summaryrefslogtreecommitdiffstats
path: root/target-arm
diff options
context:
space:
mode:
authorPeter Maydell2014-04-15 20:18:41 +0200
committerPeter Maydell2014-04-17 22:34:04 +0200
commitaca3f40b374428e9c01068cf96294483cbb760a0 (patch)
treeea0528c089b29a84a44cac1cd539d80917e51308 /target-arm
parenttarget-arm: Don't mention PMU in debug feature register (diff)
downloadqemu-aca3f40b374428e9c01068cf96294483cbb760a0.tar.gz
qemu-aca3f40b374428e9c01068cf96294483cbb760a0.tar.xz
qemu-aca3f40b374428e9c01068cf96294483cbb760a0.zip
target-arm: A64: Implement DC ZVA
Implement the DC ZVA instruction, which clears a block of memory. The fast path obtains a pointer to the underlying RAM via the TCG TLB data structure so we can do a direct memset(), with fallback to a simple byte-store loop in the slow path. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Acked-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Diffstat (limited to 'target-arm')
-rw-r--r--target-arm/cpu-qom.h2
-rw-r--r--target-arm/cpu.h3
-rw-r--r--target-arm/cpu64.c1
-rw-r--r--target-arm/helper.c122
-rw-r--r--target-arm/helper.h1
-rw-r--r--target-arm/translate-a64.c5
6 files changed, 128 insertions, 6 deletions
diff --git a/target-arm/cpu-qom.h b/target-arm/cpu-qom.h
index 00234e1d3d..41caa6c780 100644
--- a/target-arm/cpu-qom.h
+++ b/target-arm/cpu-qom.h
@@ -150,6 +150,8 @@ typedef struct ARMCPU {
uint32_t reset_cbar;
uint32_t reset_auxcr;
bool reset_hivecs;
+ /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
+ uint32_t dcz_blocksize;
} ARMCPU;
#define TYPE_AARCH64_CPU "aarch64-cpu"
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
index ff56519e65..a00ff73fb1 100644
--- a/target-arm/cpu.h
+++ b/target-arm/cpu.h
@@ -758,7 +758,8 @@ static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
-#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
+#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
+#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
diff --git a/target-arm/cpu64.c b/target-arm/cpu64.c
index 8426bf1333..fccecc2527 100644
--- a/target-arm/cpu64.c
+++ b/target-arm/cpu64.c
@@ -46,6 +46,7 @@ static void aarch64_any_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_V7MP);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
cpu->ctr = 0x80030003; /* 32 byte I and D cacheline size, VIPT icache */
+ cpu->dcz_blocksize = 7; /* 512 bytes */
}
#endif
diff --git a/target-arm/helper.c b/target-arm/helper.c
index 62f7fd3280..2ffc588575 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -10,6 +10,8 @@
#include <zlib.h> /* For crc32 */
#ifndef CONFIG_USER_ONLY
+#include "exec/softmmu_exec.h"
+
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
@@ -1745,6 +1747,29 @@ static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
tlb_flush(CPU(cpu), asid == 0);
}
+static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* We don't implement EL2, so the only control on DC ZVA is the
+ * bit in the SCTLR which can prohibit access for EL0.
+ */
+ if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
+ return CP_ACCESS_TRAP;
+ }
+ return CP_ACCESS_OK;
+}
+
+static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ int dzp_bit = 1 << 4;
+
+ /* DZP indicates whether DC ZVA access is allowed */
+ if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
+ dzp_bit = 0;
+ }
+ return cpu->dcz_blocksize | dzp_bit;
+}
+
static const ARMCPRegInfo v8_cp_reginfo[] = {
/* Minimal set of EL0-visible registers. This will need to be expanded
* significantly for system emulation of AArch64 CPUs.
@@ -1764,13 +1789,18 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
.access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
- /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
- * For system mode the DZP bit here will need to be computed, not constant.
- */
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
- .access = PL0_R, .type = ARM_CP_CONST,
- .resetvalue = 0x10 },
+ .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
+ .readfn = aa64_dczid_read },
+ { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
+ .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
+ .access = PL0_W, .type = ARM_CP_DC_ZVA,
+#ifndef CONFIG_USER_ONLY
+ /* Avoid overhead of an access check that always passes in user-mode */
+ .accessfn = aa64_zva_access,
+#endif
+ },
{ .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
.access = PL1_R, .type = ARM_CP_CURRENTEL },
@@ -3930,6 +3960,88 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
#endif
+void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
+{
+ /* Implement DC ZVA, which zeroes a fixed-length block of memory.
+ * Note that we do not implement the (architecturally mandated)
+ * alignment fault for attempts to use this on Device memory
+ * (which matches the usual QEMU behaviour of not implementing either
+ * alignment faults or any memory attribute handling).
+ */
+
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ uint64_t blocklen = 4 << cpu->dcz_blocksize;
+ uint64_t vaddr = vaddr_in & ~(blocklen - 1);
+
+#ifndef CONFIG_USER_ONLY
+ {
+ /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
+ * the block size so we might have to do more than one TLB lookup.
+ * We know that in fact for any v8 CPU the page size is at least 4K
+ * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
+ * 1K as an artefact of legacy v5 subpage support being present in the
+ * same QEMU executable.
+ */
+ int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
+ void *hostaddr[maxidx];
+ int try, i;
+
+ for (try = 0; try < 2; try++) {
+
+ for (i = 0; i < maxidx; i++) {
+ hostaddr[i] = tlb_vaddr_to_host(env,
+ vaddr + TARGET_PAGE_SIZE * i,
+ 1, cpu_mmu_index(env));
+ if (!hostaddr[i]) {
+ break;
+ }
+ }
+ if (i == maxidx) {
+ /* If it's all in the TLB it's fair game for just writing to;
+ * we know we don't need to update dirty status, etc.
+ */
+ for (i = 0; i < maxidx - 1; i++) {
+ memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
+ }
+ memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
+ return;
+ }
+ /* OK, try a store and see if we can populate the tlb. This
+ * might cause an exception if the memory isn't writable,
+ * in which case we will longjmp out of here. We must for
+ * this purpose use the actual register value passed to us
+ * so that we get the fault address right.
+ */
+ helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
+ /* Now we can populate the other TLB entries, if any */
+ for (i = 0; i < maxidx; i++) {
+ uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
+ if (va != (vaddr_in & TARGET_PAGE_MASK)) {
+ helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
+ }
+ }
+ }
+
+ /* Slow path (probably attempt to do this to an I/O device or
+ * similar, or clearing of a block of code we have translations
+ * cached for). Just do a series of byte writes as the architecture
+ * demands. It's not worth trying to use a cpu_physical_memory_map(),
+ * memset(), unmap() sequence here because:
+ * + we'd need to account for the blocksize being larger than a page
+ * + the direct-RAM access case is almost always going to be dealt
+ * with in the fastpath code above, so there's no speed benefit
+ * + we would have to deal with the map returning NULL because the
+ * bounce buffer was in use
+ */
+ for (i = 0; i < blocklen; i++) {
+ helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
+ }
+ }
+#else
+ memset(g2h(vaddr), 0, blocklen);
+#endif
+}
+
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
diff --git a/target-arm/helper.h b/target-arm/helper.h
index 0abdb0c8e0..597716924c 100644
--- a/target-arm/helper.h
+++ b/target-arm/helper.h
@@ -515,6 +515,7 @@ DEF_HELPER_4(crypto_aesmc, void, env, i32, i32, i32)
DEF_HELPER_FLAGS_3(crc32, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32)
DEF_HELPER_FLAGS_3(crc32c, TCG_CALL_NO_RWG_SE, i32, i32, i32, i32)
+DEF_HELPER_2(dc_zva, void, env, i64)
#ifdef TARGET_AARCH64
#include "helper-a64.h"
diff --git a/target-arm/translate-a64.c b/target-arm/translate-a64.c
index 0ec2f65586..4c5402a0f7 100644
--- a/target-arm/translate-a64.c
+++ b/target-arm/translate-a64.c
@@ -1335,6 +1335,11 @@ static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
tcg_rt = cpu_reg(s, rt);
tcg_gen_movi_i64(tcg_rt, s->current_pl << 2);
return;
+ case ARM_CP_DC_ZVA:
+ /* Writes clear the aligned block of memory which rt points into. */
+ tcg_rt = cpu_reg(s, rt);
+ gen_helper_dc_zva(cpu_env, tcg_rt);
+ return;
default:
break;
}