summaryrefslogtreecommitdiffstats
path: root/target/mips
diff options
context:
space:
mode:
Diffstat (limited to 'target/mips')
-rw-r--r--target/mips/meson.build4
-rw-r--r--target/mips/mxu_translate.c1609
-rw-r--r--target/mips/translate.c1605
3 files changed, 1613 insertions, 1605 deletions
diff --git a/target/mips/meson.build b/target/mips/meson.build
index 53580633ce..4a951e522d 100644
--- a/target/mips/meson.build
+++ b/target/mips/meson.build
@@ -24,6 +24,10 @@ mips_tcg_ss.add(files(
'translate.c',
'translate_addr_const.c',
))
+mips_tcg_ss.add(when: 'TARGET_MIPS64', if_false: files(
+ 'mxu_translate.c',
+))
+
mips_ss.add(when: 'CONFIG_KVM', if_true: files('kvm.c'))
mips_softmmu_ss = ss.source_set()
diff --git a/target/mips/mxu_translate.c b/target/mips/mxu_translate.c
new file mode 100644
index 0000000000..afc008eeee
--- /dev/null
+++ b/target/mips/mxu_translate.c
@@ -0,0 +1,1609 @@
+/*
+ * Ingenic XBurst Media eXtension Unit (MXU) translation routines.
+ *
+ * Copyright (c) 2004-2005 Jocelyn Mayer
+ * Copyright (c) 2006 Marius Groeger (FPU operations)
+ * Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
+ * Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
+ * Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
+ *
+ * SPDX-License-Identifier: LGPL-2.1-or-later
+ *
+ * Datasheet:
+ *
+ * "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
+ * Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
+ */
+
+#include "qemu/osdep.h"
+#include "tcg/tcg-op.h"
+#include "exec/helper-gen.h"
+#include "translate.h"
+
+/*
+ *
+ * AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
+ * ============================================
+ *
+ *
+ * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
+ * instructions set. It is designed to fit the needs of signal, graphical and
+ * video processing applications. MXU instruction set is used in Xburst family
+ * of microprocessors by Ingenic.
+ *
+ * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
+ * the control register.
+ *
+ *
+ * The notation used in MXU assembler mnemonics
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * Register operands:
+ *
+ * XRa, XRb, XRc, XRd - MXU registers
+ * Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
+ *
+ * Non-register operands:
+ *
+ * aptn1 - 1-bit accumulate add/subtract pattern
+ * aptn2 - 2-bit accumulate add/subtract pattern
+ * eptn2 - 2-bit execute add/subtract pattern
+ * optn2 - 2-bit operand pattern
+ * optn3 - 3-bit operand pattern
+ * sft4 - 4-bit shift amount
+ * strd2 - 2-bit stride amount
+ *
+ * Prefixes:
+ *
+ * Level of parallelism: Operand size:
+ * S - single operation at a time 32 - word
+ * D - two operations in parallel 16 - half word
+ * Q - four operations in parallel 8 - byte
+ *
+ * Operations:
+ *
+ * ADD - Add or subtract
+ * ADDC - Add with carry-in
+ * ACC - Accumulate
+ * ASUM - Sum together then accumulate (add or subtract)
+ * ASUMC - Sum together then accumulate (add or subtract) with carry-in
+ * AVG - Average between 2 operands
+ * ABD - Absolute difference
+ * ALN - Align data
+ * AND - Logical bitwise 'and' operation
+ * CPS - Copy sign
+ * EXTR - Extract bits
+ * I2M - Move from GPR register to MXU register
+ * LDD - Load data from memory to XRF
+ * LDI - Load data from memory to XRF (and increase the address base)
+ * LUI - Load unsigned immediate
+ * MUL - Multiply
+ * MULU - Unsigned multiply
+ * MADD - 64-bit operand add 32x32 product
+ * MSUB - 64-bit operand subtract 32x32 product
+ * MAC - Multiply and accumulate (add or subtract)
+ * MAD - Multiply and add or subtract
+ * MAX - Maximum between 2 operands
+ * MIN - Minimum between 2 operands
+ * M2I - Move from MXU register to GPR register
+ * MOVZ - Move if zero
+ * MOVN - Move if non-zero
+ * NOR - Logical bitwise 'nor' operation
+ * OR - Logical bitwise 'or' operation
+ * STD - Store data from XRF to memory
+ * SDI - Store data from XRF to memory (and increase the address base)
+ * SLT - Set of less than comparison
+ * SAD - Sum of absolute differences
+ * SLL - Logical shift left
+ * SLR - Logical shift right
+ * SAR - Arithmetic shift right
+ * SAT - Saturation
+ * SFL - Shuffle
+ * SCOP - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
+ * XOR - Logical bitwise 'exclusive or' operation
+ *
+ * Suffixes:
+ *
+ * E - Expand results
+ * F - Fixed point multiplication
+ * L - Low part result
+ * R - Doing rounding
+ * V - Variable instead of immediate
+ * W - Combine above L and V
+ *
+ *
+ * The list of MXU instructions grouped by functionality
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * Load/Store instructions Multiplication instructions
+ * ----------------------- ---------------------------
+ *
+ * S32LDD XRa, Rb, s12 S32MADD XRa, XRd, Rs, Rt
+ * S32STD XRa, Rb, s12 S32MADDU XRa, XRd, Rs, Rt
+ * S32LDDV XRa, Rb, rc, strd2 S32MSUB XRa, XRd, Rs, Rt
+ * S32STDV XRa, Rb, rc, strd2 S32MSUBU XRa, XRd, Rs, Rt
+ * S32LDI XRa, Rb, s12 S32MUL XRa, XRd, Rs, Rt
+ * S32SDI XRa, Rb, s12 S32MULU XRa, XRd, Rs, Rt
+ * S32LDIV XRa, Rb, rc, strd2 D16MUL XRa, XRb, XRc, XRd, optn2
+ * S32SDIV XRa, Rb, rc, strd2 D16MULE XRa, XRb, XRc, optn2
+ * S32LDDR XRa, Rb, s12 D16MULF XRa, XRb, XRc, optn2
+ * S32STDR XRa, Rb, s12 D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
+ * S32LDDVR XRa, Rb, rc, strd2 D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
+ * S32STDVR XRa, Rb, rc, strd2 D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
+ * S32LDIR XRa, Rb, s12 D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
+ * S32SDIR XRa, Rb, s12 S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
+ * S32LDIVR XRa, Rb, rc, strd2 Q8MUL XRa, XRb, XRc, XRd
+ * S32SDIVR XRa, Rb, rc, strd2 Q8MULSU XRa, XRb, XRc, XRd
+ * S16LDD XRa, Rb, s10, eptn2 Q8MAC XRa, XRb, XRc, XRd, aptn2
+ * S16STD XRa, Rb, s10, eptn2 Q8MACSU XRa, XRb, XRc, XRd, aptn2
+ * S16LDI XRa, Rb, s10, eptn2 Q8MADL XRa, XRb, XRc, XRd, aptn2
+ * S16SDI XRa, Rb, s10, eptn2
+ * S8LDD XRa, Rb, s8, eptn3
+ * S8STD XRa, Rb, s8, eptn3 Addition and subtraction instructions
+ * S8LDI XRa, Rb, s8, eptn3 -------------------------------------
+ * S8SDI XRa, Rb, s8, eptn3
+ * LXW Rd, Rs, Rt, strd2 D32ADD XRa, XRb, XRc, XRd, eptn2
+ * LXH Rd, Rs, Rt, strd2 D32ADDC XRa, XRb, XRc, XRd
+ * LXHU Rd, Rs, Rt, strd2 D32ACC XRa, XRb, XRc, XRd, eptn2
+ * LXB Rd, Rs, Rt, strd2 D32ACCM XRa, XRb, XRc, XRd, eptn2
+ * LXBU Rd, Rs, Rt, strd2 D32ASUM XRa, XRb, XRc, XRd, eptn2
+ * S32CPS XRa, XRb, XRc
+ * Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
+ * Comparison instructions Q16ACC XRa, XRb, XRc, XRd, eptn2
+ * ----------------------- Q16ACCM XRa, XRb, XRc, XRd, eptn2
+ * D16ASUM XRa, XRb, XRc, XRd, eptn2
+ * S32MAX XRa, XRb, XRc D16CPS XRa, XRb,
+ * S32MIN XRa, XRb, XRc D16AVG XRa, XRb, XRc
+ * S32SLT XRa, XRb, XRc D16AVGR XRa, XRb, XRc
+ * S32MOVZ XRa, XRb, XRc Q8ADD XRa, XRb, XRc, eptn2
+ * S32MOVN XRa, XRb, XRc Q8ADDE XRa, XRb, XRc, XRd, eptn2
+ * D16MAX XRa, XRb, XRc Q8ACCE XRa, XRb, XRc, XRd, eptn2
+ * D16MIN XRa, XRb, XRc Q8ABD XRa, XRb, XRc
+ * D16SLT XRa, XRb, XRc Q8SAD XRa, XRb, XRc, XRd
+ * D16MOVZ XRa, XRb, XRc Q8AVG XRa, XRb, XRc
+ * D16MOVN XRa, XRb, XRc Q8AVGR XRa, XRb, XRc
+ * Q8MAX XRa, XRb, XRc D8SUM XRa, XRb, XRc, XRd
+ * Q8MIN XRa, XRb, XRc D8SUMC XRa, XRb, XRc, XRd
+ * Q8SLT XRa, XRb, XRc
+ * Q8SLTU XRa, XRb, XRc
+ * Q8MOVZ XRa, XRb, XRc Shift instructions
+ * Q8MOVN XRa, XRb, XRc ------------------
+ *
+ * D32SLL XRa, XRb, XRc, XRd, sft4
+ * Bitwise instructions D32SLR XRa, XRb, XRc, XRd, sft4
+ * -------------------- D32SAR XRa, XRb, XRc, XRd, sft4
+ * D32SARL XRa, XRb, XRc, sft4
+ * S32NOR XRa, XRb, XRc D32SLLV XRa, XRb, Rb
+ * S32AND XRa, XRb, XRc D32SLRV XRa, XRb, Rb
+ * S32XOR XRa, XRb, XRc D32SARV XRa, XRb, Rb
+ * S32OR XRa, XRb, XRc D32SARW XRa, XRb, XRc, Rb
+ * Q16SLL XRa, XRb, XRc, XRd, sft4
+ * Q16SLR XRa, XRb, XRc, XRd, sft4
+ * Miscellaneous instructions Q16SAR XRa, XRb, XRc, XRd, sft4
+ * ------------------------- Q16SLLV XRa, XRb, Rb
+ * Q16SLRV XRa, XRb, Rb
+ * S32SFL XRa, XRb, XRc, XRd, optn2 Q16SARV XRa, XRb, Rb
+ * S32ALN XRa, XRb, XRc, Rb
+ * S32ALNI XRa, XRb, XRc, s3
+ * S32LUI XRa, s8, optn3 Move instructions
+ * S32EXTR XRa, XRb, Rb, bits5 -----------------
+ * S32EXTRV XRa, XRb, Rs, Rt
+ * Q16SCOP XRa, XRb, XRc, XRd S32M2I XRa, Rb
+ * Q16SAT XRa, XRb, XRc S32I2M XRa, Rb
+ *
+ *
+ * The opcode organization of MXU instructions
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
+ * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
+ * other bits up to the instruction level is as follows:
+ *
+ * bits
+ * 05..00
+ *
+ * ┌─ 000000 ─ OPC_MXU_S32MADD
+ * ├─ 000001 ─ OPC_MXU_S32MADDU
+ * ├─ 000010 ─ <not assigned> (non-MXU OPC_MUL)
+ * │
+ * │ 20..18
+ * ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
+ * │ ├─ 001 ─ OPC_MXU_S32MIN
+ * │ ├─ 010 ─ OPC_MXU_D16MAX
+ * │ ├─ 011 ─ OPC_MXU_D16MIN
+ * │ ├─ 100 ─ OPC_MXU_Q8MAX
+ * │ ├─ 101 ─ OPC_MXU_Q8MIN
+ * │ ├─ 110 ─ OPC_MXU_Q8SLT
+ * │ └─ 111 ─ OPC_MXU_Q8SLTU
+ * ├─ 000100 ─ OPC_MXU_S32MSUB
+ * ├─ 000101 ─ OPC_MXU_S32MSUBU 20..18
+ * ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
+ * │ ├─ 001 ─ OPC_MXU_D16SLT
+ * │ ├─ 010 ─ OPC_MXU_D16AVG
+ * │ ├─ 011 ─ OPC_MXU_D16AVGR
+ * │ ├─ 100 ─ OPC_MXU_Q8AVG
+ * │ ├─ 101 ─ OPC_MXU_Q8AVGR
+ * │ └─ 111 ─ OPC_MXU_Q8ADD
+ * │
+ * │ 20..18
+ * ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
+ * │ ├─ 010 ─ OPC_MXU_D16CPS
+ * │ ├─ 100 ─ OPC_MXU_Q8ABD
+ * │ └─ 110 ─ OPC_MXU_Q16SAT
+ * ├─ 001000 ─ OPC_MXU_D16MUL
+ * │ 25..24
+ * ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
+ * │ └─ 01 ─ OPC_MXU_D16MULE
+ * ├─ 001010 ─ OPC_MXU_D16MAC
+ * ├─ 001011 ─ OPC_MXU_D16MACF
+ * ├─ 001100 ─ OPC_MXU_D16MADL
+ * ├─ 001101 ─ OPC_MXU_S16MAD
+ * ├─ 001110 ─ OPC_MXU_Q16ADD
+ * ├─ 001111 ─ OPC_MXU_D16MACE 23
+ * │ ┌─ 0 ─ OPC_MXU_S32LDD
+ * ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
+ * │
+ * │ 23
+ * ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
+ * │ └─ 1 ─ OPC_MXU_S32STDR
+ * │
+ * │ 13..10
+ * ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
+ * │ └─ 0001 ─ OPC_MXU_S32LDDVR
+ * │
+ * │ 13..10
+ * ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
+ * │ └─ 0001 ─ OPC_MXU_S32STDVR
+ * │
+ * │ 23
+ * ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
+ * │ └─ 1 ─ OPC_MXU_S32LDIR
+ * │
+ * │ 23
+ * ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
+ * │ └─ 1 ─ OPC_MXU_S32SDIR
+ * │
+ * │ 13..10
+ * ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
+ * │ └─ 0001 ─ OPC_MXU_S32LDIVR
+ * │
+ * │ 13..10
+ * ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
+ * │ └─ 0001 ─ OPC_MXU_S32SDIVR
+ * ├─ 011000 ─ OPC_MXU_D32ADD
+ * │ 23..22
+ * MXU ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
+ * opcodes ─┤ ├─ 01 ─ OPC_MXU_D32ACCM
+ * │ └─ 10 ─ OPC_MXU_D32ASUM
+ * ├─ 011010 ─ <not assigned>
+ * │ 23..22
+ * ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
+ * │ ├─ 01 ─ OPC_MXU_Q16ACCM
+ * │ └─ 10 ─ OPC_MXU_Q16ASUM
+ * │
+ * │ 23..22
+ * ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
+ * │ ├─ 01 ─ OPC_MXU_D8SUM
+ * ├─ 011101 ─ OPC_MXU_Q8ACCE └─ 10 ─ OPC_MXU_D8SUMC
+ * ├─ 011110 ─ <not assigned>
+ * ├─ 011111 ─ <not assigned>
+ * ├─ 100000 ─ <not assigned> (overlaps with CLZ)
+ * ├─ 100001 ─ <not assigned> (overlaps with CLO)
+ * ├─ 100010 ─ OPC_MXU_S8LDD
+ * ├─ 100011 ─ OPC_MXU_S8STD 15..14
+ * ├─ 100100 ─ OPC_MXU_S8LDI ┌─ 00 ─ OPC_MXU_S32MUL
+ * ├─ 100101 ─ OPC_MXU_S8SDI ├─ 00 ─ OPC_MXU_S32MULU
+ * │ ├─ 00 ─ OPC_MXU_S32EXTR
+ * ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
+ * │
+ * │ 20..18
+ * ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
+ * │ ├─ 001 ─ OPC_MXU_S32ALN
+ * │ ├─ 010 ─ OPC_MXU_S32ALNI
+ * │ ├─ 011 ─ OPC_MXU_S32LUI
+ * │ ├─ 100 ─ OPC_MXU_S32NOR
+ * │ ├─ 101 ─ OPC_MXU_S32AND
+ * │ ├─ 110 ─ OPC_MXU_S32OR
+ * │ └─ 111 ─ OPC_MXU_S32XOR
+ * │
+ * │ 7..5
+ * ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
+ * │ ├─ 001 ─ OPC_MXU_LXH
+ * ├─ 101001 ─ <not assigned> ├─ 011 ─ OPC_MXU_LXW
+ * ├─ 101010 ─ OPC_MXU_S16LDD ├─ 100 ─ OPC_MXU_LXBU
+ * ├─ 101011 ─ OPC_MXU_S16STD └─ 101 ─ OPC_MXU_LXHU
+ * ├─ 101100 ─ OPC_MXU_S16LDI
+ * ├─ 101101 ─ OPC_MXU_S16SDI
+ * ├─ 101110 ─ OPC_MXU_S32M2I
+ * ├─ 101111 ─ OPC_MXU_S32I2M
+ * ├─ 110000 ─ OPC_MXU_D32SLL
+ * ├─ 110001 ─ OPC_MXU_D32SLR 20..18
+ * ├─ 110010 ─ OPC_MXU_D32SARL ┌─ 000 ─ OPC_MXU_D32SLLV
+ * ├─ 110011 ─ OPC_MXU_D32SAR ├─ 001 ─ OPC_MXU_D32SLRV
+ * ├─ 110100 ─ OPC_MXU_Q16SLL ├─ 010 ─ OPC_MXU_D32SARV
+ * ├─ 110101 ─ OPC_MXU_Q16SLR ├─ 011 ─ OPC_MXU_Q16SLLV
+ * │ ├─ 100 ─ OPC_MXU_Q16SLRV
+ * ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
+ * │
+ * ├─ 110111 ─ OPC_MXU_Q16SAR
+ * │ 23..22
+ * ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
+ * │ └─ 01 ─ OPC_MXU_Q8MULSU
+ * │
+ * │ 20..18
+ * ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
+ * │ ├─ 001 ─ OPC_MXU_Q8MOVN
+ * │ ├─ 010 ─ OPC_MXU_D16MOVZ
+ * │ ├─ 011 ─ OPC_MXU_D16MOVN
+ * │ ├─ 100 ─ OPC_MXU_S32MOVZ
+ * │ └─ 101 ─ OPC_MXU_S32MOVN
+ * │
+ * │ 23..22
+ * ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
+ * │ └─ 10 ─ OPC_MXU_Q8MACSU
+ * ├─ 111011 ─ OPC_MXU_Q16SCOP
+ * ├─ 111100 ─ OPC_MXU_Q8MADL
+ * ├─ 111101 ─ OPC_MXU_S32SFL
+ * ├─ 111110 ─ OPC_MXU_Q8SAD
+ * └─ 111111 ─ <not assigned> (overlaps with SDBBP)
+ *
+ *
+ * Compiled after:
+ *
+ * "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
+ * Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
+ */
+
+enum {
+ OPC_MXU__POOL00 = 0x03,
+ OPC_MXU_D16MUL = 0x08,
+ OPC_MXU_D16MAC = 0x0A,
+ OPC_MXU__POOL04 = 0x10,
+ OPC_MXU_S8LDD = 0x22,
+ OPC_MXU__POOL16 = 0x27,
+ OPC_MXU_S32M2I = 0x2E,
+ OPC_MXU_S32I2M = 0x2F,
+ OPC_MXU__POOL19 = 0x38,
+};
+
+
+/*
+ * MXU pool 00
+ */
+enum {
+ OPC_MXU_S32MAX = 0x00,
+ OPC_MXU_S32MIN = 0x01,
+ OPC_MXU_D16MAX = 0x02,
+ OPC_MXU_D16MIN = 0x03,
+ OPC_MXU_Q8MAX = 0x04,
+ OPC_MXU_Q8MIN = 0x05,
+};
+
+/*
+ * MXU pool 04
+ */
+enum {
+ OPC_MXU_S32LDD = 0x00,
+ OPC_MXU_S32LDDR = 0x01,
+};
+
+/*
+ * MXU pool 16
+ */
+enum {
+ OPC_MXU_S32ALNI = 0x02,
+ OPC_MXU_S32NOR = 0x04,
+ OPC_MXU_S32AND = 0x05,
+ OPC_MXU_S32OR = 0x06,
+ OPC_MXU_S32XOR = 0x07,
+};
+
+/*
+ * MXU pool 19
+ */
+enum {
+ OPC_MXU_Q8MUL = 0x00,
+ OPC_MXU_Q8MULSU = 0x01,
+};
+
+/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
+#define MXU_APTN1_A 0
+#define MXU_APTN1_S 1
+
+/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
+#define MXU_APTN2_AA 0
+#define MXU_APTN2_AS 1
+#define MXU_APTN2_SA 2
+#define MXU_APTN2_SS 3
+
+/* MXU execute add/subtract 2-bit pattern 'eptn2' */
+#define MXU_EPTN2_AA 0
+#define MXU_EPTN2_AS 1
+#define MXU_EPTN2_SA 2
+#define MXU_EPTN2_SS 3
+
+/* MXU operand getting pattern 'optn2' */
+#define MXU_OPTN2_PTN0 0
+#define MXU_OPTN2_PTN1 1
+#define MXU_OPTN2_PTN2 2
+#define MXU_OPTN2_PTN3 3
+/* alternative naming scheme for 'optn2' */
+#define MXU_OPTN2_WW 0
+#define MXU_OPTN2_LW 1
+#define MXU_OPTN2_HW 2
+#define MXU_OPTN2_XW 3
+
+/* MXU operand getting pattern 'optn3' */
+#define MXU_OPTN3_PTN0 0
+#define MXU_OPTN3_PTN1 1
+#define MXU_OPTN3_PTN2 2
+#define MXU_OPTN3_PTN3 3
+#define MXU_OPTN3_PTN4 4
+#define MXU_OPTN3_PTN5 5
+#define MXU_OPTN3_PTN6 6
+#define MXU_OPTN3_PTN7 7
+
+/* MXU registers */
+static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
+static TCGv mxu_CR;
+
+static const char * const mxuregnames[] = {
+ "XR1", "XR2", "XR3", "XR4", "XR5", "XR6", "XR7", "XR8",
+ "XR9", "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
+};
+
+void mxu_translate_init(void)
+{
+ for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
+ mxu_gpr[i] = tcg_global_mem_new(cpu_env,
+ offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
+ mxuregnames[i]);
+ }
+
+ mxu_CR = tcg_global_mem_new(cpu_env,
+ offsetof(CPUMIPSState, active_tc.mxu_cr),
+ mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
+}
+
+/* MXU General purpose registers moves. */
+static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
+{
+ if (reg == 0) {
+ tcg_gen_movi_tl(t, 0);
+ } else if (reg <= 15) {
+ tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
+ }
+}
+
+static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
+{
+ if (reg > 0 && reg <= 15) {
+ tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
+ }
+}
+
+/* MXU control register moves. */
+static inline void gen_load_mxu_cr(TCGv t)
+{
+ tcg_gen_mov_tl(t, mxu_CR);
+}
+
+static inline void gen_store_mxu_cr(TCGv t)
+{
+ /* TODO: Add handling of RW rules for MXU_CR. */
+ tcg_gen_mov_tl(mxu_CR, t);
+}
+
+/*
+ * S32I2M XRa, rb - Register move from GRF to XRF
+ */
+static void gen_mxu_s32i2m(DisasContext *ctx)
+{
+ TCGv t0;
+ uint32_t XRa, Rb;
+
+ t0 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 5);
+ Rb = extract32(ctx->opcode, 16, 5);
+
+ gen_load_gpr(t0, Rb);
+ if (XRa <= 15) {
+ gen_store_mxu_gpr(t0, XRa);
+ } else if (XRa == 16) {
+ gen_store_mxu_cr(t0);
+ }
+
+ tcg_temp_free(t0);
+}
+
+/*
+ * S32M2I XRa, rb - Register move from XRF to GRF
+ */
+static void gen_mxu_s32m2i(DisasContext *ctx)
+{
+ TCGv t0;
+ uint32_t XRa, Rb;
+
+ t0 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 5);
+ Rb = extract32(ctx->opcode, 16, 5);
+
+ if (XRa <= 15) {
+ gen_load_mxu_gpr(t0, XRa);
+ } else if (XRa == 16) {
+ gen_load_mxu_cr(t0);
+ }
+
+ gen_store_gpr(t0, Rb);
+
+ tcg_temp_free(t0);
+}
+
+/*
+ * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
+ */
+static void gen_mxu_s8ldd(DisasContext *ctx)
+{
+ TCGv t0, t1;
+ uint32_t XRa, Rb, s8, optn3;
+
+ t0 = tcg_temp_new();
+ t1 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 4);
+ s8 = extract32(ctx->opcode, 10, 8);
+ optn3 = extract32(ctx->opcode, 18, 3);
+ Rb = extract32(ctx->opcode, 21, 5);
+
+ gen_load_gpr(t0, Rb);
+ tcg_gen_addi_tl(t0, t0, (int8_t)s8);
+
+ switch (optn3) {
+ /* XRa[7:0] = tmp8 */
+ case MXU_OPTN3_PTN0:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ gen_load_mxu_gpr(t0, XRa);
+ tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
+ break;
+ /* XRa[15:8] = tmp8 */
+ case MXU_OPTN3_PTN1:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ gen_load_mxu_gpr(t0, XRa);
+ tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
+ break;
+ /* XRa[23:16] = tmp8 */
+ case MXU_OPTN3_PTN2:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ gen_load_mxu_gpr(t0, XRa);
+ tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
+ break;
+ /* XRa[31:24] = tmp8 */
+ case MXU_OPTN3_PTN3:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ gen_load_mxu_gpr(t0, XRa);
+ tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
+ break;
+ /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
+ case MXU_OPTN3_PTN4:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+ break;
+ /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
+ case MXU_OPTN3_PTN5:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ tcg_gen_shli_tl(t1, t1, 8);
+ tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+ break;
+ /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
+ case MXU_OPTN3_PTN6:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
+ tcg_gen_mov_tl(t0, t1);
+ tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
+ tcg_gen_shli_tl(t1, t1, 16);
+ tcg_gen_or_tl(t0, t0, t1);
+ break;
+ /* XRa = {tmp8, tmp8, tmp8, tmp8} */
+ case MXU_OPTN3_PTN7:
+ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+ tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
+ tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+ break;
+ }
+
+ gen_store_mxu_gpr(t0, XRa);
+
+ tcg_temp_free(t0);
+ tcg_temp_free(t1);
+}
+
+/*
+ * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
+ */
+static void gen_mxu_d16mul(DisasContext *ctx)
+{
+ TCGv t0, t1, t2, t3;
+ uint32_t XRa, XRb, XRc, XRd, optn2;
+
+ t0 = tcg_temp_new();
+ t1 = tcg_temp_new();
+ t2 = tcg_temp_new();
+ t3 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRd = extract32(ctx->opcode, 18, 4);
+ optn2 = extract32(ctx->opcode, 22, 2);
+
+ gen_load_mxu_gpr(t1, XRb);
+ tcg_gen_sextract_tl(t0, t1, 0, 16);
+ tcg_gen_sextract_tl(t1, t1, 16, 16);
+ gen_load_mxu_gpr(t3, XRc);
+ tcg_gen_sextract_tl(t2, t3, 0, 16);
+ tcg_gen_sextract_tl(t3, t3, 16, 16);
+
+ switch (optn2) {
+ case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t1, t3);
+ tcg_gen_mul_tl(t2, t0, t2);
+ break;
+ case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t0, t3);
+ tcg_gen_mul_tl(t2, t0, t2);
+ break;
+ case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t1, t3);
+ tcg_gen_mul_tl(t2, t1, t2);
+ break;
+ case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t0, t3);
+ tcg_gen_mul_tl(t2, t1, t2);
+ break;
+ }
+ gen_store_mxu_gpr(t3, XRa);
+ gen_store_mxu_gpr(t2, XRd);
+
+ tcg_temp_free(t0);
+ tcg_temp_free(t1);
+ tcg_temp_free(t2);
+ tcg_temp_free(t3);
+}
+
+/*
+ * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
+ * and accumulate
+ */
+static void gen_mxu_d16mac(DisasContext *ctx)
+{
+ TCGv t0, t1, t2, t3;
+ uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
+
+ t0 = tcg_temp_new();
+ t1 = tcg_temp_new();
+ t2 = tcg_temp_new();
+ t3 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRd = extract32(ctx->opcode, 18, 4);
+ optn2 = extract32(ctx->opcode, 22, 2);
+ aptn2 = extract32(ctx->opcode, 24, 2);
+
+ gen_load_mxu_gpr(t1, XRb);
+ tcg_gen_sextract_tl(t0, t1, 0, 16);
+ tcg_gen_sextract_tl(t1, t1, 16, 16);
+
+ gen_load_mxu_gpr(t3, XRc);
+ tcg_gen_sextract_tl(t2, t3, 0, 16);
+ tcg_gen_sextract_tl(t3, t3, 16, 16);
+
+ switch (optn2) {
+ case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t1, t3);
+ tcg_gen_mul_tl(t2, t0, t2);
+ break;
+ case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t0, t3);
+ tcg_gen_mul_tl(t2, t0, t2);
+ break;
+ case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t1, t3);
+ tcg_gen_mul_tl(t2, t1, t2);
+ break;
+ case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
+ tcg_gen_mul_tl(t3, t0, t3);
+ tcg_gen_mul_tl(t2, t1, t2);
+ break;
+ }
+ gen_load_mxu_gpr(t0, XRa);
+ gen_load_mxu_gpr(t1, XRd);
+
+ switch (aptn2) {
+ case MXU_APTN2_AA:
+ tcg_gen_add_tl(t3, t0, t3);
+ tcg_gen_add_tl(t2, t1, t2);
+ break;
+ case MXU_APTN2_AS:
+ tcg_gen_add_tl(t3, t0, t3);
+ tcg_gen_sub_tl(t2, t1, t2);
+ break;
+ case MXU_APTN2_SA:
+ tcg_gen_sub_tl(t3, t0, t3);
+ tcg_gen_add_tl(t2, t1, t2);
+ break;
+ case MXU_APTN2_SS:
+ tcg_gen_sub_tl(t3, t0, t3);
+ tcg_gen_sub_tl(t2, t1, t2);
+ break;
+ }
+ gen_store_mxu_gpr(t3, XRa);
+ gen_store_mxu_gpr(t2, XRd);
+
+ tcg_temp_free(t0);
+ tcg_temp_free(t1);
+ tcg_temp_free(t2);
+ tcg_temp_free(t3);
+}
+
+/*
+ * Q8MUL XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
+ * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
+ */
+static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
+{
+ TCGv t0, t1, t2, t3, t4, t5, t6, t7;
+ uint32_t XRa, XRb, XRc, XRd, sel;
+
+ t0 = tcg_temp_new();
+ t1 = tcg_temp_new();
+ t2 = tcg_temp_new();
+ t3 = tcg_temp_new();
+ t4 = tcg_temp_new();
+ t5 = tcg_temp_new();
+ t6 = tcg_temp_new();
+ t7 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRd = extract32(ctx->opcode, 18, 4);
+ sel = extract32(ctx->opcode, 22, 2);
+
+ gen_load_mxu_gpr(t3, XRb);
+ gen_load_mxu_gpr(t7, XRc);
+
+ if (sel == 0x2) {
+ /* Q8MULSU */
+ tcg_gen_ext8s_tl(t0, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8s_tl(t1, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8s_tl(t2, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8s_tl(t3, t3);
+ } else {
+ /* Q8MUL */
+ tcg_gen_ext8u_tl(t0, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8u_tl(t1, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8u_tl(t2, t3);
+ tcg_gen_shri_tl(t3, t3, 8);
+ tcg_gen_ext8u_tl(t3, t3);
+ }
+
+ tcg_gen_ext8u_tl(t4, t7);
+ tcg_gen_shri_tl(t7, t7, 8);
+ tcg_gen_ext8u_tl(t5, t7);
+ tcg_gen_shri_tl(t7, t7, 8);
+ tcg_gen_ext8u_tl(t6, t7);
+ tcg_gen_shri_tl(t7, t7, 8);
+ tcg_gen_ext8u_tl(t7, t7);
+
+ tcg_gen_mul_tl(t0, t0, t4);
+ tcg_gen_mul_tl(t1, t1, t5);
+ tcg_gen_mul_tl(t2, t2, t6);
+ tcg_gen_mul_tl(t3, t3, t7);
+
+ tcg_gen_andi_tl(t0, t0, 0xFFFF);
+ tcg_gen_andi_tl(t1, t1, 0xFFFF);
+ tcg_gen_andi_tl(t2, t2, 0xFFFF);
+ tcg_gen_andi_tl(t3, t3, 0xFFFF);
+
+ tcg_gen_shli_tl(t1, t1, 16);
+ tcg_gen_shli_tl(t3, t3, 16);
+
+ tcg_gen_or_tl(t0, t0, t1);
+ tcg_gen_or_tl(t1, t2, t3);
+
+ gen_store_mxu_gpr(t0, XRd);
+ gen_store_mxu_gpr(t1, XRa);
+
+ tcg_temp_free(t0);
+ tcg_temp_free(t1);
+ tcg_temp_free(t2);
+ tcg_temp_free(t3);
+ tcg_temp_free(t4);
+ tcg_temp_free(t5);
+ tcg_temp_free(t6);
+ tcg_temp_free(t7);
+}
+
+/*
+ * S32LDD XRa, Rb, S12 - Load a word from memory to XRF
+ * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
+ */
+static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
+{
+ TCGv t0, t1;
+ uint32_t XRa, Rb, s12, sel;
+
+ t0 = tcg_temp_new();
+ t1 = tcg_temp_new();
+
+ XRa = extract32(ctx->opcode, 6, 4);
+ s12 = extract32(ctx->opcode, 10, 10);
+ sel = extract32(ctx->opcode, 20, 1);
+ Rb = extract32(ctx->opcode, 21, 5);
+
+ gen_load_gpr(t0, Rb);
+
+ tcg_gen_movi_tl(t1, s12);
+ tcg_gen_shli_tl(t1, t1, 2);
+ if (s12 & 0x200) {
+ tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
+ }
+ tcg_gen_add_tl(t1, t0, t1);
+ tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
+
+ if (sel == 1) {
+ /* S32LDDR */
+ tcg_gen_bswap32_tl(t1, t1);
+ }
+ gen_store_mxu_gpr(t1, XRa);
+
+ tcg_temp_free(t0);
+ tcg_temp_free(t1);
+}
+
+
+/*
+ * MXU instruction category: logic
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * S32NOR S32AND S32OR S32XOR
+ */
+
+/*
+ * S32NOR XRa, XRb, XRc
+ * Update XRa with the result of logical bitwise 'nor' operation
+ * applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32NOR(DisasContext *ctx)
+{
+ uint32_t pad, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to all 1s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
+ } else if (unlikely(XRb == 0)) {
+ /* XRb zero register -> just set destination to the negation of XRc */
+ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+ } else if (unlikely(XRc == 0)) {
+ /* XRa zero register -> just set destination to the negation of XRb */
+ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to the negation of XRb */
+ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+ }
+}
+
+/*
+ * S32AND XRa, XRb, XRc
+ * Update XRa with the result of logical bitwise 'and' operation
+ * applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32AND(DisasContext *ctx)
+{
+ uint32_t pad, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) || (XRc == 0))) {
+ /* one of operands zero register -> just set destination to all 0s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to one of them */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+ }
+}
+
+/*
+ * S32OR XRa, XRb, XRc
+ * Update XRa with the result of logical bitwise 'or' operation
+ * applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32OR(DisasContext *ctx)
+{
+ uint32_t pad, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to all 0s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely(XRb == 0)) {
+ /* XRb zero register -> just set destination to the content of XRc */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+ } else if (unlikely(XRc == 0)) {
+ /* XRc zero register -> just set destination to the content of XRb */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to one of them */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+ }
+}
+
+/*
+ * S32XOR XRa, XRb, XRc
+ * Update XRa with the result of logical bitwise 'xor' operation
+ * applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32XOR(DisasContext *ctx)
+{
+ uint32_t pad, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to all 0s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely(XRb == 0)) {
+ /* XRb zero register -> just set destination to the content of XRc */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+ } else if (unlikely(XRc == 0)) {
+ /* XRc zero register -> just set destination to the content of XRb */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to all 0s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else {
+ /* the most general case */
+ tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+ }
+}
+
+
+/*
+ * MXU instruction category max/min
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * S32MAX D16MAX Q8MAX
+ * S32MIN D16MIN Q8MIN
+ */
+
+/*
+ * S32MAX XRa, XRb, XRc
+ * Update XRa with the maximum of signed 32-bit integers contained
+ * in XRb and XRc.
+ *
+ * S32MIN XRa, XRb, XRc
+ * Update XRa with the minimum of signed 32-bit integers contained
+ * in XRb and XRc.
+ */
+static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
+{
+ uint32_t pad, opc, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ opc = extract32(ctx->opcode, 18, 3);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to zero */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely((XRb == 0) || (XRc == 0))) {
+ /* exactly one operand is zero register - find which one is not...*/
+ uint32_t XRx = XRb ? XRb : XRc;
+ /* ...and do max/min operation with one operand 0 */
+ if (opc == OPC_MXU_S32MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
+ }
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to one of them */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ if (opc == OPC_MXU_S32MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
+ mxu_gpr[XRc - 1]);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
+ mxu_gpr[XRc - 1]);
+ }
+ }
+}
+
+/*
+ * D16MAX
+ * Update XRa with the 16-bit-wise maximums of signed integers
+ * contained in XRb and XRc.
+ *
+ * D16MIN
+ * Update XRa with the 16-bit-wise minimums of signed integers
+ * contained in XRb and XRc.
+ */
+static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
+{
+ uint32_t pad, opc, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ opc = extract32(ctx->opcode, 18, 3);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRc == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRa == 0))) {
+ /* both operands zero registers -> just set destination to zero */
+ tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
+ } else if (unlikely((XRb == 0) || (XRa == 0))) {
+ /* exactly one operand is zero register - find which one is not...*/
+ uint32_t XRx = XRb ? XRb : XRc;
+ /* ...and do half-word-wise max/min with one operand 0 */
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_const_i32(0);
+
+ /* the left half-word first */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
+ if (opc == OPC_MXU_D16MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+ }
+
+ /* the right half-word */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
+ /* move half-words to the leftmost position */
+ tcg_gen_shli_i32(t0, t0, 16);
+ /* t0 will be max/min of t0 and t1 */
+ if (opc == OPC_MXU_D16MAX) {
+ tcg_gen_smax_i32(t0, t0, t1);
+ } else {
+ tcg_gen_smin_i32(t0, t0, t1);
+ }
+ /* return resulting half-words to its original position */
+ tcg_gen_shri_i32(t0, t0, 16);
+ /* finally update the destination */
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to one of them */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_temp_new();
+
+ /* the left half-word first */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
+ if (opc == OPC_MXU_D16MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+ }
+
+ /* the right half-word */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
+ /* move half-words to the leftmost position */
+ tcg_gen_shli_i32(t0, t0, 16);
+ tcg_gen_shli_i32(t1, t1, 16);
+ /* t0 will be max/min of t0 and t1 */
+ if (opc == OPC_MXU_D16MAX) {
+ tcg_gen_smax_i32(t0, t0, t1);
+ } else {
+ tcg_gen_smin_i32(t0, t0, t1);
+ }
+ /* return resulting half-words to its original position */
+ tcg_gen_shri_i32(t0, t0, 16);
+ /* finally update the destination */
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ }
+}
+
+/*
+ * Q8MAX
+ * Update XRa with the 8-bit-wise maximums of signed integers
+ * contained in XRb and XRc.
+ *
+ * Q8MIN
+ * Update XRa with the 8-bit-wise minimums of signed integers
+ * contained in XRb and XRc.
+ */
+static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
+{
+ uint32_t pad, opc, XRc, XRb, XRa;
+
+ pad = extract32(ctx->opcode, 21, 5);
+ opc = extract32(ctx->opcode, 18, 3);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to zero */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely((XRb == 0) || (XRc == 0))) {
+ /* exactly one operand is zero register - make it be the first...*/
+ uint32_t XRx = XRb ? XRb : XRc;
+ /* ...and do byte-wise max/min with one operand 0 */
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_const_i32(0);
+ int32_t i;
+
+ /* the leftmost byte (byte 3) first */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
+ if (opc == OPC_MXU_Q8MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+ }
+
+ /* bytes 2, 1, 0 */
+ for (i = 2; i >= 0; i--) {
+ /* extract the byte */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
+ /* move the byte to the leftmost position */
+ tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
+ /* t0 will be max/min of t0 and t1 */
+ if (opc == OPC_MXU_Q8MAX) {
+ tcg_gen_smax_i32(t0, t0, t1);
+ } else {
+ tcg_gen_smin_i32(t0, t0, t1);
+ }
+ /* return resulting byte to its original position */
+ tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
+ /* finally update the destination */
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+ }
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just set destination to one of them */
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ } else {
+ /* the most general case */
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_temp_new();
+ int32_t i;
+
+ /* the leftmost bytes (bytes 3) first */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
+ if (opc == OPC_MXU_Q8MAX) {
+ tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+ } else {
+ tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+ }
+
+ /* bytes 2, 1, 0 */
+ for (i = 2; i >= 0; i--) {
+ /* extract corresponding bytes */
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
+ /* move the bytes to the leftmost position */
+ tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
+ tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
+ /* t0 will be max/min of t0 and t1 */
+ if (opc == OPC_MXU_Q8MAX) {
+ tcg_gen_smax_i32(t0, t0, t1);
+ } else {
+ tcg_gen_smin_i32(t0, t0, t1);
+ }
+ /* return resulting byte to its original position */
+ tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
+ /* finally update the destination */
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+ }
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ }
+}
+
+
+/*
+ * MXU instruction category: align
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * S32ALN S32ALNI
+ */
+
+/*
+ * S32ALNI XRc, XRb, XRa, optn3
+ * Arrange bytes from XRb and XRc according to one of five sets of
+ * rules determined by optn3, and place the result in XRa.
+ */
+static void gen_mxu_S32ALNI(DisasContext *ctx)
+{
+ uint32_t optn3, pad, XRc, XRb, XRa;
+
+ optn3 = extract32(ctx->opcode, 23, 3);
+ pad = extract32(ctx->opcode, 21, 2);
+ XRc = extract32(ctx->opcode, 14, 4);
+ XRb = extract32(ctx->opcode, 10, 4);
+ XRa = extract32(ctx->opcode, 6, 4);
+
+ if (unlikely(pad != 0)) {
+ /* opcode padding incorrect -> do nothing */
+ } else if (unlikely(XRa == 0)) {
+ /* destination is zero register -> do nothing */
+ } else if (unlikely((XRb == 0) && (XRc == 0))) {
+ /* both operands zero registers -> just set destination to all 0s */
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ } else if (unlikely(XRb == 0)) {
+ /* XRb zero register -> just appropriatelly shift XRc into XRa */
+ switch (optn3) {
+ case MXU_OPTN3_PTN0:
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ break;
+ case MXU_OPTN3_PTN1:
+ case MXU_OPTN3_PTN2:
+ case MXU_OPTN3_PTN3:
+ tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
+ 8 * (4 - optn3));
+ break;
+ case MXU_OPTN3_PTN4:
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+ break;
+ }
+ } else if (unlikely(XRc == 0)) {
+ /* XRc zero register -> just appropriatelly shift XRb into XRa */
+ switch (optn3) {
+ case MXU_OPTN3_PTN0:
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ break;
+ case MXU_OPTN3_PTN1:
+ case MXU_OPTN3_PTN2:
+ case MXU_OPTN3_PTN3:
+ tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
+ break;
+ case MXU_OPTN3_PTN4:
+ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+ break;
+ }
+ } else if (unlikely(XRb == XRc)) {
+ /* both operands same -> just rotation or moving from any of them */
+ switch (optn3) {
+ case MXU_OPTN3_PTN0:
+ case MXU_OPTN3_PTN4:
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ break;
+ case MXU_OPTN3_PTN1:
+ case MXU_OPTN3_PTN2:
+ case MXU_OPTN3_PTN3:
+ tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
+ break;
+ }
+ } else {
+ /* the most general case */
+ switch (optn3) {
+ case MXU_OPTN3_PTN0:
+ {
+ /* */
+ /* XRb XRc */
+ /* +---------------+ */
+ /* | A B C D | E F G H */
+ /* +-------+-------+ */
+ /* | */
+ /* XRa */
+ /* */
+
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+ }
+ break;
+ case MXU_OPTN3_PTN1:
+ {
+ /* */
+ /* XRb XRc */
+ /* +-------------------+ */
+ /* A | B C D E | F G H */
+ /* +---------+---------+ */
+ /* | */
+ /* XRa */
+ /* */
+
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_temp_new();
+
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
+ tcg_gen_shli_i32(t0, t0, 8);
+
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
+ tcg_gen_shri_i32(t1, t1, 24);
+
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ }
+ break;
+ case MXU_OPTN3_PTN2:
+ {
+ /* */
+ /* XRb XRc */
+ /* +-------------------+ */
+ /* A B | C D E F | G H */
+ /* +---------+---------+ */
+ /* | */
+ /* XRa */
+ /* */
+
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_temp_new();
+
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
+ tcg_gen_shli_i32(t0, t0, 16);
+
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
+ tcg_gen_shri_i32(t1, t1, 16);
+
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ }
+ break;
+ case MXU_OPTN3_PTN3:
+ {
+ /* */
+ /* XRb XRc */
+ /* +-------------------+ */
+ /* A B C | D E F G | H */
+ /* +---------+---------+ */
+ /* | */
+ /* XRa */
+ /* */
+
+ TCGv_i32 t0 = tcg_temp_new();
+ TCGv_i32 t1 = tcg_temp_new();
+
+ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
+ tcg_gen_shli_i32(t0, t0, 24);
+
+ tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
+ tcg_gen_shri_i32(t1, t1, 8);
+
+ tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+ tcg_temp_free(t1);
+ tcg_temp_free(t0);
+ }
+ break;
+ case MXU_OPTN3_PTN4:
+ {
+ /* */
+ /* XRb XRc */
+ /* +---------------+ */
+ /* A B C D | E F G H | */
+ /* +-------+-------+ */
+ /* | */
+ /* XRa */
+ /* */
+
+ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+ }
+ break;
+ }
+ }
+}
+
+
+/*
+ * Decoding engine for MXU
+ * =======================
+ */
+
+static void decode_opc_mxu__pool00(DisasContext *ctx)
+{
+ uint32_t opcode = extract32(ctx->opcode, 18, 3);
+
+ switch (opcode) {
+ case OPC_MXU_S32MAX:
+ case OPC_MXU_S32MIN:
+ gen_mxu_S32MAX_S32MIN(ctx);
+ break;
+ case OPC_MXU_D16MAX:
+ case OPC_MXU_D16MIN:
+ gen_mxu_D16MAX_D16MIN(ctx);
+ break;
+ case OPC_MXU_Q8MAX:
+ case OPC_MXU_Q8MIN:
+ gen_mxu_Q8MAX_Q8MIN(ctx);
+ break;
+ default:
+ MIPS_INVAL("decode_opc_mxu");
+ gen_reserved_instruction(ctx);
+ break;
+ }
+}
+
+static void decode_opc_mxu__pool04(DisasContext *ctx)
+{
+ uint32_t opcode = extract32(ctx->opcode, 20, 1);
+
+ switch (opcode) {
+ case OPC_MXU_S32LDD:
+ case OPC_MXU_S32LDDR:
+ gen_mxu_s32ldd_s32lddr(ctx);
+ break;
+ default:
+ MIPS_INVAL("decode_opc_mxu");
+ gen_reserved_instruction(ctx);
+ break;
+ }
+}
+
+static void decode_opc_mxu__pool16(DisasContext *ctx)
+{
+ uint32_t opcode = extract32(ctx->opcode, 18, 3);
+
+ switch (opcode) {
+ case OPC_MXU_S32ALNI:
+ gen_mxu_S32ALNI(ctx);
+ break;
+ case OPC_MXU_S32NOR:
+ gen_mxu_S32NOR(ctx);
+ break;
+ case OPC_MXU_S32AND:
+ gen_mxu_S32AND(ctx);
+ break;
+ case OPC_MXU_S32OR:
+ gen_mxu_S32OR(ctx);
+ break;
+ case OPC_MXU_S32XOR:
+ gen_mxu_S32XOR(ctx);
+ break;
+ default:
+ MIPS_INVAL("decode_opc_mxu");
+ gen_reserved_instruction(ctx);
+ break;
+ }
+}
+
+static void decode_opc_mxu__pool19(DisasContext *ctx)
+{
+ uint32_t opcode = extract32(ctx->opcode, 22, 2);
+
+ switch (opcode) {
+ case OPC_MXU_Q8MUL:
+ case OPC_MXU_Q8MULSU:
+ gen_mxu_q8mul_q8mulsu(ctx);
+ break;
+ default:
+ MIPS_INVAL("decode_opc_mxu");
+ gen_reserved_instruction(ctx);
+ break;
+ }
+}
+
+bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
+{
+ uint32_t opcode = extract32(insn, 0, 6);
+
+ if (opcode == OPC_MXU_S32M2I) {
+ gen_mxu_s32m2i(ctx);
+ return true;
+ }
+
+ if (opcode == OPC_MXU_S32I2M) {
+ gen_mxu_s32i2m(ctx);
+ return true;
+ }
+
+ {
+ TCGv t_mxu_cr = tcg_temp_new();
+ TCGLabel *l_exit = gen_new_label();
+
+ gen_load_mxu_cr(t_mxu_cr);
+ tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
+ tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
+
+ switch (opcode) {
+ case OPC_MXU__POOL00:
+ decode_opc_mxu__pool00(ctx);
+ break;
+ case OPC_MXU_D16MUL:
+ gen_mxu_d16mul(ctx);
+ break;
+ case OPC_MXU_D16MAC:
+ gen_mxu_d16mac(ctx);
+ break;
+ case OPC_MXU__POOL04:
+ decode_opc_mxu__pool04(ctx);
+ break;
+ case OPC_MXU_S8LDD:
+ gen_mxu_s8ldd(ctx);
+ break;
+ case OPC_MXU__POOL16:
+ decode_opc_mxu__pool16(ctx);
+ break;
+ case OPC_MXU__POOL19:
+ decode_opc_mxu__pool19(ctx);
+ break;
+ default:
+ MIPS_INVAL("decode_opc_mxu");
+ gen_reserved_instruction(ctx);
+ }
+
+ gen_set_label(l_exit);
+ tcg_temp_free(t_mxu_cr);
+ }
+
+ return true;
+}
diff --git a/target/mips/translate.c b/target/mips/translate.c
index a1a9a85008..92dcd2a54b 100644
--- a/target/mips/translate.c
+++ b/target/mips/translate.c
@@ -1130,392 +1130,6 @@ enum {
};
/*
- *
- * AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
- * ============================================
- *
- *
- * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
- * instructions set. It is designed to fit the needs of signal, graphical and
- * video processing applications. MXU instruction set is used in Xburst family
- * of microprocessors by Ingenic.
- *
- * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
- * the control register.
- *
- *
- * The notation used in MXU assembler mnemonics
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * Register operands:
- *
- * XRa, XRb, XRc, XRd - MXU registers
- * Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
- *
- * Non-register operands:
- *
- * aptn1 - 1-bit accumulate add/subtract pattern
- * aptn2 - 2-bit accumulate add/subtract pattern
- * eptn2 - 2-bit execute add/subtract pattern
- * optn2 - 2-bit operand pattern
- * optn3 - 3-bit operand pattern
- * sft4 - 4-bit shift amount
- * strd2 - 2-bit stride amount
- *
- * Prefixes:
- *
- * Level of parallelism: Operand size:
- * S - single operation at a time 32 - word
- * D - two operations in parallel 16 - half word
- * Q - four operations in parallel 8 - byte
- *
- * Operations:
- *
- * ADD - Add or subtract
- * ADDC - Add with carry-in
- * ACC - Accumulate
- * ASUM - Sum together then accumulate (add or subtract)
- * ASUMC - Sum together then accumulate (add or subtract) with carry-in
- * AVG - Average between 2 operands
- * ABD - Absolute difference
- * ALN - Align data
- * AND - Logical bitwise 'and' operation
- * CPS - Copy sign
- * EXTR - Extract bits
- * I2M - Move from GPR register to MXU register
- * LDD - Load data from memory to XRF
- * LDI - Load data from memory to XRF (and increase the address base)
- * LUI - Load unsigned immediate
- * MUL - Multiply
- * MULU - Unsigned multiply
- * MADD - 64-bit operand add 32x32 product
- * MSUB - 64-bit operand subtract 32x32 product
- * MAC - Multiply and accumulate (add or subtract)
- * MAD - Multiply and add or subtract
- * MAX - Maximum between 2 operands
- * MIN - Minimum between 2 operands
- * M2I - Move from MXU register to GPR register
- * MOVZ - Move if zero
- * MOVN - Move if non-zero
- * NOR - Logical bitwise 'nor' operation
- * OR - Logical bitwise 'or' operation
- * STD - Store data from XRF to memory
- * SDI - Store data from XRF to memory (and increase the address base)
- * SLT - Set of less than comparison
- * SAD - Sum of absolute differences
- * SLL - Logical shift left
- * SLR - Logical shift right
- * SAR - Arithmetic shift right
- * SAT - Saturation
- * SFL - Shuffle
- * SCOP - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
- * XOR - Logical bitwise 'exclusive or' operation
- *
- * Suffixes:
- *
- * E - Expand results
- * F - Fixed point multiplication
- * L - Low part result
- * R - Doing rounding
- * V - Variable instead of immediate
- * W - Combine above L and V
- *
- *
- * The list of MXU instructions grouped by functionality
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * Load/Store instructions Multiplication instructions
- * ----------------------- ---------------------------
- *
- * S32LDD XRa, Rb, s12 S32MADD XRa, XRd, Rs, Rt
- * S32STD XRa, Rb, s12 S32MADDU XRa, XRd, Rs, Rt
- * S32LDDV XRa, Rb, rc, strd2 S32MSUB XRa, XRd, Rs, Rt
- * S32STDV XRa, Rb, rc, strd2 S32MSUBU XRa, XRd, Rs, Rt
- * S32LDI XRa, Rb, s12 S32MUL XRa, XRd, Rs, Rt
- * S32SDI XRa, Rb, s12 S32MULU XRa, XRd, Rs, Rt
- * S32LDIV XRa, Rb, rc, strd2 D16MUL XRa, XRb, XRc, XRd, optn2
- * S32SDIV XRa, Rb, rc, strd2 D16MULE XRa, XRb, XRc, optn2
- * S32LDDR XRa, Rb, s12 D16MULF XRa, XRb, XRc, optn2
- * S32STDR XRa, Rb, s12 D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
- * S32LDDVR XRa, Rb, rc, strd2 D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
- * S32STDVR XRa, Rb, rc, strd2 D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
- * S32LDIR XRa, Rb, s12 D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
- * S32SDIR XRa, Rb, s12 S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
- * S32LDIVR XRa, Rb, rc, strd2 Q8MUL XRa, XRb, XRc, XRd
- * S32SDIVR XRa, Rb, rc, strd2 Q8MULSU XRa, XRb, XRc, XRd
- * S16LDD XRa, Rb, s10, eptn2 Q8MAC XRa, XRb, XRc, XRd, aptn2
- * S16STD XRa, Rb, s10, eptn2 Q8MACSU XRa, XRb, XRc, XRd, aptn2
- * S16LDI XRa, Rb, s10, eptn2 Q8MADL XRa, XRb, XRc, XRd, aptn2
- * S16SDI XRa, Rb, s10, eptn2
- * S8LDD XRa, Rb, s8, eptn3
- * S8STD XRa, Rb, s8, eptn3 Addition and subtraction instructions
- * S8LDI XRa, Rb, s8, eptn3 -------------------------------------
- * S8SDI XRa, Rb, s8, eptn3
- * LXW Rd, Rs, Rt, strd2 D32ADD XRa, XRb, XRc, XRd, eptn2
- * LXH Rd, Rs, Rt, strd2 D32ADDC XRa, XRb, XRc, XRd
- * LXHU Rd, Rs, Rt, strd2 D32ACC XRa, XRb, XRc, XRd, eptn2
- * LXB Rd, Rs, Rt, strd2 D32ACCM XRa, XRb, XRc, XRd, eptn2
- * LXBU Rd, Rs, Rt, strd2 D32ASUM XRa, XRb, XRc, XRd, eptn2
- * S32CPS XRa, XRb, XRc
- * Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
- * Comparison instructions Q16ACC XRa, XRb, XRc, XRd, eptn2
- * ----------------------- Q16ACCM XRa, XRb, XRc, XRd, eptn2
- * D16ASUM XRa, XRb, XRc, XRd, eptn2
- * S32MAX XRa, XRb, XRc D16CPS XRa, XRb,
- * S32MIN XRa, XRb, XRc D16AVG XRa, XRb, XRc
- * S32SLT XRa, XRb, XRc D16AVGR XRa, XRb, XRc
- * S32MOVZ XRa, XRb, XRc Q8ADD XRa, XRb, XRc, eptn2
- * S32MOVN XRa, XRb, XRc Q8ADDE XRa, XRb, XRc, XRd, eptn2
- * D16MAX XRa, XRb, XRc Q8ACCE XRa, XRb, XRc, XRd, eptn2
- * D16MIN XRa, XRb, XRc Q8ABD XRa, XRb, XRc
- * D16SLT XRa, XRb, XRc Q8SAD XRa, XRb, XRc, XRd
- * D16MOVZ XRa, XRb, XRc Q8AVG XRa, XRb, XRc
- * D16MOVN XRa, XRb, XRc Q8AVGR XRa, XRb, XRc
- * Q8MAX XRa, XRb, XRc D8SUM XRa, XRb, XRc, XRd
- * Q8MIN XRa, XRb, XRc D8SUMC XRa, XRb, XRc, XRd
- * Q8SLT XRa, XRb, XRc
- * Q8SLTU XRa, XRb, XRc
- * Q8MOVZ XRa, XRb, XRc Shift instructions
- * Q8MOVN XRa, XRb, XRc ------------------
- *
- * D32SLL XRa, XRb, XRc, XRd, sft4
- * Bitwise instructions D32SLR XRa, XRb, XRc, XRd, sft4
- * -------------------- D32SAR XRa, XRb, XRc, XRd, sft4
- * D32SARL XRa, XRb, XRc, sft4
- * S32NOR XRa, XRb, XRc D32SLLV XRa, XRb, Rb
- * S32AND XRa, XRb, XRc D32SLRV XRa, XRb, Rb
- * S32XOR XRa, XRb, XRc D32SARV XRa, XRb, Rb
- * S32OR XRa, XRb, XRc D32SARW XRa, XRb, XRc, Rb
- * Q16SLL XRa, XRb, XRc, XRd, sft4
- * Q16SLR XRa, XRb, XRc, XRd, sft4
- * Miscellaneous instructions Q16SAR XRa, XRb, XRc, XRd, sft4
- * ------------------------- Q16SLLV XRa, XRb, Rb
- * Q16SLRV XRa, XRb, Rb
- * S32SFL XRa, XRb, XRc, XRd, optn2 Q16SARV XRa, XRb, Rb
- * S32ALN XRa, XRb, XRc, Rb
- * S32ALNI XRa, XRb, XRc, s3
- * S32LUI XRa, s8, optn3 Move instructions
- * S32EXTR XRa, XRb, Rb, bits5 -----------------
- * S32EXTRV XRa, XRb, Rs, Rt
- * Q16SCOP XRa, XRb, XRc, XRd S32M2I XRa, Rb
- * Q16SAT XRa, XRb, XRc S32I2M XRa, Rb
- *
- *
- * The opcode organization of MXU instructions
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
- * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
- * other bits up to the instruction level is as follows:
- *
- * bits
- * 05..00
- *
- * ┌─ 000000 ─ OPC_MXU_S32MADD
- * ├─ 000001 ─ OPC_MXU_S32MADDU
- * ├─ 000010 ─ <not assigned> (non-MXU OPC_MUL)
- * │
- * │ 20..18
- * ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
- * │ ├─ 001 ─ OPC_MXU_S32MIN
- * │ ├─ 010 ─ OPC_MXU_D16MAX
- * │ ├─ 011 ─ OPC_MXU_D16MIN
- * │ ├─ 100 ─ OPC_MXU_Q8MAX
- * │ ├─ 101 ─ OPC_MXU_Q8MIN
- * │ ├─ 110 ─ OPC_MXU_Q8SLT
- * │ └─ 111 ─ OPC_MXU_Q8SLTU
- * ├─ 000100 ─ OPC_MXU_S32MSUB
- * ├─ 000101 ─ OPC_MXU_S32MSUBU 20..18
- * ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
- * │ ├─ 001 ─ OPC_MXU_D16SLT
- * │ ├─ 010 ─ OPC_MXU_D16AVG
- * │ ├─ 011 ─ OPC_MXU_D16AVGR
- * │ ├─ 100 ─ OPC_MXU_Q8AVG
- * │ ├─ 101 ─ OPC_MXU_Q8AVGR
- * │ └─ 111 ─ OPC_MXU_Q8ADD
- * │
- * │ 20..18
- * ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
- * │ ├─ 010 ─ OPC_MXU_D16CPS
- * │ ├─ 100 ─ OPC_MXU_Q8ABD
- * │ └─ 110 ─ OPC_MXU_Q16SAT
- * ├─ 001000 ─ OPC_MXU_D16MUL
- * │ 25..24
- * ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
- * │ └─ 01 ─ OPC_MXU_D16MULE
- * ├─ 001010 ─ OPC_MXU_D16MAC
- * ├─ 001011 ─ OPC_MXU_D16MACF
- * ├─ 001100 ─ OPC_MXU_D16MADL
- * ├─ 001101 ─ OPC_MXU_S16MAD
- * ├─ 001110 ─ OPC_MXU_Q16ADD
- * ├─ 001111 ─ OPC_MXU_D16MACE 23
- * │ ┌─ 0 ─ OPC_MXU_S32LDD
- * ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
- * │
- * │ 23
- * ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
- * │ └─ 1 ─ OPC_MXU_S32STDR
- * │
- * │ 13..10
- * ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
- * │ └─ 0001 ─ OPC_MXU_S32LDDVR
- * │
- * │ 13..10
- * ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
- * │ └─ 0001 ─ OPC_MXU_S32STDVR
- * │
- * │ 23
- * ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
- * │ └─ 1 ─ OPC_MXU_S32LDIR
- * │
- * │ 23
- * ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
- * │ └─ 1 ─ OPC_MXU_S32SDIR
- * │
- * │ 13..10
- * ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
- * │ └─ 0001 ─ OPC_MXU_S32LDIVR
- * │
- * │ 13..10
- * ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
- * │ └─ 0001 ─ OPC_MXU_S32SDIVR
- * ├─ 011000 ─ OPC_MXU_D32ADD
- * │ 23..22
- * MXU ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
- * opcodes ─┤ ├─ 01 ─ OPC_MXU_D32ACCM
- * │ └─ 10 ─ OPC_MXU_D32ASUM
- * ├─ 011010 ─ <not assigned>
- * │ 23..22
- * ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
- * │ ├─ 01 ─ OPC_MXU_Q16ACCM
- * │ └─ 10 ─ OPC_MXU_Q16ASUM
- * │
- * │ 23..22
- * ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
- * │ ├─ 01 ─ OPC_MXU_D8SUM
- * ├─ 011101 ─ OPC_MXU_Q8ACCE └─ 10 ─ OPC_MXU_D8SUMC
- * ├─ 011110 ─ <not assigned>
- * ├─ 011111 ─ <not assigned>
- * ├─ 100000 ─ <not assigned> (overlaps with CLZ)
- * ├─ 100001 ─ <not assigned> (overlaps with CLO)
- * ├─ 100010 ─ OPC_MXU_S8LDD
- * ├─ 100011 ─ OPC_MXU_S8STD 15..14
- * ├─ 100100 ─ OPC_MXU_S8LDI ┌─ 00 ─ OPC_MXU_S32MUL
- * ├─ 100101 ─ OPC_MXU_S8SDI ├─ 00 ─ OPC_MXU_S32MULU
- * │ ├─ 00 ─ OPC_MXU_S32EXTR
- * ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
- * │
- * │ 20..18
- * ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
- * │ ├─ 001 ─ OPC_MXU_S32ALN
- * │ ├─ 010 ─ OPC_MXU_S32ALNI
- * │ ├─ 011 ─ OPC_MXU_S32LUI
- * │ ├─ 100 ─ OPC_MXU_S32NOR
- * │ ├─ 101 ─ OPC_MXU_S32AND
- * │ ├─ 110 ─ OPC_MXU_S32OR
- * │ └─ 111 ─ OPC_MXU_S32XOR
- * │
- * │ 7..5
- * ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
- * │ ├─ 001 ─ OPC_MXU_LXH
- * ├─ 101001 ─ <not assigned> ├─ 011 ─ OPC_MXU_LXW
- * ├─ 101010 ─ OPC_MXU_S16LDD ├─ 100 ─ OPC_MXU_LXBU
- * ├─ 101011 ─ OPC_MXU_S16STD └─ 101 ─ OPC_MXU_LXHU
- * ├─ 101100 ─ OPC_MXU_S16LDI
- * ├─ 101101 ─ OPC_MXU_S16SDI
- * ├─ 101110 ─ OPC_MXU_S32M2I
- * ├─ 101111 ─ OPC_MXU_S32I2M
- * ├─ 110000 ─ OPC_MXU_D32SLL
- * ├─ 110001 ─ OPC_MXU_D32SLR 20..18
- * ├─ 110010 ─ OPC_MXU_D32SARL ┌─ 000 ─ OPC_MXU_D32SLLV
- * ├─ 110011 ─ OPC_MXU_D32SAR ├─ 001 ─ OPC_MXU_D32SLRV
- * ├─ 110100 ─ OPC_MXU_Q16SLL ├─ 010 ─ OPC_MXU_D32SARV
- * ├─ 110101 ─ OPC_MXU_Q16SLR ├─ 011 ─ OPC_MXU_Q16SLLV
- * │ ├─ 100 ─ OPC_MXU_Q16SLRV
- * ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
- * │
- * ├─ 110111 ─ OPC_MXU_Q16SAR
- * │ 23..22
- * ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
- * │ └─ 01 ─ OPC_MXU_Q8MULSU
- * │
- * │ 20..18
- * ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
- * │ ├─ 001 ─ OPC_MXU_Q8MOVN
- * │ ├─ 010 ─ OPC_MXU_D16MOVZ
- * │ ├─ 011 ─ OPC_MXU_D16MOVN
- * │ ├─ 100 ─ OPC_MXU_S32MOVZ
- * │ └─ 101 ─ OPC_MXU_S32MOVN
- * │
- * │ 23..22
- * ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
- * │ └─ 10 ─ OPC_MXU_Q8MACSU
- * ├─ 111011 ─ OPC_MXU_Q16SCOP
- * ├─ 111100 ─ OPC_MXU_Q8MADL
- * ├─ 111101 ─ OPC_MXU_S32SFL
- * ├─ 111110 ─ OPC_MXU_Q8SAD
- * └─ 111111 ─ <not assigned> (overlaps with SDBBP)
- *
- *
- * Compiled after:
- *
- * "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
- * Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
- */
-
-enum {
- OPC_MXU__POOL00 = 0x03,
- OPC_MXU_D16MUL = 0x08,
- OPC_MXU_D16MAC = 0x0A,
- OPC_MXU__POOL04 = 0x10,
- OPC_MXU_S8LDD = 0x22,
- OPC_MXU__POOL16 = 0x27,
- OPC_MXU_S32M2I = 0x2E,
- OPC_MXU_S32I2M = 0x2F,
- OPC_MXU__POOL19 = 0x38,
-};
-
-
-/*
- * MXU pool 00
- */
-enum {
- OPC_MXU_S32MAX = 0x00,
- OPC_MXU_S32MIN = 0x01,
- OPC_MXU_D16MAX = 0x02,
- OPC_MXU_D16MIN = 0x03,
- OPC_MXU_Q8MAX = 0x04,
- OPC_MXU_Q8MIN = 0x05,
-};
-
-/*
- * MXU pool 04
- */
-enum {
- OPC_MXU_S32LDD = 0x00,
- OPC_MXU_S32LDDR = 0x01,
-};
-
-/*
- * MXU pool 16
- */
-enum {
- OPC_MXU_S32ALNI = 0x02,
- OPC_MXU_S32NOR = 0x04,
- OPC_MXU_S32AND = 0x05,
- OPC_MXU_S32OR = 0x06,
- OPC_MXU_S32XOR = 0x07,
-};
-
-/*
- * MXU pool 19
- */
-enum {
- OPC_MXU_Q8MUL = 0x00,
- OPC_MXU_Q8MULSU = 0x01,
-};
-
-/*
* Overview of the TX79-specific instruction set
* =============================================
*
@@ -1965,12 +1579,6 @@ static TCGv_i32 hflags;
TCGv_i32 fpu_fcr0, fpu_fcr31;
TCGv_i64 fpu_f64[32];
-#if !defined(TARGET_MIPS64)
-/* MXU registers */
-static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
-static TCGv mxu_CR;
-#endif
-
#include "exec/gen-icount.h"
#define gen_helper_0e0i(name, arg) do { \
@@ -2040,26 +1648,6 @@ static const char * const fregnames[] = {
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
};
-#if !defined(TARGET_MIPS64)
-static const char * const mxuregnames[] = {
- "XR1", "XR2", "XR3", "XR4", "XR5", "XR6", "XR7", "XR8",
- "XR9", "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
-};
-
-void mxu_translate_init(void)
-{
- for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
- mxu_gpr[i] = tcg_global_mem_new(cpu_env,
- offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
- mxuregnames[i]);
- }
-
- mxu_CR = tcg_global_mem_new(cpu_env,
- offsetof(CPUMIPSState, active_tc.mxu_cr),
- mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
-}
-#endif /* !TARGET_MIPS64 */
-
/* General purpose registers moves. */
void gen_load_gpr(TCGv t, int reg)
{
@@ -2143,38 +1731,6 @@ static inline void gen_store_srsgpr(int from, int to)
}
}
-#if !defined(TARGET_MIPS64)
-/* MXU General purpose registers moves. */
-static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
-{
- if (reg == 0) {
- tcg_gen_movi_tl(t, 0);
- } else if (reg <= 15) {
- tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
- }
-}
-
-static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
-{
- if (reg > 0 && reg <= 15) {
- tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
- }
-}
-
-/* MXU control register moves. */
-static inline void gen_load_mxu_cr(TCGv t)
-{
- tcg_gen_mov_tl(t, mxu_CR);
-}
-
-static inline void gen_store_mxu_cr(TCGv t)
-{
- /* TODO: Add handling of RW rules for MXU_CR. */
- tcg_gen_mov_tl(mxu_CR, t);
-}
-#endif
-
-
/* Tests */
static inline void gen_save_pc(target_ulong pc)
{
@@ -24690,1167 +24246,6 @@ static void gen_mmi_pcpyud(DisasContext *ctx)
#endif
-
-#if !defined(TARGET_MIPS64)
-
-/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
-#define MXU_APTN1_A 0
-#define MXU_APTN1_S 1
-
-/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
-#define MXU_APTN2_AA 0
-#define MXU_APTN2_AS 1
-#define MXU_APTN2_SA 2
-#define MXU_APTN2_SS 3
-
-/* MXU execute add/subtract 2-bit pattern 'eptn2' */
-#define MXU_EPTN2_AA 0
-#define MXU_EPTN2_AS 1
-#define MXU_EPTN2_SA 2
-#define MXU_EPTN2_SS 3
-
-/* MXU operand getting pattern 'optn2' */
-#define MXU_OPTN2_PTN0 0
-#define MXU_OPTN2_PTN1 1
-#define MXU_OPTN2_PTN2 2
-#define MXU_OPTN2_PTN3 3
-/* alternative naming scheme for 'optn2' */
-#define MXU_OPTN2_WW 0
-#define MXU_OPTN2_LW 1
-#define MXU_OPTN2_HW 2
-#define MXU_OPTN2_XW 3
-
-/* MXU operand getting pattern 'optn3' */
-#define MXU_OPTN3_PTN0 0
-#define MXU_OPTN3_PTN1 1
-#define MXU_OPTN3_PTN2 2
-#define MXU_OPTN3_PTN3 3
-#define MXU_OPTN3_PTN4 4
-#define MXU_OPTN3_PTN5 5
-#define MXU_OPTN3_PTN6 6
-#define MXU_OPTN3_PTN7 7
-
-
-/*
- * S32I2M XRa, rb - Register move from GRF to XRF
- */
-static void gen_mxu_s32i2m(DisasContext *ctx)
-{
- TCGv t0;
- uint32_t XRa, Rb;
-
- t0 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 5);
- Rb = extract32(ctx->opcode, 16, 5);
-
- gen_load_gpr(t0, Rb);
- if (XRa <= 15) {
- gen_store_mxu_gpr(t0, XRa);
- } else if (XRa == 16) {
- gen_store_mxu_cr(t0);
- }
-
- tcg_temp_free(t0);
-}
-
-/*
- * S32M2I XRa, rb - Register move from XRF to GRF
- */
-static void gen_mxu_s32m2i(DisasContext *ctx)
-{
- TCGv t0;
- uint32_t XRa, Rb;
-
- t0 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 5);
- Rb = extract32(ctx->opcode, 16, 5);
-
- if (XRa <= 15) {
- gen_load_mxu_gpr(t0, XRa);
- } else if (XRa == 16) {
- gen_load_mxu_cr(t0);
- }
-
- gen_store_gpr(t0, Rb);
-
- tcg_temp_free(t0);
-}
-
-/*
- * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
- */
-static void gen_mxu_s8ldd(DisasContext *ctx)
-{
- TCGv t0, t1;
- uint32_t XRa, Rb, s8, optn3;
-
- t0 = tcg_temp_new();
- t1 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 4);
- s8 = extract32(ctx->opcode, 10, 8);
- optn3 = extract32(ctx->opcode, 18, 3);
- Rb = extract32(ctx->opcode, 21, 5);
-
- gen_load_gpr(t0, Rb);
- tcg_gen_addi_tl(t0, t0, (int8_t)s8);
-
- switch (optn3) {
- /* XRa[7:0] = tmp8 */
- case MXU_OPTN3_PTN0:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- gen_load_mxu_gpr(t0, XRa);
- tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
- break;
- /* XRa[15:8] = tmp8 */
- case MXU_OPTN3_PTN1:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- gen_load_mxu_gpr(t0, XRa);
- tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
- break;
- /* XRa[23:16] = tmp8 */
- case MXU_OPTN3_PTN2:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- gen_load_mxu_gpr(t0, XRa);
- tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
- break;
- /* XRa[31:24] = tmp8 */
- case MXU_OPTN3_PTN3:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- gen_load_mxu_gpr(t0, XRa);
- tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
- break;
- /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
- case MXU_OPTN3_PTN4:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
- break;
- /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
- case MXU_OPTN3_PTN5:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- tcg_gen_shli_tl(t1, t1, 8);
- tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
- break;
- /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
- case MXU_OPTN3_PTN6:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
- tcg_gen_mov_tl(t0, t1);
- tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
- tcg_gen_shli_tl(t1, t1, 16);
- tcg_gen_or_tl(t0, t0, t1);
- break;
- /* XRa = {tmp8, tmp8, tmp8, tmp8} */
- case MXU_OPTN3_PTN7:
- tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
- tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
- tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
- break;
- }
-
- gen_store_mxu_gpr(t0, XRa);
-
- tcg_temp_free(t0);
- tcg_temp_free(t1);
-}
-
-/*
- * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
- */
-static void gen_mxu_d16mul(DisasContext *ctx)
-{
- TCGv t0, t1, t2, t3;
- uint32_t XRa, XRb, XRc, XRd, optn2;
-
- t0 = tcg_temp_new();
- t1 = tcg_temp_new();
- t2 = tcg_temp_new();
- t3 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRc = extract32(ctx->opcode, 14, 4);
- XRd = extract32(ctx->opcode, 18, 4);
- optn2 = extract32(ctx->opcode, 22, 2);
-
- gen_load_mxu_gpr(t1, XRb);
- tcg_gen_sextract_tl(t0, t1, 0, 16);
- tcg_gen_sextract_tl(t1, t1, 16, 16);
- gen_load_mxu_gpr(t3, XRc);
- tcg_gen_sextract_tl(t2, t3, 0, 16);
- tcg_gen_sextract_tl(t3, t3, 16, 16);
-
- switch (optn2) {
- case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
- tcg_gen_mul_tl(t3, t1, t3);
- tcg_gen_mul_tl(t2, t0, t2);
- break;
- case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
- tcg_gen_mul_tl(t3, t0, t3);
- tcg_gen_mul_tl(t2, t0, t2);
- break;
- case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
- tcg_gen_mul_tl(t3, t1, t3);
- tcg_gen_mul_tl(t2, t1, t2);
- break;
- case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
- tcg_gen_mul_tl(t3, t0, t3);
- tcg_gen_mul_tl(t2, t1, t2);
- break;
- }
- gen_store_mxu_gpr(t3, XRa);
- gen_store_mxu_gpr(t2, XRd);
-
- tcg_temp_free(t0);
- tcg_temp_free(t1);
- tcg_temp_free(t2);
- tcg_temp_free(t3);
-}
-
-/*
- * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
- * and accumulate
- */
-static void gen_mxu_d16mac(DisasContext *ctx)
-{
- TCGv t0, t1, t2, t3;
- uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
-
- t0 = tcg_temp_new();
- t1 = tcg_temp_new();
- t2 = tcg_temp_new();
- t3 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRc = extract32(ctx->opcode, 14, 4);
- XRd = extract32(ctx->opcode, 18, 4);
- optn2 = extract32(ctx->opcode, 22, 2);
- aptn2 = extract32(ctx->opcode, 24, 2);
-
- gen_load_mxu_gpr(t1, XRb);
- tcg_gen_sextract_tl(t0, t1, 0, 16);
- tcg_gen_sextract_tl(t1, t1, 16, 16);
-
- gen_load_mxu_gpr(t3, XRc);
- tcg_gen_sextract_tl(t2, t3, 0, 16);
- tcg_gen_sextract_tl(t3, t3, 16, 16);
-
- switch (optn2) {
- case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
- tcg_gen_mul_tl(t3, t1, t3);
- tcg_gen_mul_tl(t2, t0, t2);
- break;
- case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
- tcg_gen_mul_tl(t3, t0, t3);
- tcg_gen_mul_tl(t2, t0, t2);
- break;
- case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
- tcg_gen_mul_tl(t3, t1, t3);
- tcg_gen_mul_tl(t2, t1, t2);
- break;
- case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
- tcg_gen_mul_tl(t3, t0, t3);
- tcg_gen_mul_tl(t2, t1, t2);
- break;
- }
- gen_load_mxu_gpr(t0, XRa);
- gen_load_mxu_gpr(t1, XRd);
-
- switch (aptn2) {
- case MXU_APTN2_AA:
- tcg_gen_add_tl(t3, t0, t3);
- tcg_gen_add_tl(t2, t1, t2);
- break;
- case MXU_APTN2_AS:
- tcg_gen_add_tl(t3, t0, t3);
- tcg_gen_sub_tl(t2, t1, t2);
- break;
- case MXU_APTN2_SA:
- tcg_gen_sub_tl(t3, t0, t3);
- tcg_gen_add_tl(t2, t1, t2);
- break;
- case MXU_APTN2_SS:
- tcg_gen_sub_tl(t3, t0, t3);
- tcg_gen_sub_tl(t2, t1, t2);
- break;
- }
- gen_store_mxu_gpr(t3, XRa);
- gen_store_mxu_gpr(t2, XRd);
-
- tcg_temp_free(t0);
- tcg_temp_free(t1);
- tcg_temp_free(t2);
- tcg_temp_free(t3);
-}
-
-/*
- * Q8MUL XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
- * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
- */
-static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
-{
- TCGv t0, t1, t2, t3, t4, t5, t6, t7;
- uint32_t XRa, XRb, XRc, XRd, sel;
-
- t0 = tcg_temp_new();
- t1 = tcg_temp_new();
- t2 = tcg_temp_new();
- t3 = tcg_temp_new();
- t4 = tcg_temp_new();
- t5 = tcg_temp_new();
- t6 = tcg_temp_new();
- t7 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRc = extract32(ctx->opcode, 14, 4);
- XRd = extract32(ctx->opcode, 18, 4);
- sel = extract32(ctx->opcode, 22, 2);
-
- gen_load_mxu_gpr(t3, XRb);
- gen_load_mxu_gpr(t7, XRc);
-
- if (sel == 0x2) {
- /* Q8MULSU */
- tcg_gen_ext8s_tl(t0, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8s_tl(t1, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8s_tl(t2, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8s_tl(t3, t3);
- } else {
- /* Q8MUL */
- tcg_gen_ext8u_tl(t0, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8u_tl(t1, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8u_tl(t2, t3);
- tcg_gen_shri_tl(t3, t3, 8);
- tcg_gen_ext8u_tl(t3, t3);
- }
-
- tcg_gen_ext8u_tl(t4, t7);
- tcg_gen_shri_tl(t7, t7, 8);
- tcg_gen_ext8u_tl(t5, t7);
- tcg_gen_shri_tl(t7, t7, 8);
- tcg_gen_ext8u_tl(t6, t7);
- tcg_gen_shri_tl(t7, t7, 8);
- tcg_gen_ext8u_tl(t7, t7);
-
- tcg_gen_mul_tl(t0, t0, t4);
- tcg_gen_mul_tl(t1, t1, t5);
- tcg_gen_mul_tl(t2, t2, t6);
- tcg_gen_mul_tl(t3, t3, t7);
-
- tcg_gen_andi_tl(t0, t0, 0xFFFF);
- tcg_gen_andi_tl(t1, t1, 0xFFFF);
- tcg_gen_andi_tl(t2, t2, 0xFFFF);
- tcg_gen_andi_tl(t3, t3, 0xFFFF);
-
- tcg_gen_shli_tl(t1, t1, 16);
- tcg_gen_shli_tl(t3, t3, 16);
-
- tcg_gen_or_tl(t0, t0, t1);
- tcg_gen_or_tl(t1, t2, t3);
-
- gen_store_mxu_gpr(t0, XRd);
- gen_store_mxu_gpr(t1, XRa);
-
- tcg_temp_free(t0);
- tcg_temp_free(t1);
- tcg_temp_free(t2);
- tcg_temp_free(t3);
- tcg_temp_free(t4);
- tcg_temp_free(t5);
- tcg_temp_free(t6);
- tcg_temp_free(t7);
-}
-
-/*
- * S32LDD XRa, Rb, S12 - Load a word from memory to XRF
- * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
- */
-static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
-{
- TCGv t0, t1;
- uint32_t XRa, Rb, s12, sel;
-
- t0 = tcg_temp_new();
- t1 = tcg_temp_new();
-
- XRa = extract32(ctx->opcode, 6, 4);
- s12 = extract32(ctx->opcode, 10, 10);
- sel = extract32(ctx->opcode, 20, 1);
- Rb = extract32(ctx->opcode, 21, 5);
-
- gen_load_gpr(t0, Rb);
-
- tcg_gen_movi_tl(t1, s12);
- tcg_gen_shli_tl(t1, t1, 2);
- if (s12 & 0x200) {
- tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
- }
- tcg_gen_add_tl(t1, t0, t1);
- tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
-
- if (sel == 1) {
- /* S32LDDR */
- tcg_gen_bswap32_tl(t1, t1);
- }
- gen_store_mxu_gpr(t1, XRa);
-
- tcg_temp_free(t0);
- tcg_temp_free(t1);
-}
-
-
-/*
- * MXU instruction category: logic
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * S32NOR S32AND S32OR S32XOR
- */
-
-/*
- * S32NOR XRa, XRb, XRc
- * Update XRa with the result of logical bitwise 'nor' operation
- * applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32NOR(DisasContext *ctx)
-{
- uint32_t pad, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to all 1s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
- } else if (unlikely(XRb == 0)) {
- /* XRb zero register -> just set destination to the negation of XRc */
- tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
- } else if (unlikely(XRc == 0)) {
- /* XRa zero register -> just set destination to the negation of XRb */
- tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to the negation of XRb */
- tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
- }
-}
-
-/*
- * S32AND XRa, XRb, XRc
- * Update XRa with the result of logical bitwise 'and' operation
- * applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32AND(DisasContext *ctx)
-{
- uint32_t pad, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) || (XRc == 0))) {
- /* one of operands zero register -> just set destination to all 0s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to one of them */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
- }
-}
-
-/*
- * S32OR XRa, XRb, XRc
- * Update XRa with the result of logical bitwise 'or' operation
- * applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32OR(DisasContext *ctx)
-{
- uint32_t pad, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to all 0s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely(XRb == 0)) {
- /* XRb zero register -> just set destination to the content of XRc */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
- } else if (unlikely(XRc == 0)) {
- /* XRc zero register -> just set destination to the content of XRb */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to one of them */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
- }
-}
-
-/*
- * S32XOR XRa, XRb, XRc
- * Update XRa with the result of logical bitwise 'xor' operation
- * applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32XOR(DisasContext *ctx)
-{
- uint32_t pad, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to all 0s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely(XRb == 0)) {
- /* XRb zero register -> just set destination to the content of XRc */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
- } else if (unlikely(XRc == 0)) {
- /* XRc zero register -> just set destination to the content of XRb */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to all 0s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else {
- /* the most general case */
- tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
- }
-}
-
-
-/*
- * MXU instruction category max/min
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * S32MAX D16MAX Q8MAX
- * S32MIN D16MIN Q8MIN
- */
-
-/*
- * S32MAX XRa, XRb, XRc
- * Update XRa with the maximum of signed 32-bit integers contained
- * in XRb and XRc.
- *
- * S32MIN XRa, XRb, XRc
- * Update XRa with the minimum of signed 32-bit integers contained
- * in XRb and XRc.
- */
-static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
-{
- uint32_t pad, opc, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- opc = extract32(ctx->opcode, 18, 3);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to zero */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely((XRb == 0) || (XRc == 0))) {
- /* exactly one operand is zero register - find which one is not...*/
- uint32_t XRx = XRb ? XRb : XRc;
- /* ...and do max/min operation with one operand 0 */
- if (opc == OPC_MXU_S32MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
- }
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to one of them */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- if (opc == OPC_MXU_S32MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
- mxu_gpr[XRc - 1]);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
- mxu_gpr[XRc - 1]);
- }
- }
-}
-
-/*
- * D16MAX
- * Update XRa with the 16-bit-wise maximums of signed integers
- * contained in XRb and XRc.
- *
- * D16MIN
- * Update XRa with the 16-bit-wise minimums of signed integers
- * contained in XRb and XRc.
- */
-static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
-{
- uint32_t pad, opc, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- opc = extract32(ctx->opcode, 18, 3);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRc == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRa == 0))) {
- /* both operands zero registers -> just set destination to zero */
- tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
- } else if (unlikely((XRb == 0) || (XRa == 0))) {
- /* exactly one operand is zero register - find which one is not...*/
- uint32_t XRx = XRb ? XRb : XRc;
- /* ...and do half-word-wise max/min with one operand 0 */
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_const_i32(0);
-
- /* the left half-word first */
- tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
- if (opc == OPC_MXU_D16MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
- }
-
- /* the right half-word */
- tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
- /* move half-words to the leftmost position */
- tcg_gen_shli_i32(t0, t0, 16);
- /* t0 will be max/min of t0 and t1 */
- if (opc == OPC_MXU_D16MAX) {
- tcg_gen_smax_i32(t0, t0, t1);
- } else {
- tcg_gen_smin_i32(t0, t0, t1);
- }
- /* return resulting half-words to its original position */
- tcg_gen_shri_i32(t0, t0, 16);
- /* finally update the destination */
- tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to one of them */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_temp_new();
-
- /* the left half-word first */
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
- if (opc == OPC_MXU_D16MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
- }
-
- /* the right half-word */
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
- /* move half-words to the leftmost position */
- tcg_gen_shli_i32(t0, t0, 16);
- tcg_gen_shli_i32(t1, t1, 16);
- /* t0 will be max/min of t0 and t1 */
- if (opc == OPC_MXU_D16MAX) {
- tcg_gen_smax_i32(t0, t0, t1);
- } else {
- tcg_gen_smin_i32(t0, t0, t1);
- }
- /* return resulting half-words to its original position */
- tcg_gen_shri_i32(t0, t0, 16);
- /* finally update the destination */
- tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- }
-}
-
-/*
- * Q8MAX
- * Update XRa with the 8-bit-wise maximums of signed integers
- * contained in XRb and XRc.
- *
- * Q8MIN
- * Update XRa with the 8-bit-wise minimums of signed integers
- * contained in XRb and XRc.
- */
-static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
-{
- uint32_t pad, opc, XRc, XRb, XRa;
-
- pad = extract32(ctx->opcode, 21, 5);
- opc = extract32(ctx->opcode, 18, 3);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to zero */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely((XRb == 0) || (XRc == 0))) {
- /* exactly one operand is zero register - make it be the first...*/
- uint32_t XRx = XRb ? XRb : XRc;
- /* ...and do byte-wise max/min with one operand 0 */
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_const_i32(0);
- int32_t i;
-
- /* the leftmost byte (byte 3) first */
- tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
- if (opc == OPC_MXU_Q8MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
- }
-
- /* bytes 2, 1, 0 */
- for (i = 2; i >= 0; i--) {
- /* extract the byte */
- tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
- /* move the byte to the leftmost position */
- tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
- /* t0 will be max/min of t0 and t1 */
- if (opc == OPC_MXU_Q8MAX) {
- tcg_gen_smax_i32(t0, t0, t1);
- } else {
- tcg_gen_smin_i32(t0, t0, t1);
- }
- /* return resulting byte to its original position */
- tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
- /* finally update the destination */
- tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
- }
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just set destination to one of them */
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- } else {
- /* the most general case */
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_temp_new();
- int32_t i;
-
- /* the leftmost bytes (bytes 3) first */
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
- if (opc == OPC_MXU_Q8MAX) {
- tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
- } else {
- tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
- }
-
- /* bytes 2, 1, 0 */
- for (i = 2; i >= 0; i--) {
- /* extract corresponding bytes */
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
- /* move the bytes to the leftmost position */
- tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
- tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
- /* t0 will be max/min of t0 and t1 */
- if (opc == OPC_MXU_Q8MAX) {
- tcg_gen_smax_i32(t0, t0, t1);
- } else {
- tcg_gen_smin_i32(t0, t0, t1);
- }
- /* return resulting byte to its original position */
- tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
- /* finally update the destination */
- tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
- }
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- }
-}
-
-
-/*
- * MXU instruction category: align
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * S32ALN S32ALNI
- */
-
-/*
- * S32ALNI XRc, XRb, XRa, optn3
- * Arrange bytes from XRb and XRc according to one of five sets of
- * rules determined by optn3, and place the result in XRa.
- */
-static void gen_mxu_S32ALNI(DisasContext *ctx)
-{
- uint32_t optn3, pad, XRc, XRb, XRa;
-
- optn3 = extract32(ctx->opcode, 23, 3);
- pad = extract32(ctx->opcode, 21, 2);
- XRc = extract32(ctx->opcode, 14, 4);
- XRb = extract32(ctx->opcode, 10, 4);
- XRa = extract32(ctx->opcode, 6, 4);
-
- if (unlikely(pad != 0)) {
- /* opcode padding incorrect -> do nothing */
- } else if (unlikely(XRa == 0)) {
- /* destination is zero register -> do nothing */
- } else if (unlikely((XRb == 0) && (XRc == 0))) {
- /* both operands zero registers -> just set destination to all 0s */
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- } else if (unlikely(XRb == 0)) {
- /* XRb zero register -> just appropriatelly shift XRc into XRa */
- switch (optn3) {
- case MXU_OPTN3_PTN0:
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- break;
- case MXU_OPTN3_PTN1:
- case MXU_OPTN3_PTN2:
- case MXU_OPTN3_PTN3:
- tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
- 8 * (4 - optn3));
- break;
- case MXU_OPTN3_PTN4:
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
- break;
- }
- } else if (unlikely(XRc == 0)) {
- /* XRc zero register -> just appropriatelly shift XRb into XRa */
- switch (optn3) {
- case MXU_OPTN3_PTN0:
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- break;
- case MXU_OPTN3_PTN1:
- case MXU_OPTN3_PTN2:
- case MXU_OPTN3_PTN3:
- tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
- break;
- case MXU_OPTN3_PTN4:
- tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
- break;
- }
- } else if (unlikely(XRb == XRc)) {
- /* both operands same -> just rotation or moving from any of them */
- switch (optn3) {
- case MXU_OPTN3_PTN0:
- case MXU_OPTN3_PTN4:
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- break;
- case MXU_OPTN3_PTN1:
- case MXU_OPTN3_PTN2:
- case MXU_OPTN3_PTN3:
- tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
- break;
- }
- } else {
- /* the most general case */
- switch (optn3) {
- case MXU_OPTN3_PTN0:
- {
- /* */
- /* XRb XRc */
- /* +---------------+ */
- /* | A B C D | E F G H */
- /* +-------+-------+ */
- /* | */
- /* XRa */
- /* */
-
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
- }
- break;
- case MXU_OPTN3_PTN1:
- {
- /* */
- /* XRb XRc */
- /* +-------------------+ */
- /* A | B C D E | F G H */
- /* +---------+---------+ */
- /* | */
- /* XRa */
- /* */
-
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_temp_new();
-
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
- tcg_gen_shli_i32(t0, t0, 8);
-
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
- tcg_gen_shri_i32(t1, t1, 24);
-
- tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- }
- break;
- case MXU_OPTN3_PTN2:
- {
- /* */
- /* XRb XRc */
- /* +-------------------+ */
- /* A B | C D E F | G H */
- /* +---------+---------+ */
- /* | */
- /* XRa */
- /* */
-
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_temp_new();
-
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
- tcg_gen_shli_i32(t0, t0, 16);
-
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
- tcg_gen_shri_i32(t1, t1, 16);
-
- tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- }
- break;
- case MXU_OPTN3_PTN3:
- {
- /* */
- /* XRb XRc */
- /* +-------------------+ */
- /* A B C | D E F G | H */
- /* +---------+---------+ */
- /* | */
- /* XRa */
- /* */
-
- TCGv_i32 t0 = tcg_temp_new();
- TCGv_i32 t1 = tcg_temp_new();
-
- tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
- tcg_gen_shli_i32(t0, t0, 24);
-
- tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
- tcg_gen_shri_i32(t1, t1, 8);
-
- tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
- tcg_temp_free(t1);
- tcg_temp_free(t0);
- }
- break;
- case MXU_OPTN3_PTN4:
- {
- /* */
- /* XRb XRc */
- /* +---------------+ */
- /* A B C D | E F G H | */
- /* +-------+-------+ */
- /* | */
- /* XRa */
- /* */
-
- tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
- }
- break;
- }
- }
-}
-
-
-/*
- * Decoding engine for MXU
- * =======================
- */
-
-static void decode_opc_mxu__pool00(DisasContext *ctx)
-{
- uint32_t opcode = extract32(ctx->opcode, 18, 3);
-
- switch (opcode) {
- case OPC_MXU_S32MAX:
- case OPC_MXU_S32MIN:
- gen_mxu_S32MAX_S32MIN(ctx);
- break;
- case OPC_MXU_D16MAX:
- case OPC_MXU_D16MIN:
- gen_mxu_D16MAX_D16MIN(ctx);
- break;
- case OPC_MXU_Q8MAX:
- case OPC_MXU_Q8MIN:
- gen_mxu_Q8MAX_Q8MIN(ctx);
- break;
- default:
- MIPS_INVAL("decode_opc_mxu");
- gen_reserved_instruction(ctx);
- break;
- }
-}
-
-static void decode_opc_mxu__pool04(DisasContext *ctx)
-{
- uint32_t opcode = extract32(ctx->opcode, 20, 1);
-
- switch (opcode) {
- case OPC_MXU_S32LDD:
- case OPC_MXU_S32LDDR:
- gen_mxu_s32ldd_s32lddr(ctx);
- break;
- default:
- MIPS_INVAL("decode_opc_mxu");
- gen_reserved_instruction(ctx);
- break;
- }
-}
-
-static void decode_opc_mxu__pool16(DisasContext *ctx)
-{
- uint32_t opcode = extract32(ctx->opcode, 18, 3);
-
- switch (opcode) {
- case OPC_MXU_S32ALNI:
- gen_mxu_S32ALNI(ctx);
- break;
- case OPC_MXU_S32NOR:
- gen_mxu_S32NOR(ctx);
- break;
- case OPC_MXU_S32AND:
- gen_mxu_S32AND(ctx);
- break;
- case OPC_MXU_S32OR:
- gen_mxu_S32OR(ctx);
- break;
- case OPC_MXU_S32XOR:
- gen_mxu_S32XOR(ctx);
- break;
- default:
- MIPS_INVAL("decode_opc_mxu");
- gen_reserved_instruction(ctx);
- break;
- }
-}
-
-static void decode_opc_mxu__pool19(DisasContext *ctx)
-{
- uint32_t opcode = extract32(ctx->opcode, 22, 2);
-
- switch (opcode) {
- case OPC_MXU_Q8MUL:
- case OPC_MXU_Q8MULSU:
- gen_mxu_q8mul_q8mulsu(ctx);
- break;
- default:
- MIPS_INVAL("decode_opc_mxu");
- gen_reserved_instruction(ctx);
- break;
- }
-}
-
-/*
- * Main MXU decoding function
- */
-bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
-{
- uint32_t opcode = extract32(insn, 0, 6);
-
- if (opcode == OPC_MXU_S32M2I) {
- gen_mxu_s32m2i(ctx);
- return true;
- }
-
- if (opcode == OPC_MXU_S32I2M) {
- gen_mxu_s32i2m(ctx);
- return true;
- }
-
- {
- TCGv t_mxu_cr = tcg_temp_new();
- TCGLabel *l_exit = gen_new_label();
-
- gen_load_mxu_cr(t_mxu_cr);
- tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
- tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
-
- switch (opcode) {
- case OPC_MXU__POOL00:
- decode_opc_mxu__pool00(ctx);
- break;
- case OPC_MXU_D16MUL:
- gen_mxu_d16mul(ctx);
- break;
- case OPC_MXU_D16MAC:
- gen_mxu_d16mac(ctx);
- break;
- case OPC_MXU__POOL04:
- decode_opc_mxu__pool04(ctx);
- break;
- case OPC_MXU_S8LDD:
- gen_mxu_s8ldd(ctx);
- break;
- case OPC_MXU__POOL16:
- decode_opc_mxu__pool16(ctx);
- break;
- case OPC_MXU__POOL19:
- decode_opc_mxu__pool19(ctx);
- break;
- default:
- MIPS_INVAL("decode_opc_mxu");
- gen_reserved_instruction(ctx);
- }
-
- gen_set_label(l_exit);
- tcg_temp_free(t_mxu_cr);
- }
-
- return true;
-}
-
-#endif /* !defined(TARGET_MIPS64) */
-
-
static void decode_opc_special2_legacy(CPUMIPSState *env, DisasContext *ctx)
{
int rs, rt, rd;