summaryrefslogtreecommitdiffstats
path: root/bitmap.c
blob: a62c8ba68148a62d2caf1e5cf15eeefa408cf5f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * Bitmap Module
 *
 * Stolen from linux/src/lib/bitmap.c
 *
 * Copyright (C) 2010 Corentin Chary
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.
 */

#include "bitops.h"
#include "bitmap.h"

/*
 * bitmaps provide an array of bits, implemented using an an
 * array of unsigned longs.  The number of valid bits in a
 * given bitmap does _not_ need to be an exact multiple of
 * BITS_PER_LONG.
 *
 * The possible unused bits in the last, partially used word
 * of a bitmap are 'don't care'.  The implementation makes
 * no particular effort to keep them zero.  It ensures that
 * their value will not affect the results of any operation.
 * The bitmap operations that return Boolean (bitmap_empty,
 * for example) or scalar (bitmap_weight, for example) results
 * carefully filter out these unused bits from impacting their
 * results.
 *
 * These operations actually hold to a slightly stronger rule:
 * if you don't input any bitmaps to these ops that have some
 * unused bits set, then they won't output any set unused bits
 * in output bitmaps.
 *
 * The byte ordering of bitmaps is more natural on little
 * endian architectures.
 */

int slow_bitmap_empty(const unsigned long *bitmap, int bits)
{
    int k, lim = bits/BITS_PER_LONG;

    for (k = 0; k < lim; ++k) {
        if (bitmap[k]) {
            return 0;
        }
    }
    if (bits % BITS_PER_LONG) {
        if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
            return 0;
        }
    }

    return 1;
}

int slow_bitmap_full(const unsigned long *bitmap, int bits)
{
    int k, lim = bits/BITS_PER_LONG;

    for (k = 0; k < lim; ++k) {
        if (~bitmap[k]) {
            return 0;
        }
    }

    if (bits % BITS_PER_LONG) {
        if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
            return 0;
        }
    }

    return 1;
}

int slow_bitmap_equal(const unsigned long *bitmap1,
                      const unsigned long *bitmap2, int bits)
{
    int k, lim = bits/BITS_PER_LONG;

    for (k = 0; k < lim; ++k) {
        if (bitmap1[k] != bitmap2[k]) {
            return 0;
        }
    }

    if (bits % BITS_PER_LONG) {
        if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
            return 0;
        }
    }

    return 1;
}

void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
                            int bits)
{
    int k, lim = bits/BITS_PER_LONG;

    for (k = 0; k < lim; ++k) {
        dst[k] = ~src[k];
    }

    if (bits % BITS_PER_LONG) {
        dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
    }
}

int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
                    const unsigned long *bitmap2, int bits)
{
    int k;
    int nr = BITS_TO_LONGS(bits);
    unsigned long result = 0;

    for (k = 0; k < nr; k++) {
        result |= (dst[k] = bitmap1[k] & bitmap2[k]);
    }
    return result != 0;
}

void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
                    const unsigned long *bitmap2, int bits)
{
    int k;
    int nr = BITS_TO_LONGS(bits);

    for (k = 0; k < nr; k++) {
        dst[k] = bitmap1[k] | bitmap2[k];
    }
}

void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
                     const unsigned long *bitmap2, int bits)
{
    int k;
    int nr = BITS_TO_LONGS(bits);

    for (k = 0; k < nr; k++) {
        dst[k] = bitmap1[k] ^ bitmap2[k];
    }
}

int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
                       const unsigned long *bitmap2, int bits)
{
    int k;
    int nr = BITS_TO_LONGS(bits);
    unsigned long result = 0;

    for (k = 0; k < nr; k++) {
        result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
    }
    return result != 0;
}

#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))

void bitmap_set(unsigned long *map, int start, int nr)
{
    unsigned long *p = map + BIT_WORD(start);
    const int size = start + nr;
    int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);

    while (nr - bits_to_set >= 0) {
        *p |= mask_to_set;
        nr -= bits_to_set;
        bits_to_set = BITS_PER_LONG;
        mask_to_set = ~0UL;
        p++;
    }
    if (nr) {
        mask_to_set &= BITMAP_LAST_WORD_MASK(size);
        *p |= mask_to_set;
    }
}

void bitmap_clear(unsigned long *map, int start, int nr)
{
    unsigned long *p = map + BIT_WORD(start);
    const int size = start + nr;
    int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);

    while (nr - bits_to_clear >= 0) {
        *p &= ~mask_to_clear;
        nr -= bits_to_clear;
        bits_to_clear = BITS_PER_LONG;
        mask_to_clear = ~0UL;
        p++;
    }
    if (nr) {
        mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
        *p &= ~mask_to_clear;
    }
}

#define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask))

/**
 * bitmap_find_next_zero_area - find a contiguous aligned zero area
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 * @align_mask: Alignment mask for zero area
 *
 * The @align_mask should be one less than a power of 2; the effect is that
 * the bit offset of all zero areas this function finds is multiples of that
 * power of 2. A @align_mask of 0 means no alignment is required.
 */
unsigned long bitmap_find_next_zero_area(unsigned long *map,
					 unsigned long size,
					 unsigned long start,
					 unsigned int nr,
					 unsigned long align_mask)
{
    unsigned long index, end, i;
again:
    index = find_next_zero_bit(map, size, start);

    /* Align allocation */
    index = ALIGN_MASK(index, align_mask);

    end = index + nr;
    if (end > size) {
        return end;
    }
    i = find_next_bit(map, end, index);
    if (i < end) {
        start = i + 1;
        goto again;
    }
    return index;
}

int slow_bitmap_intersects(const unsigned long *bitmap1,
                           const unsigned long *bitmap2, int bits)
{
    int k, lim = bits/BITS_PER_LONG;

    for (k = 0; k < lim; ++k) {
        if (bitmap1[k] & bitmap2[k]) {
            return 1;
        }
    }

    if (bits % BITS_PER_LONG) {
        if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
            return 1;
        }
    }
    return 0;
}