diff options
author | Alex Bennée | 2017-11-28 18:04:44 +0100 |
---|---|---|
committer | Alex Bennée | 2018-02-21 11:21:11 +0100 |
commit | d446830a3aac33e7221e361dad3ab1e1892646cb (patch) | |
tree | f6509371b17497156c9ab08f47c36d79125e4b33 /fpu | |
parent | fpu/softfloat: re-factor div (diff) | |
download | qemu-d446830a3aac33e7221e361dad3ab1e1892646cb.tar.gz qemu-d446830a3aac33e7221e361dad3ab1e1892646cb.tar.xz qemu-d446830a3aac33e7221e361dad3ab1e1892646cb.zip |
fpu/softfloat: re-factor muladd
We can now add float16_muladd and use the common decompose and
canonicalize functions to have a single implementation for
float16/32/64 muladd functions.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'fpu')
-rw-r--r-- | fpu/softfloat-specialize.h | 104 | ||||
-rw-r--r-- | fpu/softfloat.c | 742 |
2 files changed, 271 insertions, 575 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h index 4be0fb21ba..e81ca001e1 100644 --- a/fpu/softfloat-specialize.h +++ b/fpu/softfloat-specialize.h @@ -729,58 +729,6 @@ static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status) } } -/*---------------------------------------------------------------------------- -| Takes three single-precision floating-point values `a', `b' and `c', one of -| which is a NaN, and returns the appropriate NaN result. If any of `a', -| `b' or `c' is a signaling NaN, the invalid exception is raised. -| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case -| obviously c is a NaN, and whether to propagate c or some other NaN is -| implementation defined). -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32MulAddNaN(float32 a, float32 b, - float32 c, flag infzero, - float_status *status) -{ - flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, - cIsQuietNaN, cIsSignalingNaN; - int which; - - aIsQuietNaN = float32_is_quiet_nan(a, status); - aIsSignalingNaN = float32_is_signaling_nan(a, status); - bIsQuietNaN = float32_is_quiet_nan(b, status); - bIsSignalingNaN = float32_is_signaling_nan(b, status); - cIsQuietNaN = float32_is_quiet_nan(c, status); - cIsSignalingNaN = float32_is_signaling_nan(c, status); - - if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { - float_raise(float_flag_invalid, status); - } - - which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, - bIsQuietNaN, bIsSignalingNaN, - cIsQuietNaN, cIsSignalingNaN, infzero, status); - - if (status->default_nan_mode) { - /* Note that this check is after pickNaNMulAdd so that function - * has an opportunity to set the Invalid flag. - */ - return float32_default_nan(status); - } - - switch (which) { - case 0: - return float32_maybe_silence_nan(a, status); - case 1: - return float32_maybe_silence_nan(b, status); - case 2: - return float32_maybe_silence_nan(c, status); - case 3: - default: - return float32_default_nan(status); - } -} - #ifdef NO_SIGNALING_NANS int float64_is_quiet_nan(float64 a_, float_status *status) { @@ -936,58 +884,6 @@ static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status) } } -/*---------------------------------------------------------------------------- -| Takes three double-precision floating-point values `a', `b' and `c', one of -| which is a NaN, and returns the appropriate NaN result. If any of `a', -| `b' or `c' is a signaling NaN, the invalid exception is raised. -| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case -| obviously c is a NaN, and whether to propagate c or some other NaN is -| implementation defined). -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64MulAddNaN(float64 a, float64 b, - float64 c, flag infzero, - float_status *status) -{ - flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, - cIsQuietNaN, cIsSignalingNaN; - int which; - - aIsQuietNaN = float64_is_quiet_nan(a, status); - aIsSignalingNaN = float64_is_signaling_nan(a, status); - bIsQuietNaN = float64_is_quiet_nan(b, status); - bIsSignalingNaN = float64_is_signaling_nan(b, status); - cIsQuietNaN = float64_is_quiet_nan(c, status); - cIsSignalingNaN = float64_is_signaling_nan(c, status); - - if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { - float_raise(float_flag_invalid, status); - } - - which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, - bIsQuietNaN, bIsSignalingNaN, - cIsQuietNaN, cIsSignalingNaN, infzero, status); - - if (status->default_nan_mode) { - /* Note that this check is after pickNaNMulAdd so that function - * has an opportunity to set the Invalid flag. - */ - return float64_default_nan(status); - } - - switch (which) { - case 0: - return float64_maybe_silence_nan(a, status); - case 1: - return float64_maybe_silence_nan(b, status); - case 2: - return float64_maybe_silence_nan(c, status); - case 3: - default: - return float64_default_nan(status); - } -} - #ifdef NO_SIGNALING_NANS int floatx80_is_quiet_nan(floatx80 a_, float_status *status) { diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 4a859b2721..ae4ba6de51 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -580,6 +580,40 @@ static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) return a; } +static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c, + bool inf_zero, float_status *s) +{ + if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) { + s->float_exception_flags |= float_flag_invalid; + } + + if (s->default_nan_mode) { + a.cls = float_class_dnan; + } else { + switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls), + is_qnan(b.cls), is_snan(b.cls), + is_qnan(c.cls), is_snan(c.cls), + inf_zero, s)) { + case 0: + break; + case 1: + a = b; + break; + case 2: + a = c; + break; + case 3: + a.cls = float_class_dnan; + return a; + default: + g_assert_not_reached(); + } + + a.cls = float_class_msnan; + } + return a; +} + /* * Returns the result of adding or subtracting the values of the * floating-point values `a' and `b'. The operation is performed @@ -817,6 +851,243 @@ float64 __attribute__((flatten)) float64_mul(float64 a, float64 b, } /* + * Returns the result of multiplying the floating-point values `a' and + * `b' then adding 'c', with no intermediate rounding step after the + * multiplication. The operation is performed according to the + * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. + * The flags argument allows the caller to select negation of the + * addend, the intermediate product, or the final result. (The + * difference between this and having the caller do a separate + * negation is that negating externally will flip the sign bit on + * NaNs.) + */ + +static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c, + int flags, float_status *s) +{ + bool inf_zero = ((1 << a.cls) | (1 << b.cls)) == + ((1 << float_class_inf) | (1 << float_class_zero)); + bool p_sign; + bool sign_flip = flags & float_muladd_negate_result; + FloatClass p_class; + uint64_t hi, lo; + int p_exp; + + /* It is implementation-defined whether the cases of (0,inf,qnan) + * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN + * they return if they do), so we have to hand this information + * off to the target-specific pick-a-NaN routine. + */ + if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) { + return pick_nan_muladd(a, b, c, inf_zero, s); + } + + if (inf_zero) { + s->float_exception_flags |= float_flag_invalid; + a.cls = float_class_dnan; + return a; + } + + if (flags & float_muladd_negate_c) { + c.sign ^= 1; + } + + p_sign = a.sign ^ b.sign; + + if (flags & float_muladd_negate_product) { + p_sign ^= 1; + } + + if (a.cls == float_class_inf || b.cls == float_class_inf) { + p_class = float_class_inf; + } else if (a.cls == float_class_zero || b.cls == float_class_zero) { + p_class = float_class_zero; + } else { + p_class = float_class_normal; + } + + if (c.cls == float_class_inf) { + if (p_class == float_class_inf && p_sign != c.sign) { + s->float_exception_flags |= float_flag_invalid; + a.cls = float_class_dnan; + } else { + a.cls = float_class_inf; + a.sign = c.sign ^ sign_flip; + } + return a; + } + + if (p_class == float_class_inf) { + a.cls = float_class_inf; + a.sign = p_sign ^ sign_flip; + return a; + } + + if (p_class == float_class_zero) { + if (c.cls == float_class_zero) { + if (p_sign != c.sign) { + p_sign = s->float_rounding_mode == float_round_down; + } + c.sign = p_sign; + } else if (flags & float_muladd_halve_result) { + c.exp -= 1; + } + c.sign ^= sign_flip; + return c; + } + + /* a & b should be normals now... */ + assert(a.cls == float_class_normal && + b.cls == float_class_normal); + + p_exp = a.exp + b.exp; + + /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit + * result. + */ + mul64To128(a.frac, b.frac, &hi, &lo); + /* binary point now at bit 124 */ + + /* check for overflow */ + if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) { + shift128RightJamming(hi, lo, 1, &hi, &lo); + p_exp += 1; + } + + /* + add/sub */ + if (c.cls == float_class_zero) { + /* move binary point back to 62 */ + shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); + } else { + int exp_diff = p_exp - c.exp; + if (p_sign == c.sign) { + /* Addition */ + if (exp_diff <= 0) { + shift128RightJamming(hi, lo, + DECOMPOSED_BINARY_POINT - exp_diff, + &hi, &lo); + lo += c.frac; + p_exp = c.exp; + } else { + uint64_t c_hi, c_lo; + /* shift c to the same binary point as the product (124) */ + c_hi = c.frac >> 2; + c_lo = 0; + shift128RightJamming(c_hi, c_lo, + exp_diff, + &c_hi, &c_lo); + add128(hi, lo, c_hi, c_lo, &hi, &lo); + /* move binary point back to 62 */ + shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); + } + + if (lo & DECOMPOSED_OVERFLOW_BIT) { + shift64RightJamming(lo, 1, &lo); + p_exp += 1; + } + + } else { + /* Subtraction */ + uint64_t c_hi, c_lo; + /* make C binary point match product at bit 124 */ + c_hi = c.frac >> 2; + c_lo = 0; + + if (exp_diff <= 0) { + shift128RightJamming(hi, lo, -exp_diff, &hi, &lo); + if (exp_diff == 0 + && + (hi > c_hi || (hi == c_hi && lo >= c_lo))) { + sub128(hi, lo, c_hi, c_lo, &hi, &lo); + } else { + sub128(c_hi, c_lo, hi, lo, &hi, &lo); + p_sign ^= 1; + p_exp = c.exp; + } + } else { + shift128RightJamming(c_hi, c_lo, + exp_diff, + &c_hi, &c_lo); + sub128(hi, lo, c_hi, c_lo, &hi, &lo); + } + + if (hi == 0 && lo == 0) { + a.cls = float_class_zero; + a.sign = s->float_rounding_mode == float_round_down; + a.sign ^= sign_flip; + return a; + } else { + int shift; + if (hi != 0) { + shift = clz64(hi); + } else { + shift = clz64(lo) + 64; + } + /* Normalizing to a binary point of 124 is the + correct adjust for the exponent. However since we're + shifting, we might as well put the binary point back + at 62 where we really want it. Therefore shift as + if we're leaving 1 bit at the top of the word, but + adjust the exponent as if we're leaving 3 bits. */ + shift -= 1; + if (shift >= 64) { + lo = lo << (shift - 64); + } else { + hi = (hi << shift) | (lo >> (64 - shift)); + lo = hi | ((lo << shift) != 0); + } + p_exp -= shift - 2; + } + } + } + + if (flags & float_muladd_halve_result) { + p_exp -= 1; + } + + /* finally prepare our result */ + a.cls = float_class_normal; + a.sign = p_sign ^ sign_flip; + a.exp = p_exp; + a.frac = lo; + + return a; +} + +float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c, + int flags, float_status *status) +{ + FloatParts pa = float16_unpack_canonical(a, status); + FloatParts pb = float16_unpack_canonical(b, status); + FloatParts pc = float16_unpack_canonical(c, status); + FloatParts pr = muladd_floats(pa, pb, pc, flags, status); + + return float16_round_pack_canonical(pr, status); +} + +float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c, + int flags, float_status *status) +{ + FloatParts pa = float32_unpack_canonical(a, status); + FloatParts pb = float32_unpack_canonical(b, status); + FloatParts pc = float32_unpack_canonical(c, status); + FloatParts pr = muladd_floats(pa, pb, pc, flags, status); + + return float32_round_pack_canonical(pr, status); +} + +float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c, + int flags, float_status *status) +{ + FloatParts pa = float64_unpack_canonical(a, status); + FloatParts pb = float64_unpack_canonical(b, status); + FloatParts pc = float64_unpack_canonical(c, status); + FloatParts pr = muladd_floats(pa, pb, pc, flags, status); + + return float64_round_pack_canonical(pr, status); +} + +/* * Returns the result of dividing the floating-point value `a' by the * corresponding value `b'. The operation is performed according to * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. @@ -2817,231 +3088,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status) return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); } -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the single-precision floating-point values -| `a' and `b' then adding 'c', with no intermediate rounding step after the -| multiplication. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic 754-2008. -| The flags argument allows the caller to select negation of the -| addend, the intermediate product, or the final result. (The difference -| between this and having the caller do a separate negation is that negating -| externally will flip the sign bit on NaNs.) -*----------------------------------------------------------------------------*/ - -float32 float32_muladd(float32 a, float32 b, float32 c, int flags, - float_status *status) -{ - flag aSign, bSign, cSign, zSign; - int aExp, bExp, cExp, pExp, zExp, expDiff; - uint32_t aSig, bSig, cSig; - flag pInf, pZero, pSign; - uint64_t pSig64, cSig64, zSig64; - uint32_t pSig; - int shiftcount; - flag signflip, infzero; - - a = float32_squash_input_denormal(a, status); - b = float32_squash_input_denormal(b, status); - c = float32_squash_input_denormal(c, status); - aSig = extractFloat32Frac(a); - aExp = extractFloat32Exp(a); - aSign = extractFloat32Sign(a); - bSig = extractFloat32Frac(b); - bExp = extractFloat32Exp(b); - bSign = extractFloat32Sign(b); - cSig = extractFloat32Frac(c); - cExp = extractFloat32Exp(c); - cSign = extractFloat32Sign(c); - - infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || - (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); - - /* It is implementation-defined whether the cases of (0,inf,qnan) - * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN - * they return if they do), so we have to hand this information - * off to the target-specific pick-a-NaN routine. - */ - if (((aExp == 0xff) && aSig) || - ((bExp == 0xff) && bSig) || - ((cExp == 0xff) && cSig)) { - return propagateFloat32MulAddNaN(a, b, c, infzero, status); - } - - if (infzero) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - - if (flags & float_muladd_negate_c) { - cSign ^= 1; - } - - signflip = (flags & float_muladd_negate_result) ? 1 : 0; - - /* Work out the sign and type of the product */ - pSign = aSign ^ bSign; - if (flags & float_muladd_negate_product) { - pSign ^= 1; - } - pInf = (aExp == 0xff) || (bExp == 0xff); - pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); - - if (cExp == 0xff) { - if (pInf && (pSign ^ cSign)) { - /* addition of opposite-signed infinities => InvalidOperation */ - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - /* Otherwise generate an infinity of the same sign */ - return packFloat32(cSign ^ signflip, 0xff, 0); - } - - if (pInf) { - return packFloat32(pSign ^ signflip, 0xff, 0); - } - - if (pZero) { - if (cExp == 0) { - if (cSig == 0) { - /* Adding two exact zeroes */ - if (pSign == cSign) { - zSign = pSign; - } else if (status->float_rounding_mode == float_round_down) { - zSign = 1; - } else { - zSign = 0; - } - return packFloat32(zSign ^ signflip, 0, 0); - } - /* Exact zero plus a denorm */ - if (status->flush_to_zero) { - float_raise(float_flag_output_denormal, status); - return packFloat32(cSign ^ signflip, 0, 0); - } - } - /* Zero plus something non-zero : just return the something */ - if (flags & float_muladd_halve_result) { - if (cExp == 0) { - normalizeFloat32Subnormal(cSig, &cExp, &cSig); - } - /* Subtract one to halve, and one again because roundAndPackFloat32 - * wants one less than the true exponent. - */ - cExp -= 2; - cSig = (cSig | 0x00800000) << 7; - return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status); - } - return packFloat32(cSign ^ signflip, cExp, cSig); - } - - if (aExp == 0) { - normalizeFloat32Subnormal(aSig, &aExp, &aSig); - } - if (bExp == 0) { - normalizeFloat32Subnormal(bSig, &bExp, &bSig); - } - - /* Calculate the actual result a * b + c */ - - /* Multiply first; this is easy. */ - /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f - * because we want the true exponent, not the "one-less-than" - * flavour that roundAndPackFloat32() takes. - */ - pExp = aExp + bExp - 0x7e; - aSig = (aSig | 0x00800000) << 7; - bSig = (bSig | 0x00800000) << 8; - pSig64 = (uint64_t)aSig * bSig; - if ((int64_t)(pSig64 << 1) >= 0) { - pSig64 <<= 1; - pExp--; - } - - zSign = pSign ^ signflip; - - /* Now pSig64 is the significand of the multiply, with the explicit bit in - * position 62. - */ - if (cExp == 0) { - if (!cSig) { - /* Throw out the special case of c being an exact zero now */ - shift64RightJamming(pSig64, 32, &pSig64); - pSig = pSig64; - if (flags & float_muladd_halve_result) { - pExp--; - } - return roundAndPackFloat32(zSign, pExp - 1, - pSig, status); - } - normalizeFloat32Subnormal(cSig, &cExp, &cSig); - } - - cSig64 = (uint64_t)cSig << (62 - 23); - cSig64 |= LIT64(0x4000000000000000); - expDiff = pExp - cExp; - - if (pSign == cSign) { - /* Addition */ - if (expDiff > 0) { - /* scale c to match p */ - shift64RightJamming(cSig64, expDiff, &cSig64); - zExp = pExp; - } else if (expDiff < 0) { - /* scale p to match c */ - shift64RightJamming(pSig64, -expDiff, &pSig64); - zExp = cExp; - } else { - /* no scaling needed */ - zExp = cExp; - } - /* Add significands and make sure explicit bit ends up in posn 62 */ - zSig64 = pSig64 + cSig64; - if ((int64_t)zSig64 < 0) { - shift64RightJamming(zSig64, 1, &zSig64); - } else { - zExp--; - } - } else { - /* Subtraction */ - if (expDiff > 0) { - shift64RightJamming(cSig64, expDiff, &cSig64); - zSig64 = pSig64 - cSig64; - zExp = pExp; - } else if (expDiff < 0) { - shift64RightJamming(pSig64, -expDiff, &pSig64); - zSig64 = cSig64 - pSig64; - zExp = cExp; - zSign ^= 1; - } else { - zExp = pExp; - if (cSig64 < pSig64) { - zSig64 = pSig64 - cSig64; - } else if (pSig64 < cSig64) { - zSig64 = cSig64 - pSig64; - zSign ^= 1; - } else { - /* Exact zero */ - zSign = signflip; - if (status->float_rounding_mode == float_round_down) { - zSign ^= 1; - } - return packFloat32(zSign, 0, 0); - } - } - --zExp; - /* Normalize to put the explicit bit back into bit 62. */ - shiftcount = countLeadingZeros64(zSig64) - 1; - zSig64 <<= shiftcount; - zExp -= shiftcount; - } - if (flags & float_muladd_halve_result) { - zExp--; - } - - shift64RightJamming(zSig64, 32, &zSig64); - return roundAndPackFloat32(zSign, zExp, zSig64, status); -} - /*---------------------------------------------------------------------------- | Returns the square root of the single-precision floating-point value `a'. @@ -4265,252 +4311,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status) } -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the double-precision floating-point values -| `a' and `b' then adding 'c', with no intermediate rounding step after the -| multiplication. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic 754-2008. -| The flags argument allows the caller to select negation of the -| addend, the intermediate product, or the final result. (The difference -| between this and having the caller do a separate negation is that negating -| externally will flip the sign bit on NaNs.) -*----------------------------------------------------------------------------*/ - -float64 float64_muladd(float64 a, float64 b, float64 c, int flags, - float_status *status) -{ - flag aSign, bSign, cSign, zSign; - int aExp, bExp, cExp, pExp, zExp, expDiff; - uint64_t aSig, bSig, cSig; - flag pInf, pZero, pSign; - uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; - int shiftcount; - flag signflip, infzero; - - a = float64_squash_input_denormal(a, status); - b = float64_squash_input_denormal(b, status); - c = float64_squash_input_denormal(c, status); - aSig = extractFloat64Frac(a); - aExp = extractFloat64Exp(a); - aSign = extractFloat64Sign(a); - bSig = extractFloat64Frac(b); - bExp = extractFloat64Exp(b); - bSign = extractFloat64Sign(b); - cSig = extractFloat64Frac(c); - cExp = extractFloat64Exp(c); - cSign = extractFloat64Sign(c); - - infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || - (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); - - /* It is implementation-defined whether the cases of (0,inf,qnan) - * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN - * they return if they do), so we have to hand this information - * off to the target-specific pick-a-NaN routine. - */ - if (((aExp == 0x7ff) && aSig) || - ((bExp == 0x7ff) && bSig) || - ((cExp == 0x7ff) && cSig)) { - return propagateFloat64MulAddNaN(a, b, c, infzero, status); - } - - if (infzero) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - - if (flags & float_muladd_negate_c) { - cSign ^= 1; - } - - signflip = (flags & float_muladd_negate_result) ? 1 : 0; - - /* Work out the sign and type of the product */ - pSign = aSign ^ bSign; - if (flags & float_muladd_negate_product) { - pSign ^= 1; - } - pInf = (aExp == 0x7ff) || (bExp == 0x7ff); - pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); - - if (cExp == 0x7ff) { - if (pInf && (pSign ^ cSign)) { - /* addition of opposite-signed infinities => InvalidOperation */ - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - /* Otherwise generate an infinity of the same sign */ - return packFloat64(cSign ^ signflip, 0x7ff, 0); - } - - if (pInf) { - return packFloat64(pSign ^ signflip, 0x7ff, 0); - } - - if (pZero) { - if (cExp == 0) { - if (cSig == 0) { - /* Adding two exact zeroes */ - if (pSign == cSign) { - zSign = pSign; - } else if (status->float_rounding_mode == float_round_down) { - zSign = 1; - } else { - zSign = 0; - } - return packFloat64(zSign ^ signflip, 0, 0); - } - /* Exact zero plus a denorm */ - if (status->flush_to_zero) { - float_raise(float_flag_output_denormal, status); - return packFloat64(cSign ^ signflip, 0, 0); - } - } - /* Zero plus something non-zero : just return the something */ - if (flags & float_muladd_halve_result) { - if (cExp == 0) { - normalizeFloat64Subnormal(cSig, &cExp, &cSig); - } - /* Subtract one to halve, and one again because roundAndPackFloat64 - * wants one less than the true exponent. - */ - cExp -= 2; - cSig = (cSig | 0x0010000000000000ULL) << 10; - return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status); - } - return packFloat64(cSign ^ signflip, cExp, cSig); - } - - if (aExp == 0) { - normalizeFloat64Subnormal(aSig, &aExp, &aSig); - } - if (bExp == 0) { - normalizeFloat64Subnormal(bSig, &bExp, &bSig); - } - - /* Calculate the actual result a * b + c */ - - /* Multiply first; this is easy. */ - /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff - * because we want the true exponent, not the "one-less-than" - * flavour that roundAndPackFloat64() takes. - */ - pExp = aExp + bExp - 0x3fe; - aSig = (aSig | LIT64(0x0010000000000000))<<10; - bSig = (bSig | LIT64(0x0010000000000000))<<11; - mul64To128(aSig, bSig, &pSig0, &pSig1); - if ((int64_t)(pSig0 << 1) >= 0) { - shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); - pExp--; - } - - zSign = pSign ^ signflip; - - /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit - * bit in position 126. - */ - if (cExp == 0) { - if (!cSig) { - /* Throw out the special case of c being an exact zero now */ - shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); - if (flags & float_muladd_halve_result) { - pExp--; - } - return roundAndPackFloat64(zSign, pExp - 1, - pSig1, status); - } - normalizeFloat64Subnormal(cSig, &cExp, &cSig); - } - - /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the - * significand of the addend, with the explicit bit in position 126. - */ - cSig0 = cSig << (126 - 64 - 52); - cSig1 = 0; - cSig0 |= LIT64(0x4000000000000000); - expDiff = pExp - cExp; - - if (pSign == cSign) { - /* Addition */ - if (expDiff > 0) { - /* scale c to match p */ - shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); - zExp = pExp; - } else if (expDiff < 0) { - /* scale p to match c */ - shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); - zExp = cExp; - } else { - /* no scaling needed */ - zExp = cExp; - } - /* Add significands and make sure explicit bit ends up in posn 126 */ - add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); - if ((int64_t)zSig0 < 0) { - shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); - } else { - zExp--; - } - shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); - if (flags & float_muladd_halve_result) { - zExp--; - } - return roundAndPackFloat64(zSign, zExp, zSig1, status); - } else { - /* Subtraction */ - if (expDiff > 0) { - shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); - sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); - zExp = pExp; - } else if (expDiff < 0) { - shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); - sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); - zExp = cExp; - zSign ^= 1; - } else { - zExp = pExp; - if (lt128(cSig0, cSig1, pSig0, pSig1)) { - sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); - } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { - sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); - zSign ^= 1; - } else { - /* Exact zero */ - zSign = signflip; - if (status->float_rounding_mode == float_round_down) { - zSign ^= 1; - } - return packFloat64(zSign, 0, 0); - } - } - --zExp; - /* Do the equivalent of normalizeRoundAndPackFloat64() but - * starting with the significand in a pair of uint64_t. - */ - if (zSig0) { - shiftcount = countLeadingZeros64(zSig0) - 1; - shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); - if (zSig1) { - zSig0 |= 1; - } - zExp -= shiftcount; - } else { - shiftcount = countLeadingZeros64(zSig1); - if (shiftcount == 0) { - zSig0 = (zSig1 >> 1) | (zSig1 & 1); - zExp -= 63; - } else { - shiftcount--; - zSig0 = zSig1 << shiftcount; - zExp -= (shiftcount + 64); - } - } - if (flags & float_muladd_halve_result) { - zExp--; - } - return roundAndPackFloat64(zSign, zExp, zSig0, status); - } -} /*---------------------------------------------------------------------------- | Returns the square root of the double-precision floating-point value `a'. |