.dq), "x" (b.dq), "D" (&r)
: "memory");
printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
"maskmov",
r.q[1], r.q[0],
a.q[1], a.q[0],
b.q[1], b.q[0]);
}
asm volatile ("emms");
SSE_OP2(punpcklqdq);
SSE_OP2(punpckhqdq);
SSE_OP2(andps);
SSE_OP2(andpd);
SSE_OP2(andnps);
SSE_OP2(andnpd);
SSE_OP2(orps);
SSE_OP2(orpd);
SSE_OP2(xorps);
SSE_OP2(xorpd);
SSE_OP2(unpcklps);
SSE_OP2(unpcklpd);
SSE_OP2(unpckhps);
SSE_OP2(unpckhpd);
SHUF_OP(shufps, 0x78);
SHUF_OP(shufpd, 0x02);
PSHUF_OP(pshufd, 0x78);
PSHUF_OP(pshuflw, 0x78);
PSHUF_OP(pshufhw, 0x78);
SHIFT_OP(psrlw, 7);
SHIFT_OP(psrlw, 16);
SHIFT_OP(psraw, 7);
SHIFT_OP(psraw, 16);
SHIFT_OP(psllw, 7);
SHIFT_OP(psllw, 16);
SHIFT_OP(psrld, 7);
SHIFT_OP(psrld, 32);
SHIFT_OP(psrad, 7);
SHIFT_OP(psrad, 32);
SHIFT_OP(pslld, 7);
SHIFT_OP(pslld, 32);
SHIFT_OP(psrlq, 7);
SHIFT_OP(psrlq, 32);
SHIFT_OP(psllq, 7);
SHIFT_OP(psllq, 32);
SHIFT_IM(psrldq, 16);
SHIFT_IM(psrldq, 7);
SHIFT_IM(pslldq, 16);
SHIFT_IM(pslldq, 7);
MOVMSK(movmskps);
MOVMSK(movmskpd);
/* FPU specific ops */
{
uint32_t mxcsr;
asm volatile("stmxcsr %0" : "=m" (mxcsr));
printf("mxcsr=%08x\n", mxcsr & 0x1f80);
asm volatile("ldmxcsr %0" : : "m" (mxcsr));
}
test_sse_comi(2, -1);
test_sse_comi(2, 2);
test_sse_comi(2, 3);
test_sse_comi(2, q_nan.d);
test_sse_comi(q_nan.d, -1);
for(i = 0; i < 2; i++) {
a.s[0] = 2.7;
a.s[1] = 3.4;
a.s[2] = 4;
a.s[3] = -6.3;
b.s[0] = 45.7;
b.s[1] = 353.4;
b.s[2] = 4;
b.s[3] = 56.3;
if (i == 1) {
a.s[0] = q_nan.d;
b.s[3] = q_nan.d;
}
SSE_OPS(add);
SSE_OPS(mul);
SSE_OPS(sub);
SSE_OPS(min);
SSE_OPS(div);
SSE_OPS(max);
SSE_OPS(sqrt);
SSE_OPS(cmpeq);
SSE_OPS(cmplt);
SSE_OPS(cmple);
SSE_OPS(cmpunord);
SSE_OPS(cmpneq);
SSE_OPS(cmpnlt);
SSE_OPS(cmpnle);
SSE_OPS(cmpord);
a.d[0] = 2.7;
a.d[1] = -3.4;
b.d[0] = 45.7;
b.d[1] = -53.4;
if (i == 1) {
a.d[0] = q_nan.d;
b.d[1] = q_nan.d;
}
SSE_OPD(add);
SSE_OPD(mul);
SSE_OPD(sub);
SSE_OPD(min);
SSE_OPD(div);
SSE_OPD(max);
SSE_OPD(sqrt);
SSE_OPD(cmpeq);
SSE_OPD(cmplt);
SSE_OPD(cmple);
SSE_OPD(cmpunord);
SSE_OPD(cmpneq);
SSE_OPD(cmpnlt);
SSE_OPD(cmpnle);
SSE_OPD(cmpord);
}
/* float to float/int */
a.s[0] = 2.7;
a.s[1] = 3.4;
a.s[2] = 4;
a.s[3] = -6.3;
CVT_OP_XMM(cvtps2pd);
CVT_OP_XMM(cvtss2sd);
CVT_OP_XMM2MMX(cvtps2pi);
CVT_OP_XMM2MMX(cvttps2pi);
CVT_OP_XMM2REG(cvtss2si);
CVT_OP_XMM2REG(cvttss2si);
CVT_OP_XMM(cvtps2dq);
CVT_OP_XMM(cvttps2dq);
a.d[0] = 2.6;
a.d[1] = -3.4;
CVT_OP_XMM(cvtpd2ps);
CVT_OP_XMM(cvtsd2ss);
CVT_OP_XMM2MMX(cvtpd2pi);
CVT_OP_XMM2MMX(cvttpd2pi);
CVT_OP_XMM2REG(cvtsd2si);
CVT_OP_XMM2REG(cvttsd2si);
CVT_OP_XMM(cvtpd2dq);
CVT_OP_XMM(cvttpd2dq);
/* sse/mmx moves */
CVT_OP_XMM2MMX(movdq2q);
CVT_OP_MMX2XMM(movq2dq);
/* int to float */
a.l[0] = -6;
a.l[1] = 2;
a.l[2] = 100;
a.l[3] = -60000;
CVT_OP_MMX2XMM(cvtpi2ps);
CVT_OP_MMX2XMM(cvtpi2pd);
CVT_OP_REG2XMM(cvtsi2ss);
CVT_OP_REG2XMM(cvtsi2sd);
CVT_OP_XMM(cvtdq2ps);
CVT_OP_XMM(cvtdq2pd);
/* XXX: test PNI insns */
#if 0
SSE_OP2(movshdup);
#endif
asm volatile ("emms");
}
#endif
#define TEST_CONV_RAX(op)\
{\
unsigned long a, r;\
a = i2l(0x8234a6f8);\
r = a;\
asm volatile(#op : "=a" (r) : "0" (r));\
printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
}
#define TEST_CONV_RAX_RDX(op)\
{\
unsigned long a, d, r, rh; \
a = i2l(0x8234a6f8);\
d = i2l(0x8345a1f2);\
r = a;\
rh = d;\
asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh)); \
printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh); \
}
void test_conv(void)
{
TEST_CONV_RAX(cbw);
TEST_CONV_RAX(cwde);
#if defined(__x86_64__)
TEST_CONV_RAX(cdqe);
#endif
TEST_CONV_RAX_RDX(cwd);
TEST_CONV_RAX_RDX(cdq);
#if defined(__x86_64__)
TEST_CONV_RAX_RDX(cqo);
#endif
{
unsigned long a, r;
a = i2l(0x12345678);
asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
}
#if defined(__x86_64__)
{
unsigned long a, r;
a = i2l(0x12345678);
asm volatile("bswapq %0" : "=r" (r) : "0" (a));
printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
}
#endif
}
extern void *__start_initcall;
extern void *__stop_initcall;
int main(int argc, char **argv)
{
void **ptr;
void (*func)(void);
ptr = &__start_initcall;
while (ptr != &__stop_initcall) {
func = *ptr++;
func();
}
test_bsx();
test_mul();
test_jcc();
test_loop();
test_floats();
#if !defined(__x86_64__)
test_bcd();
#endif
test_xchg();
test_string();
test_misc();
test_lea();
#ifdef TEST_SEGS
test_segs();
test_code16();
#endif
#ifdef TEST_VM86
test_vm86();
#endif
#if !defined(__x86_64__)
test_exceptions();
test_self_modifying_code();
test_single_step();
#endif
test_enter();
test_conv();
#ifdef TEST_SSE
test_sse();
test_fxsave();
#endif
return 0;
}