summaryrefslogtreecommitdiffstats
path: root/dma-helpers.c
blob: 4faec5d0cac345400db06f3223ae5c846d60e5cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * DMA helper functions
 *
 * Copyright (c) 2009 Red Hat
 *
 * This work is licensed under the terms of the GNU General Public License
 * (GNU GPL), version 2 or later.
 */

#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include "trace.h"
#include "qemu/thread.h"
#include "qemu/main-loop.h"

/* #define DEBUG_IOMMU */

int dma_memory_set(AddressSpace *as, dma_addr_t addr, uint8_t c, dma_addr_t len)
{
    dma_barrier(as, DMA_DIRECTION_FROM_DEVICE);

#define FILLBUF_SIZE 512
    uint8_t fillbuf[FILLBUF_SIZE];
    int l;
    bool error = false;

    memset(fillbuf, c, FILLBUF_SIZE);
    while (len > 0) {
        l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
        error |= address_space_rw(as, addr, MEMTXATTRS_UNSPECIFIED,
                                  fillbuf, l, true);
        len -= l;
        addr += l;
    }

    return error;
}

void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
                      AddressSpace *as)
{
    qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry));
    qsg->nsg = 0;
    qsg->nalloc = alloc_hint;
    qsg->size = 0;
    qsg->as = as;
    qsg->dev = dev;
    object_ref(OBJECT(dev));
}

void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len)
{
    if (qsg->nsg == qsg->nalloc) {
        qsg->nalloc = 2 * qsg->nalloc + 1;
        qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry));
    }
    qsg->sg[qsg->nsg].base = base;
    qsg->sg[qsg->nsg].len = len;
    qsg->size += len;
    ++qsg->nsg;
}

void qemu_sglist_destroy(QEMUSGList *qsg)
{
    object_unref(OBJECT(qsg->dev));
    g_free(qsg->sg);
    memset(qsg, 0, sizeof(*qsg));
}

typedef struct {
    BlockAIOCB common;
    BlockBackend *blk;
    BlockAIOCB *acb;
    QEMUSGList *sg;
    uint64_t sector_num;
    DMADirection dir;
    int sg_cur_index;
    dma_addr_t sg_cur_byte;
    QEMUIOVector iov;
    QEMUBH *bh;
    DMAIOFunc *io_func;
} DMAAIOCB;

static void dma_blk_cb(void *opaque, int ret);

static void reschedule_dma(void *opaque)
{
    DMAAIOCB *dbs = (DMAAIOCB *)opaque;

    qemu_bh_delete(dbs->bh);
    dbs->bh = NULL;
    dma_blk_cb(dbs, 0);
}

static void dma_blk_unmap(DMAAIOCB *dbs)
{
    int i;

    for (i = 0; i < dbs->iov.niov; ++i) {
        dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base,
                         dbs->iov.iov[i].iov_len, dbs->dir,
                         dbs->iov.iov[i].iov_len);
    }
    qemu_iovec_reset(&dbs->iov);
}

static void dma_complete(DMAAIOCB *dbs, int ret)
{
    trace_dma_complete(dbs, ret, dbs->common.cb);

    dma_blk_unmap(dbs);
    if (dbs->common.cb) {
        dbs->common.cb(dbs->common.opaque, ret);
    }
    qemu_iovec_destroy(&dbs->iov);
    if (dbs->bh) {
        qemu_bh_delete(dbs->bh);
        dbs->bh = NULL;
    }
    qemu_aio_unref(dbs);
}

static void dma_blk_cb(void *opaque, int ret)
{
    DMAAIOCB *dbs = (DMAAIOCB *)opaque;
    dma_addr_t cur_addr, cur_len;
    void *mem;

    trace_dma_blk_cb(dbs, ret);

    dbs->acb = NULL;
    dbs->sector_num += dbs->iov.size / 512;

    if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) {
        dma_complete(dbs, ret);
        return;
    }
    dma_blk_unmap(dbs);

    while (dbs->sg_cur_index < dbs->sg->nsg) {
        cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte;
        cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte;
        mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir);
        if (!mem)
            break;
        qemu_iovec_add(&dbs->iov, mem, cur_len);
        dbs->sg_cur_byte += cur_len;
        if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) {
            dbs->sg_cur_byte = 0;
            ++dbs->sg_cur_index;
        }
    }

    if (dbs->iov.size == 0) {
        trace_dma_map_wait(dbs);
        dbs->bh = aio_bh_new(blk_get_aio_context(dbs->blk),
                             reschedule_dma, dbs);
        cpu_register_map_client(dbs->bh);
        return;
    }

    if (dbs->iov.size & ~BDRV_SECTOR_MASK) {
        qemu_iovec_discard_back(&dbs->iov, dbs->iov.size & ~BDRV_SECTOR_MASK);
    }

    dbs->acb = dbs->io_func(dbs->blk, dbs->sector_num, &dbs->iov,
                            dbs->iov.size / 512, dma_blk_cb, dbs);
    assert(dbs->acb);
}

static void dma_aio_cancel(BlockAIOCB *acb)
{
    DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common);

    trace_dma_aio_cancel(dbs);

    if (dbs->acb) {
        blk_aio_cancel_async(dbs->acb);
    }
    if (dbs->bh) {
        cpu_unregister_map_client(dbs->bh);
        qemu_bh_delete(dbs->bh);
        dbs->bh = NULL;
    }
}


static const AIOCBInfo dma_aiocb_info = {
    .aiocb_size         = sizeof(DMAAIOCB),
    .cancel_async       = dma_aio_cancel,
};

BlockAIOCB *dma_blk_io(
    BlockBackend *blk, QEMUSGList *sg, uint64_t sector_num,
    DMAIOFunc *io_func, BlockCompletionFunc *cb,
    void *opaque, DMADirection dir)
{
    DMAAIOCB *dbs = blk_aio_get(&dma_aiocb_info, blk, cb, opaque);

    trace_dma_blk_io(dbs, blk, sector_num, (dir == DMA_DIRECTION_TO_DEVICE));

    dbs->acb = NULL;
    dbs->blk = blk;
    dbs->sg = sg;
    dbs->sector_num = sector_num;
    dbs->sg_cur_index = 0;
    dbs->sg_cur_byte = 0;
    dbs->dir = dir;
    dbs->io_func = io_func;
    dbs->bh = NULL;
    qemu_iovec_init(&dbs->iov, sg->nsg);
    dma_blk_cb(dbs, 0);
    return &dbs->common;
}


BlockAIOCB *dma_blk_read(BlockBackend *blk,
                         QEMUSGList *sg, uint64_t sector,
                         void (*cb)(void *opaque, int ret), void *opaque)
{
    return dma_blk_io(blk, sg, sector, blk_aio_readv, cb, opaque,
                      DMA_DIRECTION_FROM_DEVICE);
}

BlockAIOCB *dma_blk_write(BlockBackend *blk,
                          QEMUSGList *sg, uint64_t sector,
                          void (*cb)(void *opaque, int ret), void *opaque)
{
    return dma_blk_io(blk, sg, sector, blk_aio_writev, cb, opaque,
                      DMA_DIRECTION_TO_DEVICE);
}


static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg,
                           DMADirection dir)
{
    uint64_t resid;
    int sg_cur_index;

    resid = sg->size;
    sg_cur_index = 0;
    len = MIN(len, resid);
    while (len > 0) {
        ScatterGatherEntry entry = sg->sg[sg_cur_index++];
        int32_t xfer = MIN(len, entry.len);
        dma_memory_rw(sg->as, entry.base, ptr, xfer, dir);
        ptr += xfer;
        len -= xfer;
        resid -= xfer;
    }

    return resid;
}

uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
    return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE);
}

uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg)
{
    return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE);
}

void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie,
                    QEMUSGList *sg, enum BlockAcctType type)
{
    block_acct_start(blk_get_stats(blk), cookie, sg->size, type);
}