/*
* inet and unix socket functions for qemu
*
* (c) 2008 Gerd Hoffmann <kraxel@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; under version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#ifdef CONFIG_AF_VSOCK
#include <linux/vm_sockets.h>
#endif /* CONFIG_AF_VSOCK */
#include "monitor/monitor.h"
#include "qapi/clone-visitor.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-sockets.h"
#include "qemu/sockets.h"
#include "qemu/main-loop.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qobject-output-visitor.h"
#include "qemu/cutils.h"
#include "trace.h"
#ifndef AI_ADDRCONFIG
# define AI_ADDRCONFIG 0
#endif
#ifndef AI_V4MAPPED
# define AI_V4MAPPED 0
#endif
#ifndef AI_NUMERICSERV
# define AI_NUMERICSERV 0
#endif
static int inet_getport(struct addrinfo *e)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
return ntohs(i6->sin6_port);
case PF_INET:
i4 = (void*)e->ai_addr;
return ntohs(i4->sin_port);
default:
return 0;
}
}
static void inet_setport(struct addrinfo *e, int port)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
i6->sin6_port = htons(port);
break;
case PF_INET:
i4 = (void*)e->ai_addr;
i4->sin_port = htons(port);
break;
}
}
NetworkAddressFamily inet_netfamily(int family)
{
switch (family) {
case PF_INET6: return NETWORK_ADDRESS_FAMILY_IPV6;
case PF_INET: return NETWORK_ADDRESS_FAMILY_IPV4;
case PF_UNIX: return NETWORK_ADDRESS_FAMILY_UNIX;
#ifdef CONFIG_AF_VSOCK
case PF_VSOCK: return NETWORK_ADDRESS_FAMILY_VSOCK;
#endif /* CONFIG_AF_VSOCK */
}
return NETWORK_ADDRESS_FAMILY_UNKNOWN;
}
bool fd_is_socket(int fd)
{
int optval;
socklen_t optlen = sizeof(optval);
return !getsockopt(fd, SOL_SOCKET, SO_TYPE, &optval, &optlen);
}
/*
* Matrix we're trying to apply
*
* ipv4 ipv6 family
* - - PF_UNSPEC
* - f PF_INET
* - t PF_INET6
* f - PF_INET6
* f f <error>
* f t PF_INET6
* t - PF_INET
* t f PF_INET
* t t PF_INET6/PF_UNSPEC
*
* NB, this matrix is only about getting the necessary results
* from getaddrinfo(). Some of the cases require further work
* after reading results from getaddrinfo in order to fully
* apply the logic the end user wants.
*
* In the first and last cases, we must set IPV6_V6ONLY=0
* when binding, to allow a single listener to potentially
* accept both IPv4+6 addresses.
*/
int inet_ai_family_from_address(InetSocketAddress *addr,
Error **errp)
{
if (addr->has_ipv6 && addr->has_ipv4 &&
!addr->ipv6 && !addr->ipv4) {
error_setg(errp, "Cannot disable IPv4 and IPv6 at same time");
return PF_UNSPEC;
}
if ((addr->has_ipv6 && addr->ipv6) && (addr->has_ipv4 && addr->ipv4)) {
/*
* Some backends can only do a single listener. In that case
* we want empty hostname to resolve to "::" and then use the
* flag IPV6_V6ONLY==0 to get both protocols on 1 socket. This
* doesn't work for addresses other than "", so they're just
* inevitably broken until multiple listeners can be used,
* and thus we honour getaddrinfo automatic protocol detection
* Once all backends do multi-listener, remove the PF_INET6
* branch entirely.
*/
if (!addr->host || g_str_equal(addr->host, "")) {
return PF_INET6;
} else {
return PF_UNSPEC;
}
}
if ((addr->has_ipv6 && addr->ipv6) || (addr->has_ipv4 && !addr->ipv4)) {
return PF_INET6;
}
if ((addr->has_ipv4 && addr->ipv4) || (addr->has_ipv6 && !addr->ipv6)) {
return PF_INET;
}
return PF_UNSPEC;
}
static int create_fast_reuse_socket(struct addrinfo *e)
{
int slisten = qemu_socket(e->ai_family, e->ai_socktype, e->ai_protocol);
if (slisten < 0) {
return -1;
}
socket_set_fast_reuse(slisten);
return slisten;
}
static int try_bind(int socket, InetSocketAddress *saddr, struct addrinfo *e)
{
#ifndef IPV6_V6ONLY
return bind(socket, e->ai_addr, e->ai_addrlen);
#else
/*
* Deals with first & last cases in matrix in comment
* for inet_ai_family_from_address().
*/
int v6only =
((!saddr->has_ipv4 && !saddr->has_ipv6) ||
(saddr->has_ipv4 && saddr->ipv4 &&
saddr->has_ipv6 && saddr->ipv6)) ? 0 : 1;
int stat;
rebind:
if (e->ai_family == PF_INET6) {
setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, &v6only,
sizeof(v6only));
}
stat = bind(socket, e->ai_addr, e->ai_addrlen);
if (!stat) {
return 0;
}
/* If we got EADDRINUSE from an IPv6 bind & v6only is unset,
* it could be that the IPv4 port is already claimed, so retry
* with v6only set
*/
if (e->ai_family == PF_INET6 && errno == EADDRINUSE && !v6only) {
v6only = 1;
goto rebind;
}
return stat;
#endif
}
static int inet_listen_saddr(InetSocketAddress *saddr,
int port_offset,
int num,
Error **errp)
{
struct addrinfo ai,*res,*e;
char port[33];
char uaddr[INET6_ADDRSTRLEN+1];
char uport[33];
int rc, port_min, port_max, p;
int slisten = -1;
int saved_errno = 0;
bool socket_created = false;
Error *err = NULL;
if (saddr->keep_alive) {
error_setg(errp, "keep-alive option is not supported for passive "
"sockets");
return -1;
}
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
if (saddr->has_numeric && saddr->numeric) {
ai.ai_flags |= AI_NUMERICHOST | AI_NUMERICSERV;
}
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return -1;
}
if (saddr->host == NULL) {
error_setg(errp, "host not specified");
return -1;
}
if (saddr->port != NULL) {
pstrcpy(port, sizeof(port), saddr->port);
} else {
port[0] = '\0';
}
/* lookup */
if (port_offset) {
unsigned long long baseport;
if (strlen(port) == 0) {
error_setg(errp, "port not specified");
return -1;
}
if (parse_uint_full(port, &baseport, 10) < 0) {
error_setg(errp, "can't convert to a number: %s", port);
return -1;
}
if (baseport > 65535 ||
baseport + port_offset > 65535) {
error_setg(errp, "port %s out of range", port);
return -1;
}
snprintf(port, sizeof(port), "%d", (int)baseport + port_offset);
}
rc = getaddrinfo(strlen(saddr->host) ? saddr->host : NULL,
strlen(port) ? port : NULL, &ai, &res);
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, port, gai_strerror(rc));
return -1;
}
/* create socket + bind/listen */
for (e = res; e != NULL; e = e->ai_next) {
#ifdef HAVE_IPPROTO_MPTCP
if (saddr->has_mptcp && saddr->mptcp) {
e->ai_protocol = IPPROTO_MPTCP;
}
#endif
getnameinfo((struct sockaddr*)e->ai_addr,e->ai_addrlen,
uaddr,INET6_ADDRSTRLEN,uport,32,
NI_NUMERICHOST | NI_NUMERICSERV);
port_min = inet_getport(e);
port_max = saddr->has_to ? saddr->to + port_offset : port_min;
for (p = port_min; p <= port_max; p++) {
inet_setport(e, p);
slisten = create_fast_reuse_socket(e);
if (slisten < 0) {
/* First time we expect we might fail to create the socket
* eg if 'e' has AF_INET6 but ipv6 kmod is not loaded.
* Later iterations should always succeed if first iteration
* worked though, so treat that as fatal.
*/
if (p == port_min) {
continue;
} else {
error_setg_errno(errp, errno,
"Failed to recreate failed listening socket");
goto listen_failed;
}
}
socket_created = true;
rc = try_bind(slisten, saddr, e);
if (rc < 0) {
if (errno != EADDRINUSE) {
error_setg_errno(errp, errno, "Failed to bind socket");
goto listen_failed;
}
} else {
if (!listen(slisten, num)) {
goto listen_ok;
}
if (errno != EADDRINUSE) {
error_setg_errno(errp, errno, "Failed to listen on socket");
goto listen_failed;
}
}
/* Someone else managed to bind to the same port and beat us
* to listen on it! Socket semantics does not allow us to
* recover from this situation, so we need to recreate the
* socket to allow bind attempts for subsequent ports:
*/
closesocket(slisten);
slisten = -1;
}
}
error_setg_errno(errp, errno,
socket_created ?
"Failed to find an available port" :
"Failed to create a socket");
listen_failed:
saved_errno = errno;
if (slisten >= 0) {
closesocket(slisten);
}
freeaddrinfo(res);
errno = saved_errno;
return -1;
listen_ok:
freeaddrinfo(res);
return slisten;
}
#ifdef _WIN32
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS || (rc) == -EWOULDBLOCK || (rc) == -WSAEALREADY)
#else
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS)
#endif
static int inet_connect_addr(const InetSocketAddress *saddr,
struct addrinfo *addr, Error **errp)
{
int sock, rc;
sock = qemu_socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket family %d",
addr->ai_family);
return -1;
}
socket_set_fast_reuse(sock);
/* connect to peer */
do {
rc = 0;
if (connect(sock, addr->ai_addr, addr->ai_addrlen) < 0) {
rc = -errno;
}
} while (rc == -EINTR);
if (rc < 0) {
error_setg_errno(errp, errno, "Failed to connect to '%s:%s'",
saddr->host, saddr->port);
closesocket(sock);
return -1;
}
return sock;
}
static struct addrinfo *inet_parse_connect_saddr(InetSocketAddress *saddr,
Error **errp)
{
struct addrinfo ai, *res;
int rc;
Error *err = NULL;
static int useV4Mapped = 1;
memset(&ai, 0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_ADDRCONFIG;
if (qatomic_read(&useV4Mapped)) {
ai.ai_flags |= AI_V4MAPPED;
}
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return NULL;
}
if (saddr->host == NULL || saddr->port == NULL) {
error_setg(errp, "host and/or port not specified");
return NULL;
}
/* lookup */
rc = getaddrinfo(saddr->host, saddr->port, &ai, &res);
/* At least FreeBSD and OS-X 10.6 declare AI_V4MAPPED but
* then don't implement it in their getaddrinfo(). Detect
* this and retry without the flag since that's preferable
* to a fatal error
*/
if (rc == EAI_BADFLAGS &&
(ai.ai_flags & AI_V4MAPPED)) {
qatomic_set(&useV4Mapped, 0);
ai.ai_flags &= ~AI_V4MAPPED;
rc = getaddrinfo(saddr->host, saddr->port, &ai, &res);
}
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, saddr->port, gai_strerror(rc));
return NULL;
}
return res;
}
/**
* Create a socket and connect it to an address.
*
* @saddr: Inet socket address specification
* @errp: set on error
*
* Returns: -1 on error, file descriptor on success.
*/
int inet_connect_saddr(InetSocketAddress *saddr, Error **errp)
{
Error *local_err = NULL;
struct addrinfo *res, *e;
int sock = -1;
res = inet_parse_connect_saddr(saddr, errp);
if (!res) {
return -1;
}
for (e = res; e != NULL; e = e->ai_next) {
error_free(local_err);
local_err = NULL;
#ifdef HAVE_IPPROTO_MPTCP
if (saddr->has_mptcp && saddr->mptcp) {
e->ai_protocol = IPPROTO_MPTCP;
}
#endif
sock = inet_connect_addr(saddr, e, &local_err);
if (sock >= 0) {
break;
}
}
freeaddrinfo(res);
if (sock < 0) {
error_propagate(errp, local_err);
return sock;
}
if (saddr->keep_alive) {
int val = 1;
int ret = setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
&val, sizeof(val));
if (ret < 0) {
error_setg_errno(errp, errno, "Unable to set KEEPALIVE");
close(sock);
return -1;
}
}
return sock;
}
static int inet_dgram_saddr(InetSocketAddress *sraddr,
InetSocketAddress *sladdr,
Error **errp)
{
struct addrinfo ai, *peer = NULL, *local = NULL;
const char *addr;
const char *port;
int sock = -1, rc;
Error *err = NULL;
/* lookup peer addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_V4MAPPED | AI_ADDRCONFIG;
ai.ai_family = inet_ai_family_from_address(sraddr, &err);
ai.ai_socktype = SOCK_DGRAM;
if (err) {
error_propagate(errp, err);
goto err;
}
addr = sraddr->host;
port = sraddr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = "localhost";
}
if (port == NULL || strlen(port) == 0) {
error_setg(errp, "remote port not specified");
goto err;
}
if ((rc = getaddrinfo(addr, port, &ai, &peer)) != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* lookup local addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
ai.ai_family = peer->ai_family;
ai.ai_socktype = SOCK_DGRAM;
if (sladdr) {
addr = sladdr->host;
port = sladdr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = NULL;
}
if (!port || strlen(port) == 0) {
port = "0";
}
} else {
addr = NULL;
port = "0";
}
if ((rc = getaddrinfo(addr, port, &ai, &local)) != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* create socket */
sock = qemu_socket(peer->ai_family, peer->ai_socktype, peer->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket family %d",
peer->ai_family);
goto err;
}
socket_set_fast_reuse(sock);
/* bind socket */
if (bind(sock, local->ai_addr, local->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
goto err;
}
/* connect to peer */
if (connect(sock,peer->ai_addr,peer->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to connect to '%s:%s'",
addr, port);
goto err;
}
freeaddrinfo(local);
freeaddrinfo(peer);
return sock;
err:
if (sock != -1) {
closesocket(sock);
}
if (local) {
freeaddrinfo(local);
}
if (peer) {
freeaddrinfo(peer);
}
return -1;
}
/* compatibility wrapper */
static int inet_parse_flag(const char *flagname, const char *optstr, bool *val,
Error **errp)
{
char *end;
size_t len;
end = strstr(optstr, ",");
if (end) {
if (end[1] == ',') { /* Reject 'ipv6=on,,foo' */
error_setg(errp, "error parsing '%s' flag '%s'", flagname, optstr);
return -1;
}
len = end - optstr;
} else {
len = strlen(optstr);
}
if (len == 0 || (len == 3 && strncmp(optstr, "=on", len) == 0)) {
*val = true;
} else if (len == 4 && strncmp(optstr, "=off", len) == 0) {
*val = false;
} else {
error_setg(errp, "error parsing '%s' flag '%s'", flagname, optstr);
return -1;
}
return 0;
}
int inet_parse(InetSocketAddress *addr, const char *str, Error **errp)
{
const char *optstr, *h;
char host[65];
char port[33];
int to;
int pos;
char *begin;
memset(addr, 0, sizeof(*addr));
/* parse address */
if (str[0] == ':') {
/* no host given */
host[0] = '\0';
if (sscanf(str, ":%32[^,]%n", port, &pos) != 1) {
error_setg(errp, "error parsing port in address '%s'", str);
return -1;
}
} else if (str[0] == '[') {
/* IPv6 addr */
if (sscanf(str, "[%64[^]]]:%32[^,]%n", host, port, &pos) != 2) {
error_setg(errp, "error parsing IPv6 address '%s'", str);
return -1;
}
} else {
/* hostname or IPv4 addr */
if (sscanf(str, "%64[^:]:%32[^,]%n", host, port, &pos) != 2) {
error_setg(errp, "error parsing address '%s'", str);
return -1;
}
}
addr->host = g_strdup(host);
addr->port = g_strdup(port);
/* parse options */
optstr = str + pos;
h = strstr(optstr, ",to=");
if (h) {
h += 4;
if (sscanf(h, "%d%n", &to, &pos) != 1 ||
(h[pos] != '\0' && h[pos] != ',')) {
error_setg(errp, "error parsing to= argument");
return -1;
}
addr->has_to = true;
addr->to = to;
}
begin = strstr(optstr, ",ipv4");
if (begin) {
if (inet_parse_flag("ipv4", begin + 5, &addr->ipv4, errp) < 0) {
return -1;
}
addr->has_ipv4 = true;
}
begin = strstr(optstr, ",ipv6");
if (begin) {
if (inet_parse_flag("ipv6", begin + 5, &addr->ipv6, errp) < 0) {
return -1;
}
addr->has_ipv6 = true;
}
begin = strstr(optstr, ",keep-alive");
if (begin) {
if (inet_parse_flag("keep-alive", begin + strlen(",keep-alive"),
&addr->keep_alive, errp) < 0)
{
return -1;
}
addr->has_keep_alive = true;
}
#ifdef HAVE_IPPROTO_MPTCP
begin = strstr(optstr, ",mptcp");
if (begin) {
if (inet_parse_flag("mptcp", begin + strlen(",mptcp"),
&addr->mptcp, errp) < 0)
{
return -1;
}
addr->has_mptcp = true;
}
#endif
return 0;
}
/**
* Create a blocking socket and connect it to an address.
*
* @str: address string
* @errp: set in case of an error
*
* Returns -1 in case of error, file descriptor on success
**/
int inet_connect(const char *str, Error **errp)
{
int sock = -1;
InetSocketAddress *addr = g_new(InetSocketAddress, 1);
if (!inet_parse(addr, str, errp)) {
sock = inet_connect_saddr(addr, errp);
}
qapi_free_InetSocketAddress(addr);
return sock;
}
#ifdef CONFIG_AF_VSOCK
static bool vsock_parse_vaddr_to_sockaddr(const VsockSocketAddress *vaddr,
struct sockaddr_vm *svm,
Error **errp)
{
unsigned long long val;
memset(svm, 0, sizeof(*svm));
svm->svm_family = AF_VSOCK;
if (parse_uint_full(vaddr->cid, &val, 10) < 0 ||
val > UINT32_MAX) {
error_setg(errp, "Failed to parse cid '%s'", vaddr->cid);
return false;
}
svm->svm_cid = val;
if (parse_uint_full(vaddr->port, &val, 10) < 0 ||
val > UINT32_MAX) {
error_setg(errp, "Failed to parse port '%s'", vaddr->port);
return false;
}
svm->svm_port = val;
return true;
}
static int vsock_connect_addr(const VsockSocketAddress *vaddr,
const struct sockaddr_vm *svm, Error **errp)
{
int sock, rc;
sock = qemu_socket(AF_VSOCK, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket family %d",
AF_VSOCK);
return -1;
}
/* connect to peer */
do {
rc = 0;
if (connect(sock, (const struct sockaddr *)svm, sizeof(*svm)) < 0) {
rc = -errno;
}
} while (rc == -EINTR);
if (rc < 0) {
error_setg_errno(errp, errno, "Failed to connect to '%s:%s'",
vaddr->cid, vaddr->port);
closesocket(sock);
return -1;
}
return sock;
}
static int vsock_connect_saddr(VsockSocketAddress *vaddr, Error **errp)
{
struct sockaddr_vm svm;
if (!vsock_parse_vaddr_to_sockaddr(vaddr, &svm, errp)) {
return -1;
}
return vsock_connect_addr(vaddr, &svm, errp);
}
static int vsock_listen_saddr(VsockSocketAddress *vaddr,
int num,
Error **errp)
{
struct sockaddr_vm svm;
int slisten;
if (!vsock_parse_vaddr_to_sockaddr(vaddr, &svm, errp)) {
return -1;
}
slisten = qemu_socket(AF_VSOCK, SOCK_STREAM, 0);
if (slisten < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
if (bind(slisten, (const struct sockaddr *)&svm, sizeof(svm)) != 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
closesocket(slisten);
return -1;
}
if (listen(slisten, num) != 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
closesocket(slisten);
return -1;
}
return slisten;
}
static int vsock_parse(VsockSocketAddress *addr, const char *str,
Error **errp)
{
char cid[33];
char port[33];
int n;
if (sscanf(str, "%32[^:]:%32[^,]%n", cid, port, &n) != 2) {
error_setg(errp, "error parsing address '%s'", str);
return -1;
}
if (str[n] != '\0') {
error_setg(errp, "trailing characters in address '%s'", str);
return -1;
}
addr->cid = g_strdup(cid);
addr->port = g_strdup(port);
return 0;
}
#else
static void vsock_unsupported(Error **errp)
{
error_setg(errp, "socket family AF_VSOCK unsupported");
}
static int vsock_connect_saddr(VsockSocketAddress *vaddr, Error **errp)
{
vsock_unsupported(errp);
return -1;
}
static int vsock_listen_saddr(VsockSocketAddress *vaddr,
int num,
Error **errp)
{
vsock_unsupported(errp);
return -1;
}
static int vsock_parse(VsockSocketAddress *addr, const char *str,
Error **errp)
{
vsock_unsupported(errp);
return -1;
}
#endif /* CONFIG_AF_VSOCK */
#ifndef _WIN32
static bool saddr_is_abstract(UnixSocketAddress *saddr)
{
#ifdef CONFIG_LINUX
return saddr->abstract;
#else
return false;
#endif
}
static bool saddr_is_tight(UnixSocketAddress *saddr)
{
#ifdef CONFIG_LINUX
return !saddr->has_tight || saddr->tight;
#else
return false;
#endif
}
static int unix_listen_saddr(UnixSocketAddress *saddr,
int num,
Error **errp)
{
bool abstract = saddr_is_abstract(saddr);
struct sockaddr_un un;
int sock, fd;
char *pathbuf = NULL;
const char *path;
size_t pathlen;
size_t addrlen;
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create Unix socket");
return -1;
}
if (saddr->path[0] || abstract) {
path = saddr->path;
} else {
const char *tmpdir = getenv("TMPDIR");
tmpdir = tmpdir ? tmpdir : "/tmp";
path = pathbuf = g_strdup_printf("%s/qemu-socket-XXXXXX", tmpdir);
}
pathlen = strlen(path);
if (pathlen > sizeof(un.sun_path) ||
(abstract && pathlen > (sizeof(un.sun_path) - 1))) {
error_setg(errp, "UNIX socket path '%s' is too long", path);
error_append_hint(errp, "Path must be less than %zu bytes\n",
abstract ? sizeof(un.sun_path) - 1 :
sizeof(un.sun_path));
goto err;
}
if (pathbuf != NULL) {
/*
* This dummy fd usage silences the mktemp() unsecure warning.
* Using mkstemp() doesn't make things more secure here
* though. bind() complains about existing files, so we have
* to unlink first and thus re-open the race window. The
* worst case possible is bind() failing, i.e. a DoS attack.
*/
fd = mkstemp(pathbuf);
if (fd < 0) {
error_setg_errno(errp, errno,
"Failed to make a temporary socket %s", pathbuf);
goto err;
}
close(fd);
}
if (!abstract && unlink(path) < 0 && errno != ENOENT) {
error_setg_errno(errp, errno,
"Failed to unlink socket %s", path);
goto err;
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
addrlen = sizeof(un);
if (abstract) {
un.sun_path[0] = '\0';
memcpy(&un.sun_path[1], path, pathlen);
if (saddr_is_tight(saddr)) {
addrlen = offsetof(struct sockaddr_un, sun_path) + 1 + pathlen;
}
} else {
memcpy(un.sun_path, path, pathlen);
}
if (bind(sock, (struct sockaddr *) &un, addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket to %s", path);
goto err;
}
if (listen(sock, num) < 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
goto err;
}
g_free(pathbuf);
return sock;
err:
g_free(pathbuf);
closesocket(sock);
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp)
{
bool abstract = saddr_is_abstract(saddr);
struct sockaddr_un un;
int sock, rc;
size_t pathlen;
size_t addrlen;
if (saddr->path == NULL) {
error_setg(errp, "unix connect: no path specified");
return -1;
}
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
pathlen = strlen(saddr->path);
if (pathlen > sizeof(un.sun_path) ||
(abstract && pathlen > (sizeof(un.sun_path) - 1))) {
error_setg(errp, "UNIX socket path '%s' is too long", saddr->path);
error_append_hint(errp, "Path must be less than %zu bytes\n",
abstract ? sizeof(un.sun_path) - 1 :
sizeof(un.sun_path));
goto err;
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
addrlen = sizeof(un);
if (abstract) {
un.sun_path[0] = '\0';
memcpy(&un.sun_path[1], saddr->path, pathlen);
if (saddr_is_tight(saddr)) {
addrlen = offsetof(struct sockaddr_un, sun_path) + 1 + pathlen;
}
} else {
memcpy(un.sun_path, saddr->path, pathlen);
}
/* connect to peer */
do {
rc = 0;
if (connect(sock, (struct sockaddr *) &un, addrlen) < 0) {
rc = -errno;
}
} while (rc == -EINTR);
if (rc < 0) {
error_setg_errno(errp, -rc, "Failed to connect to '%s'",
saddr->path);
goto err;
}
return sock;
err:
close(sock);
return -1;
}
#else
static int unix_listen_saddr(UnixSocketAddress *saddr,
int num,
Error **errp)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
#endif
/* compatibility wrapper */
int unix_listen(const char *str, Error **errp)
{
UnixSocketAddress *saddr;
int sock;
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(str);
sock = unix_listen_saddr(saddr, 1, errp);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
int unix_connect(const char *path, Error **errp)
{
UnixSocketAddress *saddr;
int sock;
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(path);
sock = unix_connect_saddr(saddr, errp);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
SocketAddress *socket_parse(const char *str, Error **errp)
{
SocketAddress *addr;
addr = g_new0(SocketAddress, 1);
if (strstart(str, "unix:", NULL)) {
if (str[5] == '\0') {
error_setg(errp, "invalid Unix socket address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_TYPE_UNIX;
addr->u.q_unix.path = g_strdup(str + 5);
}
} else if (strstart(str, "fd:", NULL)) {
if (str[3] == '\0') {
error_setg(errp, "invalid file descriptor address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_TYPE_FD;
addr->u.fd.str = g_strdup(str + 3);
}
} else if (strstart(str, "vsock:", NULL)) {
addr->type = SOCKET_ADDRESS_TYPE_VSOCK;
if (vsock_parse(&addr->u.vsock, str + strlen("vsock:"), errp)) {
goto fail;
}
} else {
addr->type = SOCKET_ADDRESS_TYPE_INET;
if (inet_parse(&addr->u.inet, str, errp)) {
goto fail;
}
}
return addr;
fail:
qapi_free_SocketAddress(addr);
return NULL;
}
static int socket_get_fd(const char *fdstr, Error **errp)
{
Monitor *cur_mon = monitor_cur();
int fd;
if (cur_mon) {
fd = monitor_get_fd(cur_mon, fdstr, errp);
if (fd < 0) {
return -1;
}
} else {
if (qemu_strtoi(fdstr, NULL, 10, &fd) < 0) {
error_setg_errno(errp, errno,
"Unable to parse FD number %s",
fdstr);
return -1;
}
}
if (!fd_is_socket(fd)) {
error_setg(errp, "File descriptor '%s' is not a socket", fdstr);
close(fd);
return -1;
}
return fd;
}
int socket_address_parse_named_fd(SocketAddress *addr, Error **errp)
{
int fd;
if (addr->type != SOCKET_ADDRESS_TYPE_FD) {
return 0;
}
fd = socket_get_fd(addr->u.fd.str, errp);
if (fd < 0) {
return fd;
}
g_free(addr->u.fd.str);
addr->u.fd.str = g_strdup_printf("%d", fd);
return 0;
}
int socket_connect(SocketAddress *addr, Error **errp)
{
int fd;
switch (addr->type) {
case SOCKET_ADDRESS_TYPE_INET:
fd = inet_connect_saddr(&addr->u.inet, errp);
break;
case SOCKET_ADDRESS_TYPE_UNIX:
fd = unix_connect_saddr(&addr->u.q_unix, errp);
break;
case SOCKET_ADDRESS_TYPE_FD:
fd = socket_get_fd(addr->u.fd.str, errp);
break;
case SOCKET_ADDRESS_TYPE_VSOCK:
fd = vsock_connect_saddr(&addr->u.vsock, errp);
break;
default:
abort();
}
return fd;
}
int socket_listen(SocketAddress *addr, int num, Error **errp)
{
int fd;
trace_socket_listen(num);
switch (addr->type) {
case SOCKET_ADDRESS_TYPE_INET:
fd = inet_listen_saddr(&addr->u.inet, 0, num, errp);
break;
case SOCKET_ADDRESS_TYPE_UNIX:
fd = unix_listen_saddr(&addr->u.q_unix, num, errp);
break;
case SOCKET_ADDRESS_TYPE_FD:
fd = socket_get_fd(addr->u.fd.str, errp);
if (fd < 0) {
return -1;
}
/*
* If the socket is not yet in the listen state, then transition it to
* the listen state now.
*
* If it's already listening then this updates the backlog value as
* requested.
*
* If this socket cannot listen because it's already in another state
* (e.g. unbound or connected) then we'll catch the error here.
*/
if (listen(fd, num) != 0) {
error_setg_errno(errp, errno, "Failed to listen on fd socket");
closesocket(fd);
return -1;
}
break;
case SOCKET_ADDRESS_TYPE_VSOCK:
fd = vsock_listen_saddr(&addr->u.vsock, num, errp);
break;
default:
abort();
}
return fd;
}
void socket_listen_cleanup(int fd, Error **errp)
{
SocketAddress *addr;
addr = socket_local_address(fd, errp);
if (!addr) {
return;
}
if (addr->type == SOCKET_ADDRESS_TYPE_UNIX
&& addr->u.q_unix.path) {
if (unlink(addr->u.q_unix.path) < 0 && errno != ENOENT) {
error_setg_errno(errp, errno,
"Failed to unlink socket %s",
addr->u.q_unix.path);
}
}
qapi_free_SocketAddress(addr);
}
int socket_dgram(SocketAddress *remote, SocketAddress *local, Error **errp)
{
int fd;
/*
* TODO SOCKET_ADDRESS_TYPE_FD when fd is AF_INET or AF_INET6
* (although other address families can do SOCK_DGRAM, too)
*/
switch (remote->type) {
case SOCKET_ADDRESS_TYPE_INET:
fd = inet_dgram_saddr(&remote->u.inet,
local ? &local->u.inet : NULL, errp);
break;
default:
error_setg(errp, "socket type unsupported for datagram");
fd = -1;
}
return fd;
}
static SocketAddress *
socket_sockaddr_to_address_inet(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
char host[NI_MAXHOST];
char serv[NI_MAXSERV];
SocketAddress *addr;
InetSocketAddress *inet;
int ret;
ret = getnameinfo((struct sockaddr *)sa, salen,
host, sizeof(host),
serv, sizeof(serv),
NI_NUMERICHOST | NI_NUMERICSERV);
if (ret != 0) {
error_setg(errp, "Cannot format numeric socket address: %s",
gai_strerror(ret));
return NULL;
}
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_TYPE_INET;
inet = &addr->u.inet;
inet->host = g_strdup(host);
inet->port = g_strdup(serv);
if (sa->ss_family == AF_INET) {
inet->has_ipv4 = inet->ipv4 = true;
} else {
inet->has_ipv6 = inet->ipv6 = true;
}
return addr;
}
#ifndef WIN32
static SocketAddress *
socket_sockaddr_to_address_unix(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
SocketAddress *addr;
struct sockaddr_un *su = (struct sockaddr_un *)sa;
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_TYPE_UNIX;
salen -= offsetof(struct sockaddr_un, sun_path);
#ifdef CONFIG_LINUX
if (salen > 0 && !su->sun_path[0]) {
/* Linux abstract socket */
addr->u.q_unix.path = g_strndup(su->sun_path + 1, salen - 1);
addr->u.q_unix.has_abstract = true;
addr->u.q_unix.abstract = true;
addr->u.q_unix.has_tight = true;
addr->u.q_unix.tight = salen < sizeof(su->sun_path);
return addr;
}
#endif
addr->u.q_unix.path = g_strndup(su->sun_path, salen);
return addr;
}
#endif /* WIN32 */
#ifdef CONFIG_AF_VSOCK
static SocketAddress *
socket_sockaddr_to_address_vsock(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
SocketAddress *addr;
VsockSocketAddress *vaddr;
struct sockaddr_vm *svm = (struct sockaddr_vm *)sa;
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_TYPE_VSOCK;
vaddr = &addr->u.vsock;
vaddr->cid = g_strdup_printf("%u", svm->svm_cid);
vaddr->port = g_strdup_printf("%u", svm->svm_port);
return addr;
}
#endif /* CONFIG_AF_VSOCK */
SocketAddress *
socket_sockaddr_to_address(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
switch (sa->ss_family) {
case AF_INET:
case AF_INET6:
return socket_sockaddr_to_address_inet(sa, salen, errp);
#ifndef WIN32
case AF_UNIX:
return socket_sockaddr_to_address_unix(sa, salen, errp);
#endif /* WIN32 */
#ifdef CONFIG_AF_VSOCK
case AF_VSOCK:
return socket_sockaddr_to_address_vsock(sa, salen, errp);
#endif
default:
error_setg(errp, "socket family %d unsupported",
sa->ss_family);
return NULL;
}
return 0;
}
SocketAddress *socket_local_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getsockname(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, errno, "%s",
"Unable to query local socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
SocketAddress *socket_remote_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getpeername(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, errno, "%s",
"Unable to query remote socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
SocketAddress *socket_address_flatten(SocketAddressLegacy *addr_legacy)
{
SocketAddress *addr;
if (!addr_legacy) {
return NULL;
}
addr = g_new(SocketAddress, 1);
switch (addr_legacy->type) {
case SOCKET_ADDRESS_TYPE_INET:
addr->type = SOCKET_ADDRESS_TYPE_INET;
QAPI_CLONE_MEMBERS(InetSocketAddress, &addr->u.inet,
addr_legacy->u.inet.data);
break;
case SOCKET_ADDRESS_TYPE_UNIX:
addr->type = SOCKET_ADDRESS_TYPE_UNIX;
QAPI_CLONE_MEMBERS(UnixSocketAddress, &addr->u.q_unix,
addr_legacy->u.q_unix.data);
break;
case SOCKET_ADDRESS_TYPE_VSOCK:
addr->type = SOCKET_ADDRESS_TYPE_VSOCK;
QAPI_CLONE_MEMBERS(VsockSocketAddress, &addr->u.vsock,
addr_legacy->u.vsock.data);
break;
case SOCKET_ADDRESS_TYPE_FD:
addr->type = SOCKET_ADDRESS_TYPE_FD;
QAPI_CLONE_MEMBERS(String, &addr->u.fd, addr_legacy->u.fd.data);
break;
default:
abort();
}
return addr;
}