summaryrefslogtreecommitdiffstats
path: root/block/qed-cluster.c
blob: c24e75616a00cfcf98020b6bb88f4346daf48b78 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
 * QEMU Enhanced Disk Format Cluster functions
 *
 * Copyright IBM, Corp. 2010
 *
 * Authors:
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
 * See the COPYING.LIB file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "qed.h"

/**
 * Count the number of contiguous data clusters
 *
 * @s:              QED state
 * @table:          L2 table
 * @index:          First cluster index
 * @n:              Maximum number of clusters
 * @offset:         Set to first cluster offset
 *
 * This function scans tables for contiguous clusters.  A contiguous run of
 * clusters may be allocated, unallocated, or zero.
 */
static unsigned int qed_count_contiguous_clusters(BDRVQEDState *s,
                                                  QEDTable *table,
                                                  unsigned int index,
                                                  unsigned int n,
                                                  uint64_t *offset)
{
    unsigned int end = MIN(index + n, s->table_nelems);
    uint64_t last = table->offsets[index];
    unsigned int i;

    *offset = last;

    for (i = index + 1; i < end; i++) {
        if (qed_offset_is_unalloc_cluster(last)) {
            /* Counting unallocated clusters */
            if (!qed_offset_is_unalloc_cluster(table->offsets[i])) {
                break;
            }
        } else if (qed_offset_is_zero_cluster(last)) {
            /* Counting zero clusters */
            if (!qed_offset_is_zero_cluster(table->offsets[i])) {
                break;
            }
        } else {
            /* Counting allocated clusters */
            if (table->offsets[i] != last + s->header.cluster_size) {
                break;
            }
            last = table->offsets[i];
        }
    }
    return i - index;
}

typedef struct {
    BDRVQEDState *s;
    uint64_t pos;
    size_t len;

    QEDRequest *request;

    /* User callback */
    QEDFindClusterFunc *cb;
    void *opaque;
} QEDFindClusterCB;

static void qed_find_cluster_cb(void *opaque, int ret)
{
    QEDFindClusterCB *find_cluster_cb = opaque;
    BDRVQEDState *s = find_cluster_cb->s;
    QEDRequest *request = find_cluster_cb->request;
    uint64_t offset = 0;
    size_t len = 0;
    unsigned int index;
    unsigned int n;

    if (ret) {
        goto out;
    }

    index = qed_l2_index(s, find_cluster_cb->pos);
    n = qed_bytes_to_clusters(s,
                              qed_offset_into_cluster(s, find_cluster_cb->pos) +
                              find_cluster_cb->len);
    n = qed_count_contiguous_clusters(s, request->l2_table->table,
                                      index, n, &offset);

    if (qed_offset_is_unalloc_cluster(offset)) {
        ret = QED_CLUSTER_L2;
    } else if (qed_offset_is_zero_cluster(offset)) {
        ret = QED_CLUSTER_ZERO;
    } else if (qed_check_cluster_offset(s, offset)) {
        ret = QED_CLUSTER_FOUND;
    } else {
        ret = -EINVAL;
    }

    len = MIN(find_cluster_cb->len, n * s->header.cluster_size -
              qed_offset_into_cluster(s, find_cluster_cb->pos));

out:
    find_cluster_cb->cb(find_cluster_cb->opaque, ret, offset, len);
    g_free(find_cluster_cb);
}

/**
 * Find the offset of a data cluster
 *
 * @s:          QED state
 * @request:    L2 cache entry
 * @pos:        Byte position in device
 * @len:        Number of bytes
 * @cb:         Completion function
 * @opaque:     User data for completion function
 *
 * This function translates a position in the block device to an offset in the
 * image file.  It invokes the cb completion callback to report back the
 * translated offset or unallocated range in the image file.
 *
 * If the L2 table exists, request->l2_table points to the L2 table cache entry
 * and the caller must free the reference when they are finished.  The cache
 * entry is exposed in this way to avoid callers having to read the L2 table
 * again later during request processing.  If request->l2_table is non-NULL it
 * will be unreferenced before taking on the new cache entry.
 */
void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
                      size_t len, QEDFindClusterFunc *cb, void *opaque)
{
    QEDFindClusterCB *find_cluster_cb;
    uint64_t l2_offset;

    /* Limit length to L2 boundary.  Requests are broken up at the L2 boundary
     * so that a request acts on one L2 table at a time.
     */
    len = MIN(len, (((pos >> s->l1_shift) + 1) << s->l1_shift) - pos);

    l2_offset = s->l1_table->offsets[qed_l1_index(s, pos)];
    if (qed_offset_is_unalloc_cluster(l2_offset)) {
        cb(opaque, QED_CLUSTER_L1, 0, len);
        return;
    }
    if (!qed_check_table_offset(s, l2_offset)) {
        cb(opaque, -EINVAL, 0, 0);
        return;
    }

    find_cluster_cb = g_malloc(sizeof(*find_cluster_cb));
    find_cluster_cb->s = s;
    find_cluster_cb->pos = pos;
    find_cluster_cb->len = len;
    find_cluster_cb->cb = cb;
    find_cluster_cb->opaque = opaque;
    find_cluster_cb->request = request;

    qed_read_l2_table(s, request, l2_offset,
                      qed_find_cluster_cb, find_cluster_cb);
}