diff options
author | Daniel P. Berrangé | 2019-08-23 18:12:05 +0200 |
---|---|---|
committer | Daniel P. Berrangé | 2019-09-05 15:27:06 +0200 |
commit | 637f39568fc0bd9848fd9d225d52ab0c4c443ed3 (patch) | |
tree | 947580ede9339fa1c8038f821efcc2d20b46078e | |
parent | docs: convert README, CODING_STYLE and HACKING to RST syntax (diff) | |
download | qemu-637f39568fc0bd9848fd9d225d52ab0c4c443ed3.tar.gz qemu-637f39568fc0bd9848fd9d225d52ab0c4c443ed3.tar.xz qemu-637f39568fc0bd9848fd9d225d52ab0c4c443ed3.zip |
docs: merge HACKING.rst contents into CODING_STYLE.rst
The split of information between the two docs is rather arbitary and
unclear. It is simpler for contributors if all the information is in
one file.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
-rw-r--r-- | CODING_STYLE.rst | 296 | ||||
-rw-r--r-- | HACKING.rst | 300 | ||||
-rw-r--r-- | README.rst | 2 |
3 files changed, 297 insertions, 301 deletions
diff --git a/CODING_STYLE.rst b/CODING_STYLE.rst index 713357cb80..4501d87352 100644 --- a/CODING_STYLE.rst +++ b/CODING_STYLE.rst @@ -205,6 +205,302 @@ comment anyway.) Rationale: Consistency, and ease of visually picking out a multiline comment from the surrounding code. +Preprocessor +============ + +Variadic macros +--------------- + +For variadic macros, stick with this C99-like syntax: + +.. code-block:: c + + #define DPRINTF(fmt, ...) \ + do { printf("IRQ: " fmt, ## __VA_ARGS__); } while (0) + +Include directives +------------------ + +Order include directives as follows: + +.. code-block:: c + + #include "qemu/osdep.h" /* Always first... */ + #include <...> /* then system headers... */ + #include "..." /* and finally QEMU headers. */ + +The "qemu/osdep.h" header contains preprocessor macros that affect the behavior +of core system headers like <stdint.h>. It must be the first include so that +core system headers included by external libraries get the preprocessor macros +that QEMU depends on. + +Do not include "qemu/osdep.h" from header files since the .c file will have +already included it. + +C types +======= + +It should be common sense to use the right type, but we have collected +a few useful guidelines here. + +Scalars +------- + +If you're using "int" or "long", odds are good that there's a better type. +If a variable is counting something, it should be declared with an +unsigned type. + +If it's host memory-size related, size_t should be a good choice (use +ssize_t only if required). Guest RAM memory offsets must use ram_addr_t, +but only for RAM, it may not cover whole guest address space. + +If it's file-size related, use off_t. +If it's file-offset related (i.e., signed), use off_t. +If it's just counting small numbers use "unsigned int"; +(on all but oddball embedded systems, you can assume that that +type is at least four bytes wide). + +In the event that you require a specific width, use a standard type +like int32_t, uint32_t, uint64_t, etc. The specific types are +mandatory for VMState fields. + +Don't use Linux kernel internal types like u32, __u32 or __le32. + +Use hwaddr for guest physical addresses except pcibus_t +for PCI addresses. In addition, ram_addr_t is a QEMU internal address +space that maps guest RAM physical addresses into an intermediate +address space that can map to host virtual address spaces. Generally +speaking, the size of guest memory can always fit into ram_addr_t but +it would not be correct to store an actual guest physical address in a +ram_addr_t. + +For CPU virtual addresses there are several possible types. +vaddr is the best type to use to hold a CPU virtual address in +target-independent code. It is guaranteed to be large enough to hold a +virtual address for any target, and it does not change size from target +to target. It is always unsigned. +target_ulong is a type the size of a virtual address on the CPU; this means +it may be 32 or 64 bits depending on which target is being built. It should +therefore be used only in target-specific code, and in some +performance-critical built-per-target core code such as the TLB code. +There is also a signed version, target_long. +abi_ulong is for the ``*``-user targets, and represents a type the size of +'void ``*``' in that target's ABI. (This may not be the same as the size of a +full CPU virtual address in the case of target ABIs which use 32 bit pointers +on 64 bit CPUs, like sparc32plus.) Definitions of structures that must match +the target's ABI must use this type for anything that on the target is defined +to be an 'unsigned long' or a pointer type. +There is also a signed version, abi_long. + +Of course, take all of the above with a grain of salt. If you're about +to use some system interface that requires a type like size_t, pid_t or +off_t, use matching types for any corresponding variables. + +Also, if you try to use e.g., "unsigned int" as a type, and that +conflicts with the signedness of a related variable, sometimes +it's best just to use the *wrong* type, if "pulling the thread" +and fixing all related variables would be too invasive. + +Finally, while using descriptive types is important, be careful not to +go overboard. If whatever you're doing causes warnings, or requires +casts, then reconsider or ask for help. + +Pointers +-------- + +Ensure that all of your pointers are "const-correct". +Unless a pointer is used to modify the pointed-to storage, +give it the "const" attribute. That way, the reader knows +up-front that this is a read-only pointer. Perhaps more +importantly, if we're diligent about this, when you see a non-const +pointer, you're guaranteed that it is used to modify the storage +it points to, or it is aliased to another pointer that is. + +Typedefs +-------- + +Typedefs are used to eliminate the redundant 'struct' keyword, since type +names have a different style than other identifiers ("CamelCase" versus +"snake_case"). Each named struct type should have a CamelCase name and a +corresponding typedef. + +Since certain C compilers choke on duplicated typedefs, you should avoid +them and declare a typedef only in one header file. For common types, +you can use "include/qemu/typedefs.h" for example. However, as a matter +of convenience it is also perfectly fine to use forward struct +definitions instead of typedefs in headers and function prototypes; this +avoids problems with duplicated typedefs and reduces the need to include +headers from other headers. + +Reserved namespaces in C and POSIX +---------------------------------- + +Underscore capital, double underscore, and underscore 't' suffixes should be +avoided. + +Low level memory management +=========================== + +Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign +APIs is not allowed in the QEMU codebase. Instead of these routines, +use the GLib memory allocation routines g_malloc/g_malloc0/g_new/ +g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree +APIs. + +Please note that g_malloc will exit on allocation failure, so there +is no need to test for failure (as you would have to with malloc). +Calling g_malloc with a zero size is valid and will return NULL. + +Prefer g_new(T, n) instead of g_malloc(sizeof(T) ``*`` n) for the following +reasons: + +* It catches multiplication overflowing size_t; +* It returns T ``*`` instead of void ``*``, letting compiler catch more type errors. + +Declarations like + +.. code-block:: c + + T *v = g_malloc(sizeof(*v)) + +are acceptable, though. + +Memory allocated by qemu_memalign or qemu_blockalign must be freed with +qemu_vfree, since breaking this will cause problems on Win32. + +String manipulation +=================== + +Do not use the strncpy function. As mentioned in the man page, it does *not* +guarantee a NULL-terminated buffer, which makes it extremely dangerous to use. +It also zeros trailing destination bytes out to the specified length. Instead, +use this similar function when possible, but note its different signature: + +.. code-block:: c + + void pstrcpy(char *dest, int dest_buf_size, const char *src) + +Don't use strcat because it can't check for buffer overflows, but: + +.. code-block:: c + + char *pstrcat(char *buf, int buf_size, const char *s) + +The same limitation exists with sprintf and vsprintf, so use snprintf and +vsnprintf. + +QEMU provides other useful string functions: + +.. code-block:: c + + int strstart(const char *str, const char *val, const char **ptr) + int stristart(const char *str, const char *val, const char **ptr) + int qemu_strnlen(const char *s, int max_len) + +There are also replacement character processing macros for isxyz and toxyz, +so instead of e.g. isalnum you should use qemu_isalnum. + +Because of the memory management rules, you must use g_strdup/g_strndup +instead of plain strdup/strndup. + +Printf-style functions +====================== + +Whenever you add a new printf-style function, i.e., one with a format +string argument and following "..." in its prototype, be sure to use +gcc's printf attribute directive in the prototype. + +This makes it so gcc's -Wformat and -Wformat-security options can do +their jobs and cross-check format strings with the number and types +of arguments. + +C standard, implementation defined and undefined behaviors +========================================================== + +C code in QEMU should be written to the C99 language specification. A copy +of the final version of the C99 standard with corrigenda TC1, TC2, and TC3 +included, formatted as a draft, can be downloaded from: + + `<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_ + +The C language specification defines regions of undefined behavior and +implementation defined behavior (to give compiler authors enough leeway to +produce better code). In general, code in QEMU should follow the language +specification and avoid both undefined and implementation defined +constructs. ("It works fine on the gcc I tested it with" is not a valid +argument...) However there are a few areas where we allow ourselves to +assume certain behaviors because in practice all the platforms we care about +behave in the same way and writing strictly conformant code would be +painful. These are: + +* you may assume that integers are 2s complement representation +* you may assume that right shift of a signed integer duplicates + the sign bit (ie it is an arithmetic shift, not a logical shift) + +In addition, QEMU assumes that the compiler does not use the latitude +given in C99 and C11 to treat aspects of signed '<<' as undefined, as +documented in the GNU Compiler Collection manual starting at version 4.0. + +Error handling and reporting +============================ + +Reporting errors to the human user +---------------------------------- + +Do not use printf(), fprintf() or monitor_printf(). Instead, use +error_report() or error_vreport() from error-report.h. This ensures the +error is reported in the right place (current monitor or stderr), and in +a uniform format. + +Use error_printf() & friends to print additional information. + +error_report() prints the current location. In certain common cases +like command line parsing, the current location is tracked +automatically. To manipulate it manually, use the loc_``*``() from +error-report.h. + +Propagating errors +------------------ + +An error can't always be reported to the user right where it's detected, +but often needs to be propagated up the call chain to a place that can +handle it. This can be done in various ways. + +The most flexible one is Error objects. See error.h for usage +information. + +Use the simplest suitable method to communicate success / failure to +callers. Stick to common methods: non-negative on success / -1 on +error, non-negative / -errno, non-null / null, or Error objects. + +Example: when a function returns a non-null pointer on success, and it +can fail only in one way (as far as the caller is concerned), returning +null on failure is just fine, and certainly simpler and a lot easier on +the eyes than propagating an Error object through an Error ``*````*`` parameter. + +Example: when a function's callers need to report details on failure +only the function really knows, use Error ``*````*``, and set suitable errors. + +Do not report an error to the user when you're also returning an error +for somebody else to handle. Leave the reporting to the place that +consumes the error returned. + +Handling errors +--------------- + +Calling exit() is fine when handling configuration errors during +startup. It's problematic during normal operation. In particular, +monitor commands should never exit(). + +Do not call exit() or abort() to handle an error that can be triggered +by the guest (e.g., some unimplemented corner case in guest code +translation or device emulation). Guests should not be able to +terminate QEMU. + +Note that &error_fatal is just another way to exit(1), and &error_abort +is just another way to abort(). + + trace-events style ================== diff --git a/HACKING.rst b/HACKING.rst deleted file mode 100644 index 668fc420c3..0000000000 --- a/HACKING.rst +++ /dev/null @@ -1,300 +0,0 @@ -============ -QEMU Hacking -============ - -.. contents:: Table of Contents - -Preprocessor -============ - -Variadic macros ---------------- - -For variadic macros, stick with this C99-like syntax: - -.. code-block:: c - - #define DPRINTF(fmt, ...) \ - do { printf("IRQ: " fmt, ## __VA_ARGS__); } while (0) - -Include directives ------------------- - -Order include directives as follows: - -.. code-block:: c - - #include "qemu/osdep.h" /* Always first... */ - #include <...> /* then system headers... */ - #include "..." /* and finally QEMU headers. */ - -The "qemu/osdep.h" header contains preprocessor macros that affect the behavior -of core system headers like <stdint.h>. It must be the first include so that -core system headers included by external libraries get the preprocessor macros -that QEMU depends on. - -Do not include "qemu/osdep.h" from header files since the .c file will have -already included it. - -C types -======= - -It should be common sense to use the right type, but we have collected -a few useful guidelines here. - -Scalars -------- - -If you're using "int" or "long", odds are good that there's a better type. -If a variable is counting something, it should be declared with an -unsigned type. - -If it's host memory-size related, size_t should be a good choice (use -ssize_t only if required). Guest RAM memory offsets must use ram_addr_t, -but only for RAM, it may not cover whole guest address space. - -If it's file-size related, use off_t. -If it's file-offset related (i.e., signed), use off_t. -If it's just counting small numbers use "unsigned int"; -(on all but oddball embedded systems, you can assume that that -type is at least four bytes wide). - -In the event that you require a specific width, use a standard type -like int32_t, uint32_t, uint64_t, etc. The specific types are -mandatory for VMState fields. - -Don't use Linux kernel internal types like u32, __u32 or __le32. - -Use hwaddr for guest physical addresses except pcibus_t -for PCI addresses. In addition, ram_addr_t is a QEMU internal address -space that maps guest RAM physical addresses into an intermediate -address space that can map to host virtual address spaces. Generally -speaking, the size of guest memory can always fit into ram_addr_t but -it would not be correct to store an actual guest physical address in a -ram_addr_t. - -For CPU virtual addresses there are several possible types. -vaddr is the best type to use to hold a CPU virtual address in -target-independent code. It is guaranteed to be large enough to hold a -virtual address for any target, and it does not change size from target -to target. It is always unsigned. -target_ulong is a type the size of a virtual address on the CPU; this means -it may be 32 or 64 bits depending on which target is being built. It should -therefore be used only in target-specific code, and in some -performance-critical built-per-target core code such as the TLB code. -There is also a signed version, target_long. -abi_ulong is for the ``*``-user targets, and represents a type the size of -'void ``*``' in that target's ABI. (This may not be the same as the size of a -full CPU virtual address in the case of target ABIs which use 32 bit pointers -on 64 bit CPUs, like sparc32plus.) Definitions of structures that must match -the target's ABI must use this type for anything that on the target is defined -to be an 'unsigned long' or a pointer type. -There is also a signed version, abi_long. - -Of course, take all of the above with a grain of salt. If you're about -to use some system interface that requires a type like size_t, pid_t or -off_t, use matching types for any corresponding variables. - -Also, if you try to use e.g., "unsigned int" as a type, and that -conflicts with the signedness of a related variable, sometimes -it's best just to use the *wrong* type, if "pulling the thread" -and fixing all related variables would be too invasive. - -Finally, while using descriptive types is important, be careful not to -go overboard. If whatever you're doing causes warnings, or requires -casts, then reconsider or ask for help. - -Pointers --------- - -Ensure that all of your pointers are "const-correct". -Unless a pointer is used to modify the pointed-to storage, -give it the "const" attribute. That way, the reader knows -up-front that this is a read-only pointer. Perhaps more -importantly, if we're diligent about this, when you see a non-const -pointer, you're guaranteed that it is used to modify the storage -it points to, or it is aliased to another pointer that is. - -Typedefs --------- - -Typedefs are used to eliminate the redundant 'struct' keyword, since type -names have a different style than other identifiers ("CamelCase" versus -"snake_case"). Each named struct type should have a CamelCase name and a -corresponding typedef. - -Since certain C compilers choke on duplicated typedefs, you should avoid -them and declare a typedef only in one header file. For common types, -you can use "include/qemu/typedefs.h" for example. However, as a matter -of convenience it is also perfectly fine to use forward struct -definitions instead of typedefs in headers and function prototypes; this -avoids problems with duplicated typedefs and reduces the need to include -headers from other headers. - -Reserved namespaces in C and POSIX ----------------------------------- - -Underscore capital, double underscore, and underscore 't' suffixes should be -avoided. - -Low level memory management -=========================== - -Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign -APIs is not allowed in the QEMU codebase. Instead of these routines, -use the GLib memory allocation routines g_malloc/g_malloc0/g_new/ -g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree -APIs. - -Please note that g_malloc will exit on allocation failure, so there -is no need to test for failure (as you would have to with malloc). -Calling g_malloc with a zero size is valid and will return NULL. - -Prefer g_new(T, n) instead of g_malloc(sizeof(T) ``*`` n) for the following -reasons: - -* It catches multiplication overflowing size_t; -* It returns T ``*`` instead of void ``*``, letting compiler catch more type errors. - -Declarations like - -.. code-block:: c - - T *v = g_malloc(sizeof(*v)) - -are acceptable, though. - -Memory allocated by qemu_memalign or qemu_blockalign must be freed with -qemu_vfree, since breaking this will cause problems on Win32. - -String manipulation -=================== - -Do not use the strncpy function. As mentioned in the man page, it does *not* -guarantee a NULL-terminated buffer, which makes it extremely dangerous to use. -It also zeros trailing destination bytes out to the specified length. Instead, -use this similar function when possible, but note its different signature: - -.. code-block:: c - - void pstrcpy(char *dest, int dest_buf_size, const char *src) - -Don't use strcat because it can't check for buffer overflows, but: - -.. code-block:: c - - char *pstrcat(char *buf, int buf_size, const char *s) - -The same limitation exists with sprintf and vsprintf, so use snprintf and -vsnprintf. - -QEMU provides other useful string functions: - -.. code-block:: c - - int strstart(const char *str, const char *val, const char **ptr) - int stristart(const char *str, const char *val, const char **ptr) - int qemu_strnlen(const char *s, int max_len) - -There are also replacement character processing macros for isxyz and toxyz, -so instead of e.g. isalnum you should use qemu_isalnum. - -Because of the memory management rules, you must use g_strdup/g_strndup -instead of plain strdup/strndup. - -Printf-style functions -====================== - -Whenever you add a new printf-style function, i.e., one with a format -string argument and following "..." in its prototype, be sure to use -gcc's printf attribute directive in the prototype. - -This makes it so gcc's -Wformat and -Wformat-security options can do -their jobs and cross-check format strings with the number and types -of arguments. - -C standard, implementation defined and undefined behaviors -========================================================== - -C code in QEMU should be written to the C99 language specification. A copy -of the final version of the C99 standard with corrigenda TC1, TC2, and TC3 -included, formatted as a draft, can be downloaded from: - - `<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_ - -The C language specification defines regions of undefined behavior and -implementation defined behavior (to give compiler authors enough leeway to -produce better code). In general, code in QEMU should follow the language -specification and avoid both undefined and implementation defined -constructs. ("It works fine on the gcc I tested it with" is not a valid -argument...) However there are a few areas where we allow ourselves to -assume certain behaviors because in practice all the platforms we care about -behave in the same way and writing strictly conformant code would be -painful. These are: - -* you may assume that integers are 2s complement representation -* you may assume that right shift of a signed integer duplicates - the sign bit (ie it is an arithmetic shift, not a logical shift) - -In addition, QEMU assumes that the compiler does not use the latitude -given in C99 and C11 to treat aspects of signed '<<' as undefined, as -documented in the GNU Compiler Collection manual starting at version 4.0. - -Error handling and reporting -============================ - -Reporting errors to the human user ----------------------------------- - -Do not use printf(), fprintf() or monitor_printf(). Instead, use -error_report() or error_vreport() from error-report.h. This ensures the -error is reported in the right place (current monitor or stderr), and in -a uniform format. - -Use error_printf() & friends to print additional information. - -error_report() prints the current location. In certain common cases -like command line parsing, the current location is tracked -automatically. To manipulate it manually, use the loc_``*``() from -error-report.h. - -Propagating errors ------------------- - -An error can't always be reported to the user right where it's detected, -but often needs to be propagated up the call chain to a place that can -handle it. This can be done in various ways. - -The most flexible one is Error objects. See error.h for usage -information. - -Use the simplest suitable method to communicate success / failure to -callers. Stick to common methods: non-negative on success / -1 on -error, non-negative / -errno, non-null / null, or Error objects. - -Example: when a function returns a non-null pointer on success, and it -can fail only in one way (as far as the caller is concerned), returning -null on failure is just fine, and certainly simpler and a lot easier on -the eyes than propagating an Error object through an Error ``*````*`` parameter. - -Example: when a function's callers need to report details on failure -only the function really knows, use Error ``*````*``, and set suitable errors. - -Do not report an error to the user when you're also returning an error -for somebody else to handle. Leave the reporting to the place that -consumes the error returned. - -Handling errors ---------------- - -Calling exit() is fine when handling configuration errors during -startup. It's problematic during normal operation. In particular, -monitor commands should never exit(). - -Do not call exit() or abort() to handle an error that can be triggered -by the guest (e.g., some unimplemented corner case in guest code -translation or device emulation). Guests should not be able to -terminate QEMU. - -Note that &error_fatal is just another way to exit(1), and &error_abort -is just another way to abort(). diff --git a/README.rst b/README.rst index 9ff2877416..7497709291 100644 --- a/README.rst +++ b/README.rst @@ -66,7 +66,7 @@ When submitting patches, one common approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the -guidelines set out in the HACKING.rst and CODING_STYLE.rst files. +guidelines set out in the CODING_STYLE.rst file. Additional information on submitting patches can be found online via the QEMU website |