summaryrefslogtreecommitdiffstats
path: root/disas/libvixl/vixl/a64/instructions-a64.cc
blob: 33992f88a4112919ea4c0dcf7f1f70faffab1e66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "vixl/a64/instructions-a64.h"
#include "vixl/a64/assembler-a64.h"

namespace vixl {


// Floating-point infinity values.
const float16 kFP16PositiveInfinity = 0x7c00;
const float16 kFP16NegativeInfinity = 0xfc00;
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
const double kFP64PositiveInfinity =
    rawbits_to_double(UINT64_C(0x7ff0000000000000));
const double kFP64NegativeInfinity =
    rawbits_to_double(UINT64_C(0xfff0000000000000));


// The default NaN values (for FPCR.DN=1).
const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
const float16 kFP16DefaultNaN = 0x7e00;


static uint64_t RotateRight(uint64_t value,
                            unsigned int rotate,
                            unsigned int width) {
  VIXL_ASSERT(width <= 64);
  rotate &= 63;
  return ((value & ((UINT64_C(1) << rotate) - 1)) <<
          (width - rotate)) | (value >> rotate);
}


static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                    uint64_t value,
                                    unsigned width) {
  VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
              (width == 32));
  VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
  uint64_t result = value & ((UINT64_C(1) << width) - 1);
  for (unsigned i = width; i < reg_size; i *= 2) {
    result |= (result << i);
  }
  return result;
}


bool Instruction::IsLoad() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) != 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case LDRB_w:
      case LDRH_w:
      case LDR_w:
      case LDR_x:
      case LDRSB_w:
      case LDRSB_x:
      case LDRSH_w:
      case LDRSH_x:
      case LDRSW_x:
      case LDR_b:
      case LDR_h:
      case LDR_s:
      case LDR_d:
      case LDR_q: return true;
      default: return false;
    }
  }
}


bool Instruction::IsStore() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) == 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case STRB_w:
      case STRH_w:
      case STR_w:
      case STR_x:
      case STR_b:
      case STR_h:
      case STR_s:
      case STR_d:
      case STR_q: return true;
      default: return false;
    }
  }
}


// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::ImmLogical() const {
  unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
  int32_t n = BitN();
  int32_t imm_s = ImmSetBits();
  int32_t imm_r = ImmRotate();

  // An integer is constructed from the n, imm_s and imm_r bits according to
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //

  if (n == 1) {
    if (imm_s == 0x3f) {
      return 0;
    }
    uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    return RotateRight(bits, imm_r, 64);
  } else {
    if ((imm_s >> 1) == 0x1f) {
      return 0;
    }
    for (int width = 0x20; width >= 0x2; width >>= 1) {
      if ((imm_s & width) == 0) {
        int mask = width - 1;
        if ((imm_s & mask) == mask) {
          return 0;
        }
        uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
        return RepeatBitsAcrossReg(reg_size,
                                   RotateRight(bits, imm_r & mask, width),
                                   width);
      }
    }
  }
  VIXL_UNREACHABLE();
  return 0;
}


uint32_t Instruction::ImmNEONabcdefgh() const {
  return ImmNEONabc() << 5 | ImmNEONdefgh();
}


float Instruction::Imm8ToFP32(uint32_t imm8) {
  //   Imm8: abcdefgh (8 bits)
  // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
  // where B is b ^ 1
  uint32_t bits = imm8;
  uint32_t bit7 = (bits >> 7) & 0x1;
  uint32_t bit6 = (bits >> 6) & 0x1;
  uint32_t bit5_to_0 = bits & 0x3f;
  uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

  return rawbits_to_float(result);
}


float Instruction::ImmFP32() const {
  return Imm8ToFP32(ImmFP());
}


double Instruction::Imm8ToFP64(uint32_t imm8) {
  //   Imm8: abcdefgh (8 bits)
  // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
  // where B is b ^ 1
  uint32_t bits = imm8;
  uint64_t bit7 = (bits >> 7) & 0x1;
  uint64_t bit6 = (bits >> 6) & 0x1;
  uint64_t bit5_to_0 = bits & 0x3f;
  uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);

  return rawbits_to_double(result);
}


double Instruction::ImmFP64() const {
  return Imm8ToFP64(ImmFP());
}


float Instruction::ImmNEONFP32() const {
  return Imm8ToFP32(ImmNEONabcdefgh());
}


double Instruction::ImmNEONFP64() const {
  return Imm8ToFP64(ImmNEONabcdefgh());
}


unsigned CalcLSDataSize(LoadStoreOp op) {
  VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
  unsigned size = static_cast<Instr>(op) >> LSSize_offset;
  if ((op & LSVector_mask) != 0) {
    // Vector register memory operations encode the access size in the "size"
    // and "opc" fields.
    if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
      size = kQRegSizeInBytesLog2;
    }
  }
  return size;
}


unsigned CalcLSPairDataSize(LoadStorePairOp op) {
  VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
  VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
  switch (op) {
    case STP_q:
    case LDP_q: return kQRegSizeInBytesLog2;
    case STP_x:
    case LDP_x:
    case STP_d:
    case LDP_d: return kXRegSizeInBytesLog2;
    default: return kWRegSizeInBytesLog2;
  }
}


int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
  switch (branch_type) {
    case UncondBranchType:
      return ImmUncondBranch_width;
    case CondBranchType:
      return ImmCondBranch_width;
    case CompareBranchType:
      return ImmCmpBranch_width;
    case TestBranchType:
      return ImmTestBranch_width;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
  int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
  return encoded_max * kInstructionSize;
}


bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
                                     int64_t offset) {
  return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
}


const Instruction* Instruction::ImmPCOffsetTarget() const {
  const Instruction * base = this;
  ptrdiff_t offset;
  if (IsPCRelAddressing()) {
    // ADR and ADRP.
    offset = ImmPCRel();
    if (Mask(PCRelAddressingMask) == ADRP) {
      base = AlignDown(base, kPageSize);
      offset *= kPageSize;
    } else {
      VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    }
  } else {
    // All PC-relative branches.
    VIXL_ASSERT(BranchType() != UnknownBranchType);
    // Relative branch offsets are instruction-size-aligned.
    offset = ImmBranch() << kInstructionSizeLog2;
  }
  return base + offset;
}


int Instruction::ImmBranch() const {
  switch (BranchType()) {
    case CondBranchType: return ImmCondBranch();
    case UncondBranchType: return ImmUncondBranch();
    case CompareBranchType: return ImmCmpBranch();
    case TestBranchType: return ImmTestBranch();
    default: VIXL_UNREACHABLE();
  }
  return 0;
}


void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
  if (IsPCRelAddressing()) {
    SetPCRelImmTarget(target);
  } else {
    SetBranchImmTarget(target);
  }
}


void Instruction::SetPCRelImmTarget(const Instruction* target) {
  ptrdiff_t imm21;
  if ((Mask(PCRelAddressingMask) == ADR)) {
    imm21 = target - this;
  } else {
    VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    imm21 = target_page - this_page;
  }
  Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));

  SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}


void Instruction::SetBranchImmTarget(const Instruction* target) {
  VIXL_ASSERT(((target - this) & 3) == 0);
  Instr branch_imm = 0;
  uint32_t imm_mask = 0;
  int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
  switch (BranchType()) {
    case CondBranchType: {
      branch_imm = Assembler::ImmCondBranch(offset);
      imm_mask = ImmCondBranch_mask;
      break;
    }
    case UncondBranchType: {
      branch_imm = Assembler::ImmUncondBranch(offset);
      imm_mask = ImmUncondBranch_mask;
      break;
    }
    case CompareBranchType: {
      branch_imm = Assembler::ImmCmpBranch(offset);
      imm_mask = ImmCmpBranch_mask;
      break;
    }
    case TestBranchType: {
      branch_imm = Assembler::ImmTestBranch(offset);
      imm_mask = ImmTestBranch_mask;
      break;
    }
    default: VIXL_UNREACHABLE();
  }
  SetInstructionBits(Mask(~imm_mask) | branch_imm);
}


void Instruction::SetImmLLiteral(const Instruction* source) {
  VIXL_ASSERT(IsWordAligned(source));
  ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
  Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
  Instr mask = ImmLLiteral_mask;

  SetInstructionBits(Mask(~mask) | imm);
}


VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
              vform == kFormatH || vform == kFormatS || vform == kFormatD);
  switch (vform) {
    case kFormat8H: return kFormat8B;
    case kFormat4S: return kFormat4H;
    case kFormat2D: return kFormat2S;
    case kFormatH:  return kFormatB;
    case kFormatS:  return kFormatH;
    case kFormatD:  return kFormatS;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}


VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
              vform == kFormatB || vform == kFormatH || vform == kFormatS);
  switch (vform) {
    case kFormat8B: return kFormat8H;
    case kFormat4H: return kFormat4S;
    case kFormat2S: return kFormat2D;
    case kFormatB:  return kFormatH;
    case kFormatH:  return kFormatS;
    case kFormatS:  return kFormatD;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}


VectorFormat VectorFormatFillQ(const VectorFormat vform) {
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B: return kFormat16B;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:  return kFormat8H;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:  return kFormat4S;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:  return kFormat2D;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}

VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
  switch (vform) {
    case kFormat4H: return kFormat8B;
    case kFormat8H: return kFormat16B;
    case kFormat2S: return kFormat4H;
    case kFormat4S: return kFormat8H;
    case kFormat1D: return kFormat2S;
    case kFormat2D: return kFormat4S;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}

VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
  switch (vform) {
    case kFormat8B: return kFormat16B;
    case kFormat4H: return kFormat8H;
    case kFormat2S: return kFormat4S;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}


VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
  switch (vform) {
    case kFormat16B: return kFormat8B;
    case kFormat8H: return kFormat4H;
    case kFormat4S: return kFormat2S;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}


VectorFormat ScalarFormatFromLaneSize(int laneSize) {
  switch (laneSize) {
    case 8:  return kFormatB;
    case 16: return kFormatH;
    case 32: return kFormatS;
    case 64: return kFormatD;
    default: VIXL_UNREACHABLE(); return kFormatUndefined;
  }
}


unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB: return kBRegSize;
    case kFormatH: return kHRegSize;
    case kFormatS: return kSRegSize;
    case kFormatD: return kDRegSize;
    case kFormat8B:
    case kFormat4H:
    case kFormat2S:
    case kFormat1D: return kDRegSize;
    default: return kQRegSize;
  }
}


unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
  return RegisterSizeInBitsFromFormat(vform) / 8;
}


unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B: return 8;
    case kFormatH:
    case kFormat4H:
    case kFormat8H: return 16;
    case kFormatS:
    case kFormat2S:
    case kFormat4S: return 32;
    case kFormatD:
    case kFormat1D:
    case kFormat2D: return 64;
    default: VIXL_UNREACHABLE(); return 0;
  }
}


int LaneSizeInBytesFromFormat(VectorFormat vform) {
  return LaneSizeInBitsFromFormat(vform) / 8;
}


int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B: return 0;
    case kFormatH:
    case kFormat4H:
    case kFormat8H: return 1;
    case kFormatS:
    case kFormat2S:
    case kFormat4S: return 2;
    case kFormatD:
    case kFormat1D:
    case kFormat2D: return 3;
    default: VIXL_UNREACHABLE(); return 0;
  }
}


int LaneCountFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormat16B: return 16;
    case kFormat8B:
    case kFormat8H: return 8;
    case kFormat4H:
    case kFormat4S: return 4;
    case kFormat2S:
    case kFormat2D: return 2;
    case kFormat1D:
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD: return 1;
    default: VIXL_UNREACHABLE(); return 0;
  }
}


int MaxLaneCountFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B: return 16;
    case kFormatH:
    case kFormat4H:
    case kFormat8H: return 8;
    case kFormatS:
    case kFormat2S:
    case kFormat4S: return 4;
    case kFormatD:
    case kFormat1D:
    case kFormat2D: return 2;
    default: VIXL_UNREACHABLE(); return 0;
  }
}


// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD: return false;
    default: return true;
  }
}


int64_t MaxIntFromFormat(VectorFormat vform) {
  return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}


int64_t MinIntFromFormat(VectorFormat vform) {
  return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}


uint64_t MaxUintFromFormat(VectorFormat vform) {
  return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
}  // namespace vixl