summaryrefslogtreecommitdiffstats
path: root/target
diff options
context:
space:
mode:
authorPeter Maydell2020-06-26 17:55:20 +0200
committerPeter Maydell2020-06-26 17:55:20 +0200
commit3591ddd39987cbdaa0cfa344a262f315abd97582 (patch)
tree4adfc6f7c9ee3d650087d01f8732fe8d6bcca2c3 /target
parentMerge remote-tracking branch 'remotes/stefanha/tags/block-pull-request' into ... (diff)
parenti386: Mask SVM features if nested SVM is disabled (diff)
downloadqemu-3591ddd39987cbdaa0cfa344a262f315abd97582.tar.gz
qemu-3591ddd39987cbdaa0cfa344a262f315abd97582.tar.xz
qemu-3591ddd39987cbdaa0cfa344a262f315abd97582.zip
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
* Various fixes * libdaxctl support to correctly align devdax character devices (Jingqi) * initial-all-set support for live migration (Jay) * forbid '-numa node, mem' for 5.1 and newer machine types (Igor) * x87 fixes (Joseph) * Tighten memory_region_access_valid (Michael) and fix fallout (myself) * Replay fixes (Pavel) # gpg: Signature made Fri 26 Jun 2020 14:42:17 BST # gpg: using RSA key F13338574B662389866C7682BFFBD25F78C7AE83 # gpg: issuer "pbonzini@redhat.com" # gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [full] # gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [full] # Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1 # Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83 * remotes/bonzini/tags/for-upstream: (31 commits) i386: Mask SVM features if nested SVM is disabled ibex_uart: fix XOR-as-pow vmport: move compat properties to hw_compat_5_0 hyperv: vmbus: Remove the 2nd IRQ kvm: i386: allow TSC to differ by NTP correction bounds without TSC scaling numa: forbid '-numa node, mem' for 5.1 and newer machine types osdep: Make MIN/MAX evaluate arguments only once target/i386: Add notes for versioned CPU models target/i386: reimplement fpatan using floatx80 operations target/i386: reimplement fyl2x using floatx80 operations target/i386: reimplement fyl2xp1 using floatx80 operations target/i386: reimplement fprem, fprem1 using floatx80 operations softfloat: return low bits of quotient from floatx80_modrem softfloat: do not set denominator high bit for floatx80 remainder softfloat: do not return pseudo-denormal from floatx80 remainder softfloat: fix floatx80 remainder pseudo-denormal check for zero softfloat: merge floatx80_mod and floatx80_rem target/i386: reimplement f2xm1 using floatx80 operations xen: Actually fix build without passthrough Makefile: Install qemu-[qmp/ga]-ref.* into the directory "interop" ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'target')
-rw-r--r--target/i386/cpu.c9
-rw-r--r--target/i386/fpu_helper.c1396
-rw-r--r--target/i386/kvm.c46
-rw-r--r--target/m68k/softfloat.c83
-rw-r--r--target/m68k/softfloat.h1
5 files changed, 1319 insertions, 216 deletions
diff --git a/target/i386/cpu.c b/target/i386/cpu.c
index b1b311baa2..36cbd3d027 100644
--- a/target/i386/cpu.c
+++ b/target/i386/cpu.c
@@ -1404,6 +1404,10 @@ static FeatureDep feature_dependencies[] = {
.from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_VMFUNC },
.to = { FEAT_VMX_VMFUNC, ~0ull },
},
+ {
+ .from = { FEAT_8000_0001_ECX, CPUID_EXT3_SVM },
+ .to = { FEAT_SVM, ~0ull },
+ },
};
typedef struct X86RegisterInfo32 {
@@ -3135,6 +3139,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{ .version = 2,
+ .note = "ARCH_CAPABILITIES",
.props = (PropValue[]) {
{ "arch-capabilities", "on" },
{ "rdctl-no", "on" },
@@ -3146,6 +3151,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
},
{ .version = 3,
.alias = "Cascadelake-Server-noTSX",
+ .note = "ARCH_CAPABILITIES, no TSX",
.props = (PropValue[]) {
{ "hle", "off" },
{ "rtm", "off" },
@@ -3367,6 +3373,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
{ .version = 1 },
{
.version = 2,
+ .note = "no TSX",
.alias = "Icelake-Client-noTSX",
.props = (PropValue[]) {
{ "hle", "off" },
@@ -3484,6 +3491,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
{ .version = 1 },
{
.version = 2,
+ .note = "no TSX",
.alias = "Icelake-Server-noTSX",
.props = (PropValue[]) {
{ "hle", "off" },
@@ -3604,6 +3612,7 @@ static X86CPUDefinition builtin_x86_defs[] = {
{ .version = 1 },
{
.version = 2,
+ .note = "no MPX, no MONITOR",
.props = (PropValue[]) {
{ "monitor", "off" },
{ "mpx", "off" },
diff --git a/target/i386/fpu_helper.c b/target/i386/fpu_helper.c
index 8ef5b463ea..71cec3962f 100644
--- a/target/i386/fpu_helper.c
+++ b/target/i386/fpu_helper.c
@@ -25,6 +25,7 @@
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
+#include "fpu/softfloat-macros.h"
#ifdef CONFIG_SOFTMMU
#include "hw/irq.h"
@@ -836,27 +837,390 @@ void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
merge_exception_flags(env, old_flags);
}
-void helper_f2xm1(CPUX86State *env)
-{
- double val = floatx80_to_double(env, ST0);
+/* 128-bit significand of log(2). */
+#define ln2_sig_high 0xb17217f7d1cf79abULL
+#define ln2_sig_low 0xc9e3b39803f2f6afULL
- val = pow(2.0, val) - 1.0;
- ST0 = double_to_floatx80(env, val);
-}
+/*
+ * Polynomial coefficients for an approximation to (2^x - 1) / x, on
+ * the interval [-1/64, 1/64].
+ */
+#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL)
+#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL)
+#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL)
+#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL)
+#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL)
+#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL)
+#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL)
+#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL)
+#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL)
+
+struct f2xm1_data {
+ /*
+ * A value very close to a multiple of 1/32, such that 2^t and 2^t - 1
+ * are very close to exact floatx80 values.
+ */
+ floatx80 t;
+ /* The value of 2^t. */
+ floatx80 exp2;
+ /* The value of 2^t - 1. */
+ floatx80 exp2m1;
+};
+
+static const struct f2xm1_data f2xm1_table[65] = {
+ { make_floatx80(0xbfff, 0x8000000000000000ULL),
+ make_floatx80(0x3ffe, 0x8000000000000000ULL),
+ make_floatx80(0xbffe, 0x8000000000000000ULL) },
+ { make_floatx80(0xbffe, 0xf800000000002e7eULL),
+ make_floatx80(0x3ffe, 0x82cd8698ac2b9160ULL),
+ make_floatx80(0xbffd, 0xfa64f2cea7a8dd40ULL) },
+ { make_floatx80(0xbffe, 0xefffffffffffe960ULL),
+ make_floatx80(0x3ffe, 0x85aac367cc488345ULL),
+ make_floatx80(0xbffd, 0xf4aa7930676ef976ULL) },
+ { make_floatx80(0xbffe, 0xe800000000006f10ULL),
+ make_floatx80(0x3ffe, 0x88980e8092da5c14ULL),
+ make_floatx80(0xbffd, 0xeecfe2feda4b47d8ULL) },
+ { make_floatx80(0xbffe, 0xe000000000008a45ULL),
+ make_floatx80(0x3ffe, 0x8b95c1e3ea8ba2a5ULL),
+ make_floatx80(0xbffd, 0xe8d47c382ae8bab6ULL) },
+ { make_floatx80(0xbffe, 0xd7ffffffffff8a9eULL),
+ make_floatx80(0x3ffe, 0x8ea4398b45cd8116ULL),
+ make_floatx80(0xbffd, 0xe2b78ce97464fdd4ULL) },
+ { make_floatx80(0xbffe, 0xd0000000000019a0ULL),
+ make_floatx80(0x3ffe, 0x91c3d373ab11b919ULL),
+ make_floatx80(0xbffd, 0xdc785918a9dc8dceULL) },
+ { make_floatx80(0xbffe, 0xc7ffffffffff14dfULL),
+ make_floatx80(0x3ffe, 0x94f4efa8fef76836ULL),
+ make_floatx80(0xbffd, 0xd61620ae02112f94ULL) },
+ { make_floatx80(0xbffe, 0xc000000000006530ULL),
+ make_floatx80(0x3ffe, 0x9837f0518db87fbbULL),
+ make_floatx80(0xbffd, 0xcf901f5ce48f008aULL) },
+ { make_floatx80(0xbffe, 0xb7ffffffffff1723ULL),
+ make_floatx80(0x3ffe, 0x9b8d39b9d54eb74cULL),
+ make_floatx80(0xbffd, 0xc8e58c8c55629168ULL) },
+ { make_floatx80(0xbffe, 0xb00000000000b5e1ULL),
+ make_floatx80(0x3ffe, 0x9ef5326091a0c366ULL),
+ make_floatx80(0xbffd, 0xc2159b3edcbe7934ULL) },
+ { make_floatx80(0xbffe, 0xa800000000006f8aULL),
+ make_floatx80(0x3ffe, 0xa27043030c49370aULL),
+ make_floatx80(0xbffd, 0xbb1f79f9e76d91ecULL) },
+ { make_floatx80(0xbffe, 0x9fffffffffff816aULL),
+ make_floatx80(0x3ffe, 0xa5fed6a9b15171cfULL),
+ make_floatx80(0xbffd, 0xb40252ac9d5d1c62ULL) },
+ { make_floatx80(0xbffe, 0x97ffffffffffb621ULL),
+ make_floatx80(0x3ffe, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80(0xbffd, 0xacbd4a962b079e34ULL) },
+ { make_floatx80(0xbffe, 0x8fffffffffff162bULL),
+ make_floatx80(0x3ffe, 0xad583eea42a1b886ULL),
+ make_floatx80(0xbffd, 0xa54f822b7abc8ef4ULL) },
+ { make_floatx80(0xbffe, 0x87ffffffffff4d34ULL),
+ make_floatx80(0x3ffe, 0xb123f581d2ac7b51ULL),
+ make_floatx80(0xbffd, 0x9db814fc5aa7095eULL) },
+ { make_floatx80(0xbffe, 0x800000000000227dULL),
+ make_floatx80(0x3ffe, 0xb504f333f9de539dULL),
+ make_floatx80(0xbffd, 0x95f619980c4358c6ULL) },
+ { make_floatx80(0xbffd, 0xefffffffffff3978ULL),
+ make_floatx80(0x3ffe, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80(0xbffd, 0x8e08a1713a085ebeULL) },
+ { make_floatx80(0xbffd, 0xe00000000000df81ULL),
+ make_floatx80(0x3ffe, 0xbd08a39f580bfd8cULL),
+ make_floatx80(0xbffd, 0x85eeb8c14fe804e8ULL) },
+ { make_floatx80(0xbffd, 0xd00000000000bccfULL),
+ make_floatx80(0x3ffe, 0xc12c4cca667062f6ULL),
+ make_floatx80(0xbffc, 0xfb4eccd6663e7428ULL) },
+ { make_floatx80(0xbffd, 0xc00000000000eff0ULL),
+ make_floatx80(0x3ffe, 0xc5672a1155069abeULL),
+ make_floatx80(0xbffc, 0xea6357baabe59508ULL) },
+ { make_floatx80(0xbffd, 0xb000000000000fe6ULL),
+ make_floatx80(0x3ffe, 0xc9b9bd866e2f234bULL),
+ make_floatx80(0xbffc, 0xd91909e6474372d4ULL) },
+ { make_floatx80(0xbffd, 0x9fffffffffff2172ULL),
+ make_floatx80(0x3ffe, 0xce248c151f84bf00ULL),
+ make_floatx80(0xbffc, 0xc76dcfab81ed0400ULL) },
+ { make_floatx80(0xbffd, 0x8fffffffffffafffULL),
+ make_floatx80(0x3ffe, 0xd2a81d91f12afb2bULL),
+ make_floatx80(0xbffc, 0xb55f89b83b541354ULL) },
+ { make_floatx80(0xbffc, 0xffffffffffff81a3ULL),
+ make_floatx80(0x3ffe, 0xd744fccad69d7d5eULL),
+ make_floatx80(0xbffc, 0xa2ec0cd4a58a0a88ULL) },
+ { make_floatx80(0xbffc, 0xdfffffffffff1568ULL),
+ make_floatx80(0x3ffe, 0xdbfbb797daf25a44ULL),
+ make_floatx80(0xbffc, 0x901121a0943696f0ULL) },
+ { make_floatx80(0xbffc, 0xbfffffffffff68daULL),
+ make_floatx80(0x3ffe, 0xe0ccdeec2a94f811ULL),
+ make_floatx80(0xbffb, 0xf999089eab583f78ULL) },
+ { make_floatx80(0xbffc, 0x9fffffffffff4690ULL),
+ make_floatx80(0x3ffe, 0xe5b906e77c83657eULL),
+ make_floatx80(0xbffb, 0xd237c8c41be4d410ULL) },
+ { make_floatx80(0xbffb, 0xffffffffffff8aeeULL),
+ make_floatx80(0x3ffe, 0xeac0c6e7dd24427cULL),
+ make_floatx80(0xbffb, 0xa9f9c8c116ddec20ULL) },
+ { make_floatx80(0xbffb, 0xbfffffffffff2d18ULL),
+ make_floatx80(0x3ffe, 0xefe4b99bdcdb06ebULL),
+ make_floatx80(0xbffb, 0x80da33211927c8a8ULL) },
+ { make_floatx80(0xbffa, 0xffffffffffff8ccbULL),
+ make_floatx80(0x3ffe, 0xf5257d152486d0f4ULL),
+ make_floatx80(0xbffa, 0xada82eadb792f0c0ULL) },
+ { make_floatx80(0xbff9, 0xffffffffffff11feULL),
+ make_floatx80(0x3ffe, 0xfa83b2db722a0846ULL),
+ make_floatx80(0xbff9, 0xaf89a491babef740ULL) },
+ { floatx80_zero,
+ make_floatx80(0x3fff, 0x8000000000000000ULL),
+ floatx80_zero },
+ { make_floatx80(0x3ff9, 0xffffffffffff2680ULL),
+ make_floatx80(0x3fff, 0x82cd8698ac2b9f6fULL),
+ make_floatx80(0x3ff9, 0xb361a62b0ae7dbc0ULL) },
+ { make_floatx80(0x3ffb, 0x800000000000b500ULL),
+ make_floatx80(0x3fff, 0x85aac367cc488345ULL),
+ make_floatx80(0x3ffa, 0xb5586cf9891068a0ULL) },
+ { make_floatx80(0x3ffb, 0xbfffffffffff4b67ULL),
+ make_floatx80(0x3fff, 0x88980e8092da7cceULL),
+ make_floatx80(0x3ffb, 0x8980e8092da7cce0ULL) },
+ { make_floatx80(0x3ffb, 0xffffffffffffff57ULL),
+ make_floatx80(0x3fff, 0x8b95c1e3ea8bd6dfULL),
+ make_floatx80(0x3ffb, 0xb95c1e3ea8bd6df0ULL) },
+ { make_floatx80(0x3ffc, 0x9fffffffffff811fULL),
+ make_floatx80(0x3fff, 0x8ea4398b45cd4780ULL),
+ make_floatx80(0x3ffb, 0xea4398b45cd47800ULL) },
+ { make_floatx80(0x3ffc, 0xbfffffffffff9980ULL),
+ make_floatx80(0x3fff, 0x91c3d373ab11b919ULL),
+ make_floatx80(0x3ffc, 0x8e1e9b9d588dc8c8ULL) },
+ { make_floatx80(0x3ffc, 0xdffffffffffff631ULL),
+ make_floatx80(0x3fff, 0x94f4efa8fef70864ULL),
+ make_floatx80(0x3ffc, 0xa7a77d47f7b84320ULL) },
+ { make_floatx80(0x3ffc, 0xffffffffffff2499ULL),
+ make_floatx80(0x3fff, 0x9837f0518db892d4ULL),
+ make_floatx80(0x3ffc, 0xc1bf828c6dc496a0ULL) },
+ { make_floatx80(0x3ffd, 0x8fffffffffff80fbULL),
+ make_floatx80(0x3fff, 0x9b8d39b9d54e3a79ULL),
+ make_floatx80(0x3ffc, 0xdc69cdceaa71d3c8ULL) },
+ { make_floatx80(0x3ffd, 0x9fffffffffffbc23ULL),
+ make_floatx80(0x3fff, 0x9ef5326091a10313ULL),
+ make_floatx80(0x3ffc, 0xf7a993048d081898ULL) },
+ { make_floatx80(0x3ffd, 0xafffffffffff20ecULL),
+ make_floatx80(0x3fff, 0xa27043030c49370aULL),
+ make_floatx80(0x3ffd, 0x89c10c0c3124dc28ULL) },
+ { make_floatx80(0x3ffd, 0xc00000000000fd2cULL),
+ make_floatx80(0x3fff, 0xa5fed6a9b15171cfULL),
+ make_floatx80(0x3ffd, 0x97fb5aa6c545c73cULL) },
+ { make_floatx80(0x3ffd, 0xd0000000000093beULL),
+ make_floatx80(0x3fff, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80(0x3ffd, 0xa6856ad3a9f0c398ULL) },
+ { make_floatx80(0x3ffd, 0xe00000000000c2aeULL),
+ make_floatx80(0x3fff, 0xad583eea42a17876ULL),
+ make_floatx80(0x3ffd, 0xb560fba90a85e1d8ULL) },
+ { make_floatx80(0x3ffd, 0xefffffffffff1e3fULL),
+ make_floatx80(0x3fff, 0xb123f581d2abef6cULL),
+ make_floatx80(0x3ffd, 0xc48fd6074aafbdb0ULL) },
+ { make_floatx80(0x3ffd, 0xffffffffffff1c23ULL),
+ make_floatx80(0x3fff, 0xb504f333f9de2cadULL),
+ make_floatx80(0x3ffd, 0xd413cccfe778b2b4ULL) },
+ { make_floatx80(0x3ffe, 0x8800000000006344ULL),
+ make_floatx80(0x3fff, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80(0x3ffd, 0xe3eebd1d8bef4284ULL) },
+ { make_floatx80(0x3ffe, 0x9000000000005d67ULL),
+ make_floatx80(0x3fff, 0xbd08a39f580c668dULL),
+ make_floatx80(0x3ffd, 0xf4228e7d60319a34ULL) },
+ { make_floatx80(0x3ffe, 0x9800000000009127ULL),
+ make_floatx80(0x3fff, 0xc12c4cca6670e042ULL),
+ make_floatx80(0x3ffe, 0x82589994cce1c084ULL) },
+ { make_floatx80(0x3ffe, 0x9fffffffffff06f9ULL),
+ make_floatx80(0x3fff, 0xc5672a11550655c3ULL),
+ make_floatx80(0x3ffe, 0x8ace5422aa0cab86ULL) },
+ { make_floatx80(0x3ffe, 0xa7fffffffffff80dULL),
+ make_floatx80(0x3fff, 0xc9b9bd866e2f234bULL),
+ make_floatx80(0x3ffe, 0x93737b0cdc5e4696ULL) },
+ { make_floatx80(0x3ffe, 0xafffffffffff1470ULL),
+ make_floatx80(0x3fff, 0xce248c151f83fd69ULL),
+ make_floatx80(0x3ffe, 0x9c49182a3f07fad2ULL) },
+ { make_floatx80(0x3ffe, 0xb800000000000e0aULL),
+ make_floatx80(0x3fff, 0xd2a81d91f12aec5cULL),
+ make_floatx80(0x3ffe, 0xa5503b23e255d8b8ULL) },
+ { make_floatx80(0x3ffe, 0xc00000000000b7faULL),
+ make_floatx80(0x3fff, 0xd744fccad69dd630ULL),
+ make_floatx80(0x3ffe, 0xae89f995ad3bac60ULL) },
+ { make_floatx80(0x3ffe, 0xc800000000003aa6ULL),
+ make_floatx80(0x3fff, 0xdbfbb797daf25a44ULL),
+ make_floatx80(0x3ffe, 0xb7f76f2fb5e4b488ULL) },
+ { make_floatx80(0x3ffe, 0xd00000000000a6aeULL),
+ make_floatx80(0x3fff, 0xe0ccdeec2a954685ULL),
+ make_floatx80(0x3ffe, 0xc199bdd8552a8d0aULL) },
+ { make_floatx80(0x3ffe, 0xd800000000004165ULL),
+ make_floatx80(0x3fff, 0xe5b906e77c837155ULL),
+ make_floatx80(0x3ffe, 0xcb720dcef906e2aaULL) },
+ { make_floatx80(0x3ffe, 0xe00000000000582cULL),
+ make_floatx80(0x3fff, 0xeac0c6e7dd24713aULL),
+ make_floatx80(0x3ffe, 0xd5818dcfba48e274ULL) },
+ { make_floatx80(0x3ffe, 0xe800000000001a5dULL),
+ make_floatx80(0x3fff, 0xefe4b99bdcdb06ebULL),
+ make_floatx80(0x3ffe, 0xdfc97337b9b60dd6ULL) },
+ { make_floatx80(0x3ffe, 0xefffffffffffc1efULL),
+ make_floatx80(0x3fff, 0xf5257d152486a2faULL),
+ make_floatx80(0x3ffe, 0xea4afa2a490d45f4ULL) },
+ { make_floatx80(0x3ffe, 0xf800000000001069ULL),
+ make_floatx80(0x3fff, 0xfa83b2db722a0e5cULL),
+ make_floatx80(0x3ffe, 0xf50765b6e4541cb8ULL) },
+ { make_floatx80(0x3fff, 0x8000000000000000ULL),
+ make_floatx80(0x4000, 0x8000000000000000ULL),
+ make_floatx80(0x3fff, 0x8000000000000000ULL) },
+};
-void helper_fyl2x(CPUX86State *env)
+void helper_f2xm1(CPUX86State *env)
{
- double fptemp = floatx80_to_double(env, ST0);
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t sig = extractFloatx80Frac(ST0);
+ int32_t exp = extractFloatx80Exp(ST0);
+ bool sign = extractFloatx80Sign(ST0);
- if (fptemp > 0.0) {
- fptemp = log(fptemp) / log(2.0); /* log2(ST) */
- fptemp *= floatx80_to_double(env, ST1);
- ST1 = double_to_floatx80(env, fptemp);
- fpop(env);
+ if (floatx80_invalid_encoding(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_silence_nan(ST0, &env->fp_status);
+ }
+ } else if (exp > 0x3fff ||
+ (exp == 0x3fff && sig != (0x8000000000000000ULL))) {
+ /* Out of range for the instruction, treat as invalid. */
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (exp == 0x3fff) {
+ /* Argument 1 or -1, exact result 1 or -0.5. */
+ if (sign) {
+ ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL);
+ }
+ } else if (exp < 0x3fb0) {
+ if (!floatx80_is_zero(ST0)) {
+ /*
+ * Multiplying the argument by an extra-precision version
+ * of log(2) is sufficiently precise. Zero arguments are
+ * returned unchanged.
+ */
+ uint64_t sig0, sig1, sig2;
+ if (exp == 0) {
+ normalizeFloatx80Subnormal(sig, &exp, &sig);
+ }
+ mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1,
+ &sig2);
+ /* This result is inexact. */
+ sig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1,
+ &env->fp_status);
+ }
} else {
- env->fpus &= ~0x4700;
- env->fpus |= 0x400;
+ floatx80 tmp, y, accum;
+ bool asign, bsign;
+ int32_t n, aexp, bexp;
+ uint64_t asig0, asig1, asig2, bsig0, bsig1;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ /* Find the nearest multiple of 1/32 to the argument. */
+ tmp = floatx80_scalbn(ST0, 5, &env->fp_status);
+ n = 32 + floatx80_to_int32(tmp, &env->fp_status);
+ y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status);
+
+ if (floatx80_is_zero(y)) {
+ /*
+ * Use the value of 2^t - 1 from the table, to avoid
+ * needing to special-case zero as a result of
+ * multiplication below.
+ */
+ ST0 = f2xm1_table[n].t;
+ set_float_exception_flags(float_flag_inexact, &env->fp_status);
+ env->fp_status.float_rounding_mode = save_mode;
+ } else {
+ /*
+ * Compute the lower parts of a polynomial expansion for
+ * (2^y - 1) / y.
+ */
+ accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is f2xm1_coeff_0 + accum
+ * (where accum has much lower magnitude, and so, in
+ * particular, carry out of the addition is not possible).
+ * (This expansion is only accurate to about 70 bits, not
+ * 128 bits.)
+ */
+ aexp = extractFloatx80Exp(f2xm1_coeff_0);
+ asign = extractFloatx80Sign(f2xm1_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ bsig0 = extractFloatx80Frac(f2xm1_coeff_0);
+ bsig1 = 0;
+ if (asign == extractFloatx80Sign(accum)) {
+ add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ }
+ /* And thus compute an approximation to 2^y - 1. */
+ mul128By64To192(asig0, asig1, extractFloatx80Frac(y),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(y) - 0x3ffe;
+ asign ^= extractFloatx80Sign(y);
+ if (n != 32) {
+ /*
+ * Multiply this by the precomputed value of 2^t and
+ * add that of 2^t - 1.
+ */
+ mul128By64To192(asig0, asig1,
+ extractFloatx80Frac(f2xm1_table[n].exp2),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe;
+ bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1);
+ bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1);
+ bsig1 = 0;
+ if (bexp < aexp) {
+ shift128RightJamming(bsig0, bsig1, aexp - bexp,
+ &bsig0, &bsig1);
+ } else if (aexp < bexp) {
+ shift128RightJamming(asig0, asig1, bexp - aexp,
+ &asig0, &asig1);
+ aexp = bexp;
+ }
+ /* The sign of 2^t - 1 is always that of the result. */
+ bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1);
+ if (asign == bsign) {
+ /* Avoid possible carry out of the addition. */
+ shift128RightJamming(asig0, asig1, 1,
+ &asig0, &asig1);
+ shift128RightJamming(bsig0, bsig1, 1,
+ &bsig0, &bsig1);
+ ++aexp;
+ add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ asign = bsign;
+ }
+ }
+ env->fp_status.float_rounding_mode = save_mode;
+ /* This result is inexact. */
+ asig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1,
+ &env->fp_status);
+ }
+
+ env->fp_status.floatx80_rounding_precision = save_prec;
}
+ merge_exception_flags(env, old_flags);
}
void helper_fptan(CPUX86State *env)
@@ -875,14 +1239,493 @@ void helper_fptan(CPUX86State *env)
}
}
+/* Values of pi/4, pi/2, 3pi/4 and pi, with 128-bit precision. */
+#define pi_4_exp 0x3ffe
+#define pi_4_sig_high 0xc90fdaa22168c234ULL
+#define pi_4_sig_low 0xc4c6628b80dc1cd1ULL
+#define pi_2_exp 0x3fff
+#define pi_2_sig_high 0xc90fdaa22168c234ULL
+#define pi_2_sig_low 0xc4c6628b80dc1cd1ULL
+#define pi_34_exp 0x4000
+#define pi_34_sig_high 0x96cbe3f9990e91a7ULL
+#define pi_34_sig_low 0x9394c9e8a0a5159dULL
+#define pi_exp 0x4000
+#define pi_sig_high 0xc90fdaa22168c234ULL
+#define pi_sig_low 0xc4c6628b80dc1cd1ULL
+
+/*
+ * Polynomial coefficients for an approximation to atan(x), with only
+ * odd powers of x used, for x in the interval [-1/16, 1/16]. (Unlike
+ * for some other approximations, no low part is needed for the first
+ * coefficient here to achieve a sufficiently accurate result, because
+ * the coefficient in this minimax approximation is very close to
+ * exactly 1.)
+ */
+#define fpatan_coeff_0 make_floatx80(0x3fff, 0x8000000000000000ULL)
+#define fpatan_coeff_1 make_floatx80(0xbffd, 0xaaaaaaaaaaaaaa43ULL)
+#define fpatan_coeff_2 make_floatx80(0x3ffc, 0xccccccccccbfe4f8ULL)
+#define fpatan_coeff_3 make_floatx80(0xbffc, 0x92492491fbab2e66ULL)
+#define fpatan_coeff_4 make_floatx80(0x3ffb, 0xe38e372881ea1e0bULL)
+#define fpatan_coeff_5 make_floatx80(0xbffb, 0xba2c0104bbdd0615ULL)
+#define fpatan_coeff_6 make_floatx80(0x3ffb, 0x9baf7ebf898b42efULL)
+
+struct fpatan_data {
+ /* High and low parts of atan(x). */
+ floatx80 atan_high, atan_low;
+};
+
+static const struct fpatan_data fpatan_table[9] = {
+ { floatx80_zero,
+ floatx80_zero },
+ { make_floatx80(0x3ffb, 0xfeadd4d5617b6e33ULL),
+ make_floatx80(0xbfb9, 0xdda19d8305ddc420ULL) },
+ { make_floatx80(0x3ffc, 0xfadbafc96406eb15ULL),
+ make_floatx80(0x3fbb, 0xdb8f3debef442fccULL) },
+ { make_floatx80(0x3ffd, 0xb7b0ca0f26f78474ULL),
+ make_floatx80(0xbfbc, 0xeab9bdba460376faULL) },
+ { make_floatx80(0x3ffd, 0xed63382b0dda7b45ULL),
+ make_floatx80(0x3fbc, 0xdfc88bd978751a06ULL) },
+ { make_floatx80(0x3ffe, 0x8f005d5ef7f59f9bULL),
+ make_floatx80(0x3fbd, 0xb906bc2ccb886e90ULL) },
+ { make_floatx80(0x3ffe, 0xa4bc7d1934f70924ULL),
+ make_floatx80(0x3fbb, 0xcd43f9522bed64f8ULL) },
+ { make_floatx80(0x3ffe, 0xb8053e2bc2319e74ULL),
+ make_floatx80(0xbfbc, 0xd3496ab7bd6eef0cULL) },
+ { make_floatx80(0x3ffe, 0xc90fdaa22168c235ULL),
+ make_floatx80(0xbfbc, 0xece675d1fc8f8cbcULL) },
+};
+
void helper_fpatan(CPUX86State *env)
{
- double fptemp, fpsrcop;
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (floatx80_is_zero(ST1) && !arg0_sign) {
+ /* Pass this zero through. */
+ } else if (((floatx80_is_infinity(ST0) && !floatx80_is_infinity(ST1)) ||
+ arg0_exp - arg1_exp >= 80) &&
+ !arg0_sign) {
+ /*
+ * Dividing ST1 by ST0 gives the correct result up to
+ * rounding, and avoids spurious underflow exceptions that
+ * might result from passing some small values through the
+ * polynomial approximation, but if a finite nonzero result of
+ * division is exact, the result of fpatan is still inexact
+ * (and underflowing where appropriate).
+ */
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.floatx80_rounding_precision = 80;
+ ST1 = floatx80_div(ST1, ST0, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ if (!floatx80_is_zero(ST1) &&
+ !(get_float_exception_flags(&env->fp_status) &
+ float_flag_inexact)) {
+ /*
+ * The mathematical result is very slightly closer to zero
+ * than this exact result. Round a value with the
+ * significand adjusted accordingly to get the correct
+ * exceptions, and possibly an adjusted result depending
+ * on the rounding mode.
+ */
+ uint64_t sig = extractFloatx80Frac(ST1);
+ int32_t exp = extractFloatx80Exp(ST1);
+ bool sign = extractFloatx80Sign(ST1);
+ if (exp == 0) {
+ normalizeFloatx80Subnormal(sig, &exp, &sig);
+ }
+ ST1 = normalizeRoundAndPackFloatx80(80, sign, exp, sig - 1,
+ -1, &env->fp_status);
+ }
+ } else {
+ /* The result is inexact. */
+ bool rsign = arg1_sign;
+ int32_t rexp;
+ uint64_t rsig0, rsig1;
+ if (floatx80_is_zero(ST1)) {
+ /*
+ * ST0 is negative. The result is pi with the sign of
+ * ST1.
+ */
+ rexp = pi_exp;
+ rsig0 = pi_sig_high;
+ rsig1 = pi_sig_low;
+ } else if (floatx80_is_infinity(ST1)) {
+ if (floatx80_is_infinity(ST0)) {
+ if (arg0_sign) {
+ rexp = pi_34_exp;
+ rsig0 = pi_34_sig_high;
+ rsig1 = pi_34_sig_low;
+ } else {
+ rexp = pi_4_exp;
+ rsig0 = pi_4_sig_high;
+ rsig1 = pi_4_sig_low;
+ }
+ } else {
+ rexp = pi_2_exp;
+ rsig0 = pi_2_sig_high;
+ rsig1 = pi_2_sig_low;
+ }
+ } else if (floatx80_is_zero(ST0) || arg1_exp - arg0_exp >= 80) {
+ rexp = pi_2_exp;
+ rsig0 = pi_2_sig_high;
+ rsig1 = pi_2_sig_low;
+ } else if (floatx80_is_infinity(ST0) || arg0_exp - arg1_exp >= 80) {
+ /* ST0 is negative. */
+ rexp = pi_exp;
+ rsig0 = pi_sig_high;
+ rsig1 = pi_sig_low;
+ } else {
+ /*
+ * ST0 and ST1 are finite, nonzero and with exponents not
+ * too far apart.
+ */
+ int32_t adj_exp, num_exp, den_exp, xexp, yexp, n, texp, zexp, aexp;
+ int32_t azexp, axexp;
+ bool adj_sub, ysign, zsign;
+ uint64_t adj_sig0, adj_sig1, num_sig, den_sig, xsig0, xsig1;
+ uint64_t msig0, msig1, msig2, remsig0, remsig1, remsig2;
+ uint64_t ysig0, ysig1, tsig, zsig0, zsig1, asig0, asig1;
+ uint64_t azsig0, azsig1;
+ uint64_t azsig2, azsig3, axsig0, axsig1;
+ floatx80 x8;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
+ }
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ if (arg0_exp > arg1_exp ||
+ (arg0_exp == arg1_exp && arg0_sig >= arg1_sig)) {
+ /* Work with abs(ST1) / abs(ST0). */
+ num_exp = arg1_exp;
+ num_sig = arg1_sig;
+ den_exp = arg0_exp;
+ den_sig = arg0_sig;
+ if (arg0_sign) {
+ /* The result is subtracted from pi. */
+ adj_exp = pi_exp;
+ adj_sig0 = pi_sig_high;
+ adj_sig1 = pi_sig_low;
+ adj_sub = true;
+ } else {
+ /* The result is used as-is. */
+ adj_exp = 0;
+ adj_sig0 = 0;
+ adj_sig1 = 0;
+ adj_sub = false;
+ }
+ } else {
+ /* Work with abs(ST0) / abs(ST1). */
+ num_exp = arg0_exp;
+ num_sig = arg0_sig;
+ den_exp = arg1_exp;
+ den_sig = arg1_sig;
+ /* The result is added to or subtracted from pi/2. */
+ adj_exp = pi_2_exp;
+ adj_sig0 = pi_2_sig_high;
+ adj_sig1 = pi_2_sig_low;
+ adj_sub = !arg0_sign;
+ }
+
+ /*
+ * Compute x = num/den, where 0 < x <= 1 and x is not too
+ * small.
+ */
+ xexp = num_exp - den_exp + 0x3ffe;
+ remsig0 = num_sig;
+ remsig1 = 0;
+ if (den_sig <= remsig0) {
+ shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
+ ++xexp;
+ }
+ xsig0 = estimateDiv128To64(remsig0, remsig1, den_sig);
+ mul64To128(den_sig, xsig0, &msig0, &msig1);
+ sub128(remsig0, remsig1, msig0, msig1, &remsig0, &remsig1);
+ while ((int64_t) remsig0 < 0) {
+ --xsig0;
+ add128(remsig0, remsig1, 0, den_sig, &remsig0, &remsig1);
+ }
+ xsig1 = estimateDiv128To64(remsig1, 0, den_sig);
+ /*
+ * No need to correct any estimation error in xsig1; even
+ * with such error, it is accurate enough.
+ */
+
+ /*
+ * Split x as x = t + y, where t = n/8 is the nearest
+ * multiple of 1/8 to x.
+ */
+ x8 = normalizeRoundAndPackFloatx80(80, false, xexp + 3, xsig0,
+ xsig1, &env->fp_status);
+ n = floatx80_to_int32(x8, &env->fp_status);
+ if (n == 0) {
+ ysign = false;
+ yexp = xexp;
+ ysig0 = xsig0;
+ ysig1 = xsig1;
+ texp = 0;
+ tsig = 0;
+ } else {
+ int shift = clz32(n) + 32;
+ texp = 0x403b - shift;
+ tsig = n;
+ tsig <<= shift;
+ if (texp == xexp) {
+ sub128(xsig0, xsig1, tsig, 0, &ysig0, &ysig1);
+ if ((int64_t) ysig0 >= 0) {
+ ysign = false;
+ if (ysig0 == 0) {
+ if (ysig1 == 0) {
+ yexp = 0;
+ } else {
+ shift = clz64(ysig1) + 64;
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift,
+ &ysig0, &ysig1);
+ }
+ } else {
+ shift = clz64(ysig0);
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ } else {
+ ysign = true;
+ sub128(0, 0, ysig0, ysig1, &ysig0, &ysig1);
+ if (ysig0 == 0) {
+ shift = clz64(ysig1) + 64;
+ } else {
+ shift = clz64(ysig0);
+ }
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ } else {
+ /*
+ * t's exponent must be greater than x's because t
+ * is positive and the nearest multiple of 1/8 to
+ * x, and if x has a greater exponent, the power
+ * of 2 with that exponent is also a multiple of
+ * 1/8.
+ */
+ uint64_t usig0, usig1;
+ shift128RightJamming(xsig0, xsig1, texp - xexp,
+ &usig0, &usig1);
+ ysign = true;
+ sub128(tsig, 0, usig0, usig1, &ysig0, &ysig1);
+ if (ysig0 == 0) {
+ shift = clz64(ysig1) + 64;
+ } else {
+ shift = clz64(ysig0);
+ }
+ yexp = texp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ }
+
+ /*
+ * Compute z = y/(1+tx), so arctan(x) = arctan(t) +
+ * arctan(z).
+ */
+ zsign = ysign;
+ if (texp == 0 || yexp == 0) {
+ zexp = yexp;
+ zsig0 = ysig0;
+ zsig1 = ysig1;
+ } else {
+ /*
+ * t <= 1, x <= 1 and if both are 1 then y is 0, so tx < 1.
+ */
+ int32_t dexp = texp + xexp - 0x3ffe;
+ uint64_t dsig0, dsig1, dsig2;
+ mul128By64To192(xsig0, xsig1, tsig, &dsig0, &dsig1, &dsig2);
+ /*
+ * dexp <= 0x3fff (and if equal, dsig0 has a leading 0
+ * bit). Add 1 to produce the denominator 1+tx.
+ */
+ shift128RightJamming(dsig0, dsig1, 0x3fff - dexp,
+ &dsig0, &dsig1);
+ dsig0 |= 0x8000000000000000ULL;
+ zexp = yexp - 1;
+ remsig0 = ysig0;
+ remsig1 = ysig1;
+ remsig2 = 0;
+ if (dsig0 <= remsig0) {
+ shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
+ ++zexp;
+ }
+ zsig0 = estimateDiv128To64(remsig0, remsig1, dsig0);
+ mul128By64To192(dsig0, dsig1, zsig0, &msig0, &msig1, &msig2);
+ sub192(remsig0, remsig1, remsig2, msig0, msig1, msig2,
+ &remsig0, &remsig1, &remsig2);
+ while ((int64_t) remsig0 < 0) {
+ --zsig0;
+ add192(remsig0, remsig1, remsig2, 0, dsig0, dsig1,
+ &remsig0, &remsig1, &remsig2);
+ }
+ zsig1 = estimateDiv128To64(remsig1, remsig2, dsig0);
+ /* No need to correct any estimation error in zsig1. */
+ }
+
+ if (zexp == 0) {
+ azexp = 0;
+ azsig0 = 0;
+ azsig1 = 0;
+ } else {
+ floatx80 z2, accum;
+ uint64_t z2sig0, z2sig1, z2sig2, z2sig3;
+ /* Compute z^2. */
+ mul128To256(zsig0, zsig1, zsig0, zsig1,
+ &z2sig0, &z2sig1, &z2sig2, &z2sig3);
+ z2 = normalizeRoundAndPackFloatx80(80, false,
+ zexp + zexp - 0x3ffe,
+ z2sig0, z2sig1,
+ &env->fp_status);
+
+ /* Compute the lower parts of the polynomial expansion. */
+ accum = floatx80_mul(fpatan_coeff_6, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is z*(fpatan_coeff_0 + accum).
+ * fpatan_coeff_0 is 1, and accum is negative and much smaller.
+ */
+ aexp = extractFloatx80Exp(fpatan_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ sub128(extractFloatx80Frac(fpatan_coeff_0), 0, asig0, asig1,
+ &asig0, &asig1);
+ /* Multiply by z to compute arctan(z). */
+ azexp = aexp + zexp - 0x3ffe;
+ mul128To256(asig0, asig1, zsig0, zsig1, &azsig0, &azsig1,
+ &azsig2, &azsig3);
+ }
+
+ /* Add arctan(t) (positive or zero) and arctan(z) (sign zsign). */
+ if (texp == 0) {
+ /* z is positive. */
+ axexp = azexp;
+ axsig0 = azsig0;
+ axsig1 = azsig1;
+ } else {
+ bool low_sign = extractFloatx80Sign(fpatan_table[n].atan_low);
+ int32_t low_exp = extractFloatx80Exp(fpatan_table[n].atan_low);
+ uint64_t low_sig0 =
+ extractFloatx80Frac(fpatan_table[n].atan_low);
+ uint64_t low_sig1 = 0;
+ axexp = extractFloatx80Exp(fpatan_table[n].atan_high);
+ axsig0 = extractFloatx80Frac(fpatan_table[n].atan_high);
+ axsig1 = 0;
+ shift128RightJamming(low_sig0, low_sig1, axexp - low_exp,
+ &low_sig0, &low_sig1);
+ if (low_sign) {
+ sub128(axsig0, axsig1, low_sig0, low_sig1,
+ &axsig0, &axsig1);
+ } else {
+ add128(axsig0, axsig1, low_sig0, low_sig1,
+ &axsig0, &axsig1);
+ }
+ if (azexp >= axexp) {
+ shift128RightJamming(axsig0, axsig1, azexp - axexp + 1,
+ &axsig0, &axsig1);
+ axexp = azexp + 1;
+ shift128RightJamming(azsig0, azsig1, 1,
+ &azsig0, &azsig1);
+ } else {
+ shift128RightJamming(axsig0, axsig1, 1,
+ &axsig0, &axsig1);
+ shift128RightJamming(azsig0, azsig1, axexp - azexp + 1,
+ &azsig0, &azsig1);
+ ++axexp;
+ }
+ if (zsign) {
+ sub128(axsig0, axsig1, azsig0, azsig1,
+ &axsig0, &axsig1);
+ } else {
+ add128(axsig0, axsig1, azsig0, azsig1,
+ &axsig0, &axsig1);
+ }
+ }
+
+ if (adj_exp == 0) {
+ rexp = axexp;
+ rsig0 = axsig0;
+ rsig1 = axsig1;
+ } else {
+ /*
+ * Add or subtract arctan(x) (exponent axexp,
+ * significand axsig0 and axsig1, positive, not
+ * necessarily normalized) to the number given by
+ * adj_exp, adj_sig0 and adj_sig1, according to
+ * adj_sub.
+ */
+ if (adj_exp >= axexp) {
+ shift128RightJamming(axsig0, axsig1, adj_exp - axexp + 1,
+ &axsig0, &axsig1);
+ rexp = adj_exp + 1;
+ shift128RightJamming(adj_sig0, adj_sig1, 1,
+ &adj_sig0, &adj_sig1);
+ } else {
+ shift128RightJamming(axsig0, axsig1, 1,
+ &axsig0, &axsig1);
+ shift128RightJamming(adj_sig0, adj_sig1,
+ axexp - adj_exp + 1,
+ &adj_sig0, &adj_sig1);
+ rexp = axexp + 1;
+ }
+ if (adj_sub) {
+ sub128(adj_sig0, adj_sig1, axsig0, axsig1,
+ &rsig0, &rsig1);
+ } else {
+ add128(adj_sig0, adj_sig1, axsig0, axsig1,
+ &rsig0, &rsig1);
+ }
+ }
+
+ env->fp_status.float_rounding_mode = save_mode;
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ /* This result is inexact. */
+ rsig1 |= 1;
+ ST1 = normalizeRoundAndPackFloatx80(80, rsign, rexp,
+ rsig0, rsig1, &env->fp_status);
+ }
- fpsrcop = floatx80_to_double(env, ST1);
- fptemp = floatx80_to_double(env, ST0);
- ST1 = double_to_floatx80(env, atan2(fpsrcop, fptemp));
fpop(env);
+ merge_exception_flags(env, old_flags);
}
void helper_fxtract(CPUX86State *env)
@@ -934,139 +1777,438 @@ void helper_fxtract(CPUX86State *env)
merge_exception_flags(env, old_flags);
}
-void helper_fprem1(CPUX86State *env)
+static void helper_fprem_common(CPUX86State *env, bool mod)
{
- double st0, st1, dblq, fpsrcop, fptemp;
- CPU_LDoubleU fpsrcop1, fptemp1;
- int expdif;
- signed long long int q;
-
- st0 = floatx80_to_double(env, ST0);
- st1 = floatx80_to_double(env, ST1);
-
- if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
- ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- return;
- }
-
- fpsrcop = st0;
- fptemp = st1;
- fpsrcop1.d = ST0;
- fptemp1.d = ST1;
- expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
-
- if (expdif < 0) {
- /* optimisation? taken from the AMD docs */
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- /* ST0 is unchanged */
- return;
- }
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t quotient;
+ CPU_LDoubleU temp0, temp1;
+ int exp0, exp1, expdiff;
- if (expdif < 53) {
- dblq = fpsrcop / fptemp;
- /* round dblq towards nearest integer */
- dblq = rint(dblq);
- st0 = fpsrcop - fptemp * dblq;
+ temp0.d = ST0;
+ temp1.d = ST1;
+ exp0 = EXPD(temp0);
+ exp1 = EXPD(temp1);
- /* convert dblq to q by truncating towards zero */
- if (dblq < 0.0) {
- q = (signed long long int)(-dblq);
+ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
+ if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
+ exp0 == 0x7fff || exp1 == 0x7fff ||
+ floatx80_invalid_encoding(ST0) || floatx80_invalid_encoding(ST1)) {
+ ST0 = floatx80_modrem(ST0, ST1, mod, &quotient, &env->fp_status);
+ } else {
+ if (exp0 == 0) {
+ exp0 = 1 - clz64(temp0.l.lower);
+ }
+ if (exp1 == 0) {
+ exp1 = 1 - clz64(temp1.l.lower);
+ }
+ expdiff = exp0 - exp1;
+ if (expdiff < 64) {
+ ST0 = floatx80_modrem(ST0, ST1, mod, &quotient, &env->fp_status);
+ env->fpus |= (quotient & 0x4) << (8 - 2); /* (C0) <-- q2 */
+ env->fpus |= (quotient & 0x2) << (14 - 1); /* (C3) <-- q1 */
+ env->fpus |= (quotient & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
- q = (signed long long int)dblq;
+ /*
+ * Partial remainder. This choice of how many bits to
+ * process at once is specified in AMD instruction set
+ * manuals, and empirically is followed by Intel
+ * processors as well; it ensures that the final remainder
+ * operation in a loop does produce the correct low three
+ * bits of the quotient. AMD manuals specify that the
+ * flags other than C2 are cleared, and empirically Intel
+ * processors clear them as well.
+ */
+ int n = 32 + (expdiff % 32);
+ temp1.d = floatx80_scalbn(temp1.d, expdiff - n, &env->fp_status);
+ ST0 = floatx80_mod(ST0, temp1.d, &env->fp_status);
+ env->fpus |= 0x400; /* C2 <-- 1 */
}
-
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- /* (C0,C3,C1) <-- (q2,q1,q0) */
- env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
- env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
- env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
- } else {
- env->fpus |= 0x400; /* C2 <-- 1 */
- fptemp = pow(2.0, expdif - 50);
- fpsrcop = (st0 / st1) / fptemp;
- /* fpsrcop = integer obtained by chopping */
- fpsrcop = (fpsrcop < 0.0) ?
- -(floor(fabs(fpsrcop))) : floor(fpsrcop);
- st0 -= (st1 * fpsrcop * fptemp);
}
- ST0 = double_to_floatx80(env, st0);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fprem1(CPUX86State *env)
+{
+ helper_fprem_common(env, false);
}
void helper_fprem(CPUX86State *env)
{
- double st0, st1, dblq, fpsrcop, fptemp;
- CPU_LDoubleU fpsrcop1, fptemp1;
- int expdif;
- signed long long int q;
+ helper_fprem_common(env, true);
+}
- st0 = floatx80_to_double(env, ST0);
- st1 = floatx80_to_double(env, ST1);
+/* 128-bit significand of log2(e). */
+#define log2_e_sig_high 0xb8aa3b295c17f0bbULL
+#define log2_e_sig_low 0xbe87fed0691d3e89ULL
- if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
- ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- return;
- }
+/*
+ * Polynomial coefficients for an approximation to log2((1+x)/(1-x)),
+ * with only odd powers of x used, for x in the interval [2*sqrt(2)-3,
+ * 3-2*sqrt(2)], which corresponds to logarithms of numbers in the
+ * interval [sqrt(2)/2, sqrt(2)].
+ */
+#define fyl2x_coeff_0 make_floatx80(0x4000, 0xb8aa3b295c17f0bcULL)
+#define fyl2x_coeff_0_low make_floatx80(0xbfbf, 0x834972fe2d7bab1bULL)
+#define fyl2x_coeff_1 make_floatx80(0x3ffe, 0xf6384ee1d01febb8ULL)
+#define fyl2x_coeff_2 make_floatx80(0x3ffe, 0x93bb62877cdfa2e3ULL)
+#define fyl2x_coeff_3 make_floatx80(0x3ffd, 0xd30bb153d808f269ULL)
+#define fyl2x_coeff_4 make_floatx80(0x3ffd, 0xa42589eaf451499eULL)
+#define fyl2x_coeff_5 make_floatx80(0x3ffd, 0x864d42c0f8f17517ULL)
+#define fyl2x_coeff_6 make_floatx80(0x3ffc, 0xe3476578adf26272ULL)
+#define fyl2x_coeff_7 make_floatx80(0x3ffc, 0xc506c5f874e6d80fULL)
+#define fyl2x_coeff_8 make_floatx80(0x3ffc, 0xac5cf50cc57d6372ULL)
+#define fyl2x_coeff_9 make_floatx80(0x3ffc, 0xb1ed0066d971a103ULL)
- fpsrcop = st0;
- fptemp = st1;
- fpsrcop1.d = ST0;
- fptemp1.d = ST1;
- expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
+/*
+ * Compute an approximation of log2(1+arg), where 1+arg is in the
+ * interval [sqrt(2)/2, sqrt(2)]. It is assumed that when this
+ * function is called, rounding precision is set to 80 and the
+ * round-to-nearest mode is in effect. arg must not be exactly zero,
+ * and must not be so close to zero that underflow might occur.
+ */
+static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp,
+ uint64_t *sig0, uint64_t *sig1)
+{
+ uint64_t arg0_sig = extractFloatx80Frac(arg);
+ int32_t arg0_exp = extractFloatx80Exp(arg);
+ bool arg0_sign = extractFloatx80Sign(arg);
+ bool asign;
+ int32_t dexp, texp, aexp;
+ uint64_t dsig0, dsig1, tsig0, tsig1, rsig0, rsig1, rsig2;
+ uint64_t msig0, msig1, msig2, t2sig0, t2sig1, t2sig2, t2sig3;
+ uint64_t asig0, asig1, asig2, asig3, bsig0, bsig1;
+ floatx80 t2, accum;
- if (expdif < 0) {
- /* optimisation? taken from the AMD docs */
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- /* ST0 is unchanged */
- return;
- }
+ /*
+ * Compute an approximation of arg/(2+arg), with extra precision,
+ * as the argument to a polynomial approximation. The extra
+ * precision is only needed for the first term of the
+ * approximation, with subsequent terms being significantly
+ * smaller; the approximation only uses odd exponents, and the
+ * square of arg/(2+arg) is at most 17-12*sqrt(2) = 0.029....
+ */
+ if (arg0_sign) {
+ dexp = 0x3fff;
+ shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
+ sub128(0, 0, dsig0, dsig1, &dsig0, &dsig1);
+ } else {
+ dexp = 0x4000;
+ shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
+ dsig0 |= 0x8000000000000000ULL;
+ }
+ texp = arg0_exp - dexp + 0x3ffe;
+ rsig0 = arg0_sig;
+ rsig1 = 0;
+ rsig2 = 0;
+ if (dsig0 <= rsig0) {
+ shift128Right(rsig0, rsig1, 1, &rsig0, &rsig1);
+ ++texp;
+ }
+ tsig0 = estimateDiv128To64(rsig0, rsig1, dsig0);
+ mul128By64To192(dsig0, dsig1, tsig0, &msig0, &msig1, &msig2);
+ sub192(rsig0, rsig1, rsig2, msig0, msig1, msig2,
+ &rsig0, &rsig1, &rsig2);
+ while ((int64_t) rsig0 < 0) {
+ --tsig0;
+ add192(rsig0, rsig1, rsig2, 0, dsig0, dsig1,
+ &rsig0, &rsig1, &rsig2);
+ }
+ tsig1 = estimateDiv128To64(rsig1, rsig2, dsig0);
+ /*
+ * No need to correct any estimation error in tsig1; even with
+ * such error, it is accurate enough. Now compute the square of
+ * that approximation.
+ */
+ mul128To256(tsig0, tsig1, tsig0, tsig1,
+ &t2sig0, &t2sig1, &t2sig2, &t2sig3);
+ t2 = normalizeRoundAndPackFloatx80(80, false, texp + texp - 0x3ffe,
+ t2sig0, t2sig1, &env->fp_status);
+
+ /* Compute the lower parts of the polynomial expansion. */
+ accum = floatx80_mul(fyl2x_coeff_9, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_8, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_7, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_6, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_0_low, accum, &env->fp_status);
- if (expdif < 53) {
- dblq = fpsrcop / fptemp; /* ST0 / ST1 */
- /* round dblq towards zero */
- dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
- st0 = fpsrcop - fptemp * dblq; /* fpsrcop is ST0 */
+ /*
+ * The full polynomial expansion is fyl2x_coeff_0 + accum (where
+ * accum has much lower magnitude, and so, in particular, carry
+ * out of the addition is not possible), multiplied by t. (This
+ * expansion is only accurate to about 70 bits, not 128 bits.)
+ */
+ aexp = extractFloatx80Exp(fyl2x_coeff_0);
+ asign = extractFloatx80Sign(fyl2x_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ bsig0 = extractFloatx80Frac(fyl2x_coeff_0);
+ bsig1 = 0;
+ if (asign == extractFloatx80Sign(accum)) {
+ add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ }
+ /* Multiply by t to compute the required result. */
+ mul128To256(asig0, asig1, tsig0, tsig1,
+ &asig0, &asig1, &asig2, &asig3);
+ aexp += texp - 0x3ffe;
+ *exp = aexp;
+ *sig0 = asig0;
+ *sig1 = asig1;
+}
- /* convert dblq to q by truncating towards zero */
- if (dblq < 0.0) {
- q = (signed long long int)(-dblq);
- } else {
- q = (signed long long int)dblq;
+void helper_fyl2xp1(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (arg0_exp > 0x3ffd ||
+ (arg0_exp == 0x3ffd && arg0_sig > (arg0_sign ?
+ 0x95f619980c4336f7ULL :
+ 0xd413cccfe7799211ULL))) {
+ /*
+ * Out of range for the instruction (ST0 must have absolute
+ * value less than 1 - sqrt(2)/2 = 0.292..., according to
+ * Intel manuals; AMD manuals allow a range from sqrt(2)/2 - 1
+ * to sqrt(2) - 1, which we allow here), treat as invalid.
+ */
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
+ arg1_exp == 0x7fff) {
+ /*
+ * One argument is zero, or multiplying by infinity; correct
+ * result is exact and can be obtained by multiplying the
+ * arguments.
+ */
+ ST1 = floatx80_mul(ST0, ST1, &env->fp_status);
+ } else if (arg0_exp < 0x3fb0) {
+ /*
+ * Multiplying both arguments and an extra-precision version
+ * of log2(e) is sufficiently precise.
+ */
+ uint64_t sig0, sig1, sig2;
+ int32_t exp;
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
}
-
- env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
- /* (C0,C3,C1) <-- (q2,q1,q0) */
- env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
- env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
- env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(log2_e_sig_high, log2_e_sig_low, arg0_sig,
+ &sig0, &sig1, &sig2);
+ exp = arg0_exp + 1;
+ mul128By64To192(sig0, sig1, arg1_sig, &sig0, &sig1, &sig2);
+ exp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ sig1 |= 1;
+ ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, exp,
+ sig0, sig1, &env->fp_status);
} else {
- int N = 32 + (expdif % 32); /* as per AMD docs */
+ int32_t aexp;
+ uint64_t asig0, asig1, asig2;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
- env->fpus |= 0x400; /* C2 <-- 1 */
- fptemp = pow(2.0, (double)(expdif - N));
- fpsrcop = (st0 / st1) / fptemp;
- /* fpsrcop = integer obtained by chopping */
- fpsrcop = (fpsrcop < 0.0) ?
- -(floor(fabs(fpsrcop))) : floor(fpsrcop);
- st0 -= (st1 * fpsrcop * fptemp);
+ helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1);
+ /*
+ * Multiply by the second argument to compute the required
+ * result.
+ */
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
+ aexp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ asig1 |= 1;
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, aexp,
+ asig0, asig1, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = save_prec;
}
- ST0 = double_to_floatx80(env, st0);
+ fpop(env);
+ merge_exception_flags(env, old_flags);
}
-void helper_fyl2xp1(CPUX86State *env)
+void helper_fyl2x(CPUX86State *env)
{
- double fptemp = floatx80_to_double(env, ST0);
-
- if ((fptemp + 1.0) > 0.0) {
- fptemp = log(fptemp + 1.0) / log(2.0); /* log2(ST + 1.0) */
- fptemp *= floatx80_to_double(env, ST1);
- ST1 = double_to_floatx80(env, fptemp);
- fpop(env);
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (arg0_sign && !floatx80_is_zero(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_infinity(ST1)) {
+ FloatRelation cmp = floatx80_compare(ST0, floatx80_one,
+ &env->fp_status);
+ switch (cmp) {
+ case float_relation_less:
+ ST1 = floatx80_chs(ST1);
+ break;
+ case float_relation_greater:
+ /* Result is infinity of the same sign as ST1. */
+ break;
+ default:
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ break;
+ }
+ } else if (floatx80_is_infinity(ST0)) {
+ if (floatx80_is_zero(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (arg1_sign) {
+ ST1 = floatx80_chs(ST0);
+ } else {
+ ST1 = ST0;
+ }
+ } else if (floatx80_is_zero(ST0)) {
+ if (floatx80_is_zero(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else {
+ /* Result is infinity with opposite sign to ST1. */
+ float_raise(float_flag_divbyzero, &env->fp_status);
+ ST1 = make_floatx80(arg1_sign ? 0x7fff : 0xffff,
+ 0x8000000000000000ULL);
+ }
+ } else if (floatx80_is_zero(ST1)) {
+ if (floatx80_lt(ST0, floatx80_one, &env->fp_status)) {
+ ST1 = floatx80_chs(ST1);
+ }
+ /* Otherwise, ST1 is already the correct result. */
+ } else if (floatx80_eq(ST0, floatx80_one, &env->fp_status)) {
+ if (arg1_sign) {
+ ST1 = floatx80_chs(floatx80_zero);
+ } else {
+ ST1 = floatx80_zero;
+ }
} else {
- env->fpus &= ~0x4700;
- env->fpus |= 0x400;
+ int32_t int_exp;
+ floatx80 arg0_m1;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
+ }
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ int_exp = arg0_exp - 0x3fff;
+ if (arg0_sig > 0xb504f333f9de6484ULL) {
+ ++int_exp;
+ }
+ arg0_m1 = floatx80_sub(floatx80_scalbn(ST0, -int_exp,
+ &env->fp_status),
+ floatx80_one, &env->fp_status);
+ if (floatx80_is_zero(arg0_m1)) {
+ /* Exact power of 2; multiply by ST1. */
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = floatx80_mul(int32_to_floatx80(int_exp, &env->fp_status),
+ ST1, &env->fp_status);
+ } else {
+ bool asign = extractFloatx80Sign(arg0_m1);
+ int32_t aexp;
+ uint64_t asig0, asig1, asig2;
+ helper_fyl2x_common(env, arg0_m1, &aexp, &asig0, &asig1);
+ if (int_exp != 0) {
+ bool isign = (int_exp < 0);
+ int32_t iexp;
+ uint64_t isig;
+ int shift;
+ int_exp = isign ? -int_exp : int_exp;
+ shift = clz32(int_exp) + 32;
+ isig = int_exp;
+ isig <<= shift;
+ iexp = 0x403e - shift;
+ shift128RightJamming(asig0, asig1, iexp - aexp,
+ &asig0, &asig1);
+ if (asign == isign) {
+ add128(isig, 0, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(isig, 0, asig0, asig1, &asig0, &asig1);
+ }
+ aexp = iexp;
+ asign = isign;
+ }
+ /*
+ * Multiply by the second argument to compute the required
+ * result.
+ */
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
+ aexp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ asig1 |= 1;
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = normalizeRoundAndPackFloatx80(80, asign ^ arg1_sign, aexp,
+ asig0, asig1, &env->fp_status);
+ }
+
+ env->fp_status.floatx80_rounding_precision = save_prec;
}
+ fpop(env);
+ merge_exception_flags(env, old_flags);
}
void helper_fsqrt(CPUX86State *env)
diff --git a/target/i386/kvm.c b/target/i386/kvm.c
index b3c13cb898..6adbff3d74 100644
--- a/target/i386/kvm.c
+++ b/target/i386/kvm.c
@@ -740,26 +740,62 @@ static bool hyperv_enabled(X86CPU *cpu)
cpu->hyperv_features || cpu->hyperv_passthrough);
}
+/*
+ * Check whether target_freq is within conservative
+ * ntp correctable bounds (250ppm) of freq
+ */
+static inline bool freq_within_bounds(int freq, int target_freq)
+{
+ int max_freq = freq + (freq * 250 / 1000000);
+ int min_freq = freq - (freq * 250 / 1000000);
+
+ if (target_freq >= min_freq && target_freq <= max_freq) {
+ return true;
+ }
+
+ return false;
+}
+
static int kvm_arch_set_tsc_khz(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
- int r;
+ int r, cur_freq;
+ bool set_ioctl = false;
if (!env->tsc_khz) {
return 0;
}
- r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
+ cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
+ kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
+
+ /*
+ * If TSC scaling is supported, attempt to set TSC frequency.
+ */
+ if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
+ set_ioctl = true;
+ }
+
+ /*
+ * If desired TSC frequency is within bounds of NTP correction,
+ * attempt to set TSC frequency.
+ */
+ if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
+ set_ioctl = true;
+ }
+
+ r = set_ioctl ?
kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
-ENOTSUP;
+
if (r < 0) {
/* When KVM_SET_TSC_KHZ fails, it's an error only if the current
* TSC frequency doesn't match the one we want.
*/
- int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
- kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
- -ENOTSUP;
+ cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
+ kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
+ -ENOTSUP;
if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
warn_report("TSC frequency mismatch between "
"VM (%" PRId64 " kHz) and host (%d kHz), "
diff --git a/target/m68k/softfloat.c b/target/m68k/softfloat.c
index 9f120cf15e..b6d0ed7acf 100644
--- a/target/m68k/softfloat.c
+++ b/target/m68k/softfloat.c
@@ -43,89 +43,6 @@ static floatx80 propagateFloatx80NaNOneArg(floatx80 a, float_status *status)
}
/*
- * Returns the modulo remainder of the extended double-precision floating-point
- * value `a' with respect to the corresponding value `b'.
- */
-
-floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
-{
- bool aSign, zSign;
- int32_t aExp, bExp, expDiff;
- uint64_t aSig0, aSig1, bSig;
- uint64_t qTemp, term0, term1;
-
- aSig0 = extractFloatx80Frac(a);
- aExp = extractFloatx80Exp(a);
- aSign = extractFloatx80Sign(a);
- bSig = extractFloatx80Frac(b);
- bExp = extractFloatx80Exp(b);
-
- if (aExp == 0x7FFF) {
- if ((uint64_t) (aSig0 << 1)
- || ((bExp == 0x7FFF) && (uint64_t) (bSig << 1))) {
- return propagateFloatx80NaN(a, b, status);
- }
- goto invalid;
- }
- if (bExp == 0x7FFF) {
- if ((uint64_t) (bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if (bExp == 0) {
- if (bSig == 0) {
- invalid:
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
- }
- if (aExp == 0) {
- if ((uint64_t) (aSig0 << 1) == 0) {
- return a;
- }
- normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
- }
- bSig |= UINT64_C(0x8000000000000000);
- zSign = aSign;
- expDiff = aExp - bExp;
- aSig1 = 0;
- if (expDiff < 0) {
- return a;
- }
- qTemp = (bSig <= aSig0);
- if (qTemp) {
- aSig0 -= bSig;
- }
- expDiff -= 64;
- while (0 < expDiff) {
- qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
- qTemp = (2 < qTemp) ? qTemp - 2 : 0;
- mul64To128(bSig, qTemp, &term0, &term1);
- sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
- shortShift128Left(aSig0, aSig1, 62, &aSig0, &aSig1);
- expDiff -= 62;
- }
- expDiff += 64;
- if (0 < expDiff) {
- qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
- qTemp = (2 < qTemp) ? qTemp - 2 : 0;
- qTemp >>= 64 - expDiff;
- mul64To128(bSig, qTemp << (64 - expDiff), &term0, &term1);
- sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
- shortShift128Left(0, bSig, 64 - expDiff, &term0, &term1);
- while (le128(term0, term1, aSig0, aSig1)) {
- ++qTemp;
- sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
- }
- }
- return
- normalizeRoundAndPackFloatx80(
- 80, zSign, bExp + expDiff, aSig0, aSig1, status);
-}
-
-/*
* Returns the mantissa of the extended double-precision floating-point
* value `a'.
*/
diff --git a/target/m68k/softfloat.h b/target/m68k/softfloat.h
index 365ef6ac7a..4bb9567134 100644
--- a/target/m68k/softfloat.h
+++ b/target/m68k/softfloat.h
@@ -23,7 +23,6 @@
#define TARGET_M68K_SOFTFLOAT_H
#include "fpu/softfloat.h"
-floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status);
floatx80 floatx80_getman(floatx80 a, float_status *status);
floatx80 floatx80_getexp(floatx80 a, float_status *status);
floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status *status);