diff options
author | Richard Henderson | 2020-11-14 23:40:27 +0100 |
---|---|---|
committer | Richard Henderson | 2021-06-03 22:59:34 +0200 |
commit | e368951998ca6ffb0a1812af9beef916125dd769 (patch) | |
tree | 222c592c1371024dc89843143ef4d8752db14718 /fpu | |
parent | softfloat: Move round_to_uint_and_pack to softfloat-parts.c.inc (diff) | |
download | qemu-e368951998ca6ffb0a1812af9beef916125dd769.tar.gz qemu-e368951998ca6ffb0a1812af9beef916125dd769.tar.xz qemu-e368951998ca6ffb0a1812af9beef916125dd769.zip |
softfloat: Move int_to_float to softfloat-parts.c.inc
Rename to parts$N_sint_to_float.
Reimplement int{32,64}_to_float128 with FloatParts128.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'fpu')
-rw-r--r-- | fpu/softfloat-parts.c.inc | 32 | ||||
-rw-r--r-- | fpu/softfloat.c | 136 |
2 files changed, 70 insertions, 98 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index 483bdc0e21..b7486f02db 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -883,3 +883,35 @@ static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode, float_raise(flags, s); return r; } + +/* + * Integer to float conversions + * + * Returns the result of converting the two's complement integer `a' + * to the floating-point format. The conversion is performed according + * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. + */ +static void partsN(sint_to_float)(FloatPartsN *p, int64_t a, + int scale, float_status *s) +{ + uint64_t f = a; + int shift; + + memset(p, 0, sizeof(*p)); + + if (a == 0) { + p->cls = float_class_zero; + return; + } + + p->cls = float_class_normal; + if (a < 0) { + f = -f; + p->sign = true; + } + shift = clz64(f); + scale = MIN(MAX(scale, -0x10000), 0x10000); + + p->exp = DECOMPOSED_BINARY_POINT - shift + scale; + p->frac_hi = f << shift; +} diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 3181678ea9..6404a2997f 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -849,6 +849,14 @@ static uint64_t parts128_float_to_uint(FloatParts128 *p, FloatRoundMode rmode, #define parts_float_to_uint(P, R, Z, M, S) \ PARTS_GENERIC_64_128(float_to_uint, P)(P, R, Z, M, S) +static void parts64_sint_to_float(FloatParts64 *p, int64_t a, + int scale, float_status *s); +static void parts128_sint_to_float(FloatParts128 *p, int64_t a, + int scale, float_status *s); + +#define parts_sint_to_float(P, I, Z, S) \ + PARTS_GENERIC_64_128(sint_to_float, P)(P, I, Z, S) + /* * Helper functions for softfloat-parts.c.inc, per-size operations. */ @@ -2940,42 +2948,15 @@ uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *s) } /* - * Integer to float conversions - * - * Returns the result of converting the two's complement integer `a' - * to the floating-point format. The conversion is performed according - * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. + * Signed integer to floating-point conversions */ -static FloatParts64 int_to_float(int64_t a, int scale, float_status *status) -{ - FloatParts64 r = { .sign = false }; - - if (a == 0) { - r.cls = float_class_zero; - } else { - uint64_t f = a; - int shift; - - r.cls = float_class_normal; - if (a < 0) { - f = -f; - r.sign = true; - } - shift = clz64(f); - scale = MIN(MAX(scale, -0x10000), 0x10000); - - r.exp = DECOMPOSED_BINARY_POINT - shift + scale; - r.frac = f << shift; - } - - return r; -} - float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_sint_to_float(&p, a, scale, status); + return float16_round_pack_canonical(&p, status); } float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status) @@ -3010,8 +2991,10 @@ float16 int8_to_float16(int8_t a, float_status *status) float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float32_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts64_sint_to_float(&p, a, scale, status); + return float32_round_pack_canonical(&p, status); } float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status) @@ -3041,8 +3024,10 @@ float32 int16_to_float32(int16_t a, float_status *status) float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float64_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_sint_to_float(&p, a, scale, status); + return float64_round_pack_canonical(&p, status); } float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status) @@ -3070,15 +3055,12 @@ float64 int16_to_float64(int16_t a, float_status *status) return int64_to_float64_scalbn(a, 0, status); } -/* - * Returns the result of converting the two's complement integer `a' - * to the bfloat16 format. - */ - bfloat16 int64_to_bfloat16_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return bfloat16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_sint_to_float(&p, a, scale, status); + return bfloat16_round_pack_canonical(&p, status); } bfloat16 int32_to_bfloat16_scalbn(int32_t a, int scale, float_status *status) @@ -3106,6 +3088,19 @@ bfloat16 int16_to_bfloat16(int16_t a, float_status *status) return int64_to_bfloat16_scalbn(a, 0, status); } +float128 int64_to_float128(int64_t a, float_status *status) +{ + FloatParts128 p; + + parts_sint_to_float(&p, a, 0, status); + return float128_round_pack_canonical(&p, status); +} + +float128 int32_to_float128(int32_t a, float_status *status) +{ + return int64_to_float128(a, status); +} + /* * Unsigned Integer to float conversions * @@ -4957,28 +4952,6 @@ floatx80 int32_to_floatx80(int32_t a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of converting the 32-bit two's complement integer `a' to -| the quadruple-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 int32_to_float128(int32_t a, float_status *status) -{ - bool zSign; - uint32_t absA; - int8_t shiftCount; - uint64_t zSig0; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz32(absA) + 17; - zSig0 = absA; - return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); - -} - -/*---------------------------------------------------------------------------- | Returns the result of converting the 64-bit two's complement integer `a' | to the extended double-precision floating-point format. The conversion | is performed according to the IEC/IEEE Standard for Binary Floating-Point @@ -5000,39 +4973,6 @@ floatx80 int64_to_floatx80(int64_t a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit two's complement integer `a' to -| the quadruple-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 int64_to_float128(int64_t a, float_status *status) -{ - bool zSign; - uint64_t absA; - int8_t shiftCount; - int32_t zExp; - uint64_t zSig0, zSig1; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz64(absA) + 49; - zExp = 0x406E - shiftCount; - if ( 64 <= shiftCount ) { - zSig1 = 0; - zSig0 = absA; - shiftCount -= 64; - } - else { - zSig1 = absA; - zSig0 = 0; - } - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - return packFloat128( zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- | Returns the result of converting the 64-bit unsigned integer `a' | to the quadruple-precision floating-point format. The conversion is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |