summaryrefslogtreecommitdiffstats
path: root/include/qemu
diff options
context:
space:
mode:
authorEric Blake2020-06-25 18:26:02 +0200
committerPaolo Bonzini2020-06-26 15:39:39 +0200
commitf9919116b8c226428df28bc69ab33480eaa1ee6d (patch)
tree5afb67ea4817a07adde7df5f5e31a0251c8a31ba /include/qemu
parenttarget/i386: Add notes for versioned CPU models (diff)
downloadqemu-f9919116b8c226428df28bc69ab33480eaa1ee6d.tar.gz
qemu-f9919116b8c226428df28bc69ab33480eaa1ee6d.tar.xz
qemu-f9919116b8c226428df28bc69ab33480eaa1ee6d.zip
osdep: Make MIN/MAX evaluate arguments only once
I'm not aware of any immediate bugs in qemu where a second runtime evaluation of the arguments to MIN() or MAX() causes a problem, but proactively preventing such abuse is easier than falling prey to an unintended case down the road. At any rate, here's the conversation that sparked the current patch: https://lists.gnu.org/archive/html/qemu-devel/2018-12/msg05718.html Update the MIN/MAX macros to only evaluate their argument once at runtime; this uses typeof(1 ? (a) : (b)) to ensure that we are promoting the temporaries to the same type as the final comparison (we have to trigger type promotion, as typeof(bitfield) won't compile; and we can't use typeof((a) + (b)) or even typeof((a) + 0), as some of our uses of MAX are on void* pointers where such addition is undefined). However, we are unable to work around gcc refusing to compile ({}) in a constant context (such as the array length of a static variable), even when only used in the dead branch of a __builtin_choose_expr(), so we have to provide a second macro pair MIN_CONST and MAX_CONST for use when both arguments are known to be compile-time constants and where the result must also be usable as a constant; this second form evaluates arguments multiple times but that doesn't matter for constants. By using a void expression as the expansion if a non-constant is presented to this second form, we can enlist the compiler to ensure the double evaluation is not attempted on non-constants. Alas, as both macros now rely on compiler intrinsics, they are no longer usable in preprocessor #if conditions; those will just have to be open-coded or the logic rewritten into #define or runtime 'if' conditions (but where the compiler dead-code-elimination will probably still apply). I tested that both gcc 10.1.1 and clang 10.0.0 produce errors for all forms of macro mis-use. As the errors can sometimes be cryptic, I'm demonstrating the gcc output: Use of MIN when MIN_CONST is needed: In file included from /home/eblake/qemu/qemu-img.c:25: /home/eblake/qemu/include/qemu/osdep.h:249:5: error: braced-group within expression allowed only inside a function 249 | ({ \ | ^ /home/eblake/qemu/qemu-img.c:92:12: note: in expansion of macro ‘MIN’ 92 | char array[MIN(1, 2)] = ""; | ^~~ Use of MIN_CONST when MIN is needed: /home/eblake/qemu/qemu-img.c: In function ‘is_allocated_sectors’: /home/eblake/qemu/qemu-img.c:1225:15: error: void value not ignored as it ought to be 1225 | i = MIN_CONST(i, n); | ^ Use of MIN in the preprocessor: In file included from /home/eblake/qemu/accel/tcg/translate-all.c:20: /home/eblake/qemu/accel/tcg/translate-all.c: In function ‘page_check_range’: /home/eblake/qemu/include/qemu/osdep.h:249:6: error: token "{" is not valid in preprocessor expressions 249 | ({ \ | ^ Fix the resulting callsites that used #if or computed a compile-time constant min or max to use the new macros. cpu-defs.h is interesting, as CPU_TLB_DYN_MAX_BITS is sometimes used as a constant and sometimes dynamic. It may be worth improving glib's MIN/MAX definitions to be saner, but that is a task for another day. Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20200625162602.700741-1-eblake@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'include/qemu')
-rw-r--r--include/qemu/osdep.h57
1 files changed, 47 insertions, 10 deletions
diff --git a/include/qemu/osdep.h b/include/qemu/osdep.h
index ff7c17b857..0d26a1b9bd 100644
--- a/include/qemu/osdep.h
+++ b/include/qemu/osdep.h
@@ -236,18 +236,55 @@ extern int daemon(int, int);
#define SIZE_MAX ((size_t)-1)
#endif
-#ifndef MIN
-#define MIN(a, b) (((a) < (b)) ? (a) : (b))
-#endif
-#ifndef MAX
-#define MAX(a, b) (((a) > (b)) ? (a) : (b))
-#endif
+/*
+ * Two variations of MIN/MAX macros. The first is for runtime use, and
+ * evaluates arguments only once (so it is safe even with side
+ * effects), but will not work in constant contexts (such as array
+ * size declarations) because of the '{}'. The second is for constant
+ * expression use, where evaluating arguments twice is safe because
+ * the result is going to be constant anyway, but will not work in a
+ * runtime context because of a void expression where a value is
+ * expected. Thus, both gcc and clang will fail to compile if you use
+ * the wrong macro (even if the error may seem a bit cryptic).
+ *
+ * Note that neither form is usable as an #if condition; if you truly
+ * need to write conditional code that depends on a minimum or maximum
+ * determined by the pre-processor instead of the compiler, you'll
+ * have to open-code it.
+ */
+#undef MIN
+#define MIN(a, b) \
+ ({ \
+ typeof(1 ? (a) : (b)) _a = (a), _b = (b); \
+ _a < _b ? _a : _b; \
+ })
+#define MIN_CONST(a, b) \
+ __builtin_choose_expr( \
+ __builtin_constant_p(a) && __builtin_constant_p(b), \
+ (a) < (b) ? (a) : (b), \
+ ((void)0))
+#undef MAX
+#define MAX(a, b) \
+ ({ \
+ typeof(1 ? (a) : (b)) _a = (a), _b = (b); \
+ _a > _b ? _a : _b; \
+ })
+#define MAX_CONST(a, b) \
+ __builtin_choose_expr( \
+ __builtin_constant_p(a) && __builtin_constant_p(b), \
+ (a) > (b) ? (a) : (b), \
+ ((void)0))
-/* Minimum function that returns zero only iff both values are zero.
- * Intended for use with unsigned values only. */
+/*
+ * Minimum function that returns zero only if both values are zero.
+ * Intended for use with unsigned values only.
+ */
#ifndef MIN_NON_ZERO
-#define MIN_NON_ZERO(a, b) ((a) == 0 ? (b) : \
- ((b) == 0 ? (a) : (MIN(a, b))))
+#define MIN_NON_ZERO(a, b) \
+ ({ \
+ typeof(1 ? (a) : (b)) _a = (a), _b = (b); \
+ _a == 0 ? _b : (_b == 0 || _b > _a) ? _a : _b; \
+ })
#endif
/* Round number down to multiple */