summaryrefslogtreecommitdiffstats
path: root/docs/devel/qapi-code-gen.rst
blob: ced7a5ffe1ebd159fd2c390ad2bd2e7c43715286 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
==================================
How to use the QAPI code generator
==================================

..
   Copyright IBM Corp. 2011
   Copyright (C) 2012-2016 Red Hat, Inc.

   This work is licensed under the terms of the GNU GPL, version 2 or
   later.  See the COPYING file in the top-level directory.


Introduction
============

QAPI is a native C API within QEMU which provides management-level
functionality to internal and external users.  For external
users/processes, this interface is made available by a JSON-based wire
format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
well as the QEMU Guest Agent (QGA) for communicating with the guest.
The remainder of this document uses "Client JSON Protocol" when
referring to the wire contents of a QMP or QGA connection.

To map between Client JSON Protocol interfaces and the native C API,
we generate C code from a QAPI schema.  This document describes the
QAPI schema language, and how it gets mapped to the Client JSON
Protocol and to C.  It additionally provides guidance on maintaining
Client JSON Protocol compatibility.


The QAPI schema language
========================

The QAPI schema defines the Client JSON Protocol's commands and
events, as well as types used by them.  Forward references are
allowed.

It is permissible for the schema to contain additional types not used
by any commands or events, for the side effect of generated C code
used internally.

There are several kinds of types: simple types (a number of built-in
types, such as ``int`` and ``str``; as well as enumerations), arrays,
complex types (structs and two flavors of unions), and alternate types
(a choice between other types).


Schema syntax
-------------

Syntax is loosely based on `JSON <http://www.ietf.org/rfc/rfc8259.txt>`_.
Differences:

* Comments: start with a hash character (``#``) that is not part of a
  string, and extend to the end of the line.

* Strings are enclosed in ``'single quotes'``, not ``"double quotes"``.

* Strings are restricted to printable ASCII, and escape sequences to
  just ``\\``.

* Numbers and ``null`` are not supported.

A second layer of syntax defines the sequences of JSON texts that are
a correctly structured QAPI schema.  We provide a grammar for this
syntax in an EBNF-like notation:

* Production rules look like ``non-terminal = expression``
* Concatenation: expression ``A B`` matches expression ``A``, then ``B``
* Alternation: expression ``A | B`` matches expression ``A`` or ``B``
* Repetition: expression ``A...`` matches zero or more occurrences of
  expression ``A``
* Repetition: expression ``A, ...`` matches zero or more occurrences of
  expression ``A`` separated by ``,``
* Grouping: expression ``( A )`` matches expression ``A``
* JSON's structural characters are terminals: ``{ } [ ] : ,``
* JSON's literal names are terminals: ``false true``
* String literals enclosed in ``'single quotes'`` are terminal, and match
  this JSON string, with a leading ``*`` stripped off
* When JSON object member's name starts with ``*``, the member is
  optional.
* The symbol ``STRING`` is a terminal, and matches any JSON string
* The symbol ``BOOL`` is a terminal, and matches JSON ``false`` or ``true``
* ALL-CAPS words other than ``STRING`` are non-terminals

The order of members within JSON objects does not matter unless
explicitly noted.

A QAPI schema consists of a series of top-level expressions::

    SCHEMA = TOP-LEVEL-EXPR...

The top-level expressions are all JSON objects.  Code and
documentation is generated in schema definition order.  Code order
should not matter.

A top-level expressions is either a directive or a definition::

    TOP-LEVEL-EXPR = DIRECTIVE | DEFINITION

There are two kinds of directives and six kinds of definitions::

    DIRECTIVE = INCLUDE | PRAGMA
    DEFINITION = ENUM | STRUCT | UNION | ALTERNATE | COMMAND | EVENT

These are discussed in detail below.


Built-in Types
--------------

The following types are predefined, and map to C as follows:

  ============= ============== ============================================
  Schema        C              JSON
  ============= ============== ============================================
  ``str``       ``char *``     any JSON string, UTF-8
  ``number``    ``double``     any JSON number
  ``int``       ``int64_t``    a JSON number without fractional part
                               that fits into the C integer type
  ``int8``      ``int8_t``     likewise
  ``int16``     ``int16_t``    likewise
  ``int32``     ``int32_t``    likewise
  ``int64``     ``int64_t``    likewise
  ``uint8``     ``uint8_t``    likewise
  ``uint16``    ``uint16_t``   likewise
  ``uint32``    ``uint32_t``   likewise
  ``uint64``    ``uint64_t``   likewise
  ``size``      ``uint64_t``   like ``uint64_t``, except
                               ``StringInputVisitor`` accepts size suffixes
  ``bool``      ``bool``       JSON ``true`` or ``false``
  ``null``      ``QNull *``    JSON ``null``
  ``any``       ``QObject *``  any JSON value
  ``QType``     ``QType``      JSON string matching enum ``QType`` values
  ============= ============== ============================================


Include directives
------------------

Syntax::

    INCLUDE = { 'include': STRING }

The QAPI schema definitions can be modularized using the 'include' directive::

 { 'include': 'path/to/file.json' }

The directive is evaluated recursively, and include paths are relative
to the file using the directive.  Multiple includes of the same file
are idempotent.

As a matter of style, it is a good idea to have all files be
self-contained, but at the moment, nothing prevents an included file
from making a forward reference to a type that is only introduced by
an outer file.  The parser may be made stricter in the future to
prevent incomplete include files.

.. _pragma:

Pragma directives
-----------------

Syntax::

    PRAGMA = { 'pragma': {
                   '*doc-required': BOOL,
                   '*command-name-exceptions': [ STRING, ... ],
                   '*command-returns-exceptions': [ STRING, ... ],
                   '*member-name-exceptions': [ STRING, ... ] } }

The pragma directive lets you control optional generator behavior.

Pragma's scope is currently the complete schema.  Setting the same
pragma to different values in parts of the schema doesn't work.

Pragma 'doc-required' takes a boolean value.  If true, documentation
is required.  Default is false.

Pragma 'command-name-exceptions' takes a list of commands whose names
may contain ``"_"`` instead of ``"-"``.  Default is none.

Pragma 'command-returns-exceptions' takes a list of commands that may
violate the rules on permitted return types.  Default is none.

Pragma 'member-name-exceptions' takes a list of types whose member
names may contain uppercase letters, and ``"_"`` instead of ``"-"``.
Default is none.

.. _ENUM-VALUE:

Enumeration types
-----------------

Syntax::

    ENUM = { 'enum': STRING,
             'data': [ ENUM-VALUE, ... ],
             '*prefix': STRING,
             '*if': COND,
             '*features': FEATURES }
    ENUM-VALUE = STRING
               | { 'name': STRING, '*if': COND }

Member 'enum' names the enum type.

Each member of the 'data' array defines a value of the enumeration
type.  The form STRING is shorthand for :code:`{ 'name': STRING }`.  The
'name' values must be be distinct.

Example::

 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }

Nothing prevents an empty enumeration, although it is probably not
useful.

On the wire, an enumeration type's value is represented by its
(string) name.  In C, it's represented by an enumeration constant.
These are of the form PREFIX_NAME, where PREFIX is derived from the
enumeration type's name, and NAME from the value's name.  For the
example above, the generator maps 'MyEnum' to MY_ENUM and 'value1' to
VALUE1, resulting in the enumeration constant MY_ENUM_VALUE1.  The
optional 'prefix' member overrides PREFIX.

The generated C enumeration constants have values 0, 1, ..., N-1 (in
QAPI schema order), where N is the number of values.  There is an
additional enumeration constant PREFIX__MAX with value N.

Do not use string or an integer type when an enumeration type can do
the job satisfactorily.

The optional 'if' member specifies a conditional.  See `Configuring the
schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


.. _TYPE-REF:

Type references and array types
-------------------------------

Syntax::

    TYPE-REF = STRING | ARRAY-TYPE
    ARRAY-TYPE = [ STRING ]

A string denotes the type named by the string.

A one-element array containing a string denotes an array of the type
named by the string.  Example: ``['int']`` denotes an array of ``int``.


Struct types
------------

Syntax::

    STRUCT = { 'struct': STRING,
               'data': MEMBERS,
               '*base': STRING,
               '*if': COND,
               '*features': FEATURES }
    MEMBERS = { MEMBER, ... }
    MEMBER = STRING : TYPE-REF
           | STRING : { 'type': TYPE-REF,
                        '*if': COND,
                        '*features': FEATURES }

Member 'struct' names the struct type.

Each MEMBER of the 'data' object defines a member of the struct type.

.. _MEMBERS:

The MEMBER's STRING name consists of an optional ``*`` prefix and the
struct member name.  If ``*`` is present, the member is optional.

The MEMBER's value defines its properties, in particular its type.
The form TYPE-REF_ is shorthand for :code:`{ 'type': TYPE-REF }`.

Example::

 { 'struct': 'MyType',
   'data': { 'member1': 'str', 'member2': ['int'], '*member3': 'str' } }

A struct type corresponds to a struct in C, and an object in JSON.
The C struct's members are generated in QAPI schema order.

The optional 'base' member names a struct type whose members are to be
included in this type.  They go first in the C struct.

Example::

 { 'struct': 'BlockdevOptionsGenericFormat',
   'data': { 'file': 'str' } }
 { 'struct': 'BlockdevOptionsGenericCOWFormat',
   'base': 'BlockdevOptionsGenericFormat',
   'data': { '*backing': 'str' } }

An example BlockdevOptionsGenericCOWFormat object on the wire could use
both members like this::

 { "file": "/some/place/my-image",
   "backing": "/some/place/my-backing-file" }

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


Union types
-----------

Syntax::

    UNION = { 'union': STRING,
              'data': BRANCHES,
              '*if': COND,
              '*features': FEATURES }
          | { 'union': STRING,
              'data': BRANCHES,
              'base': ( MEMBERS | STRING ),
              'discriminator': STRING,
              '*if': COND,
              '*features': FEATURES }
    BRANCHES = { BRANCH, ... }
    BRANCH = STRING : TYPE-REF
           | STRING : { 'type': TYPE-REF, '*if': COND }

Member 'union' names the union type.

There are two flavors of union types: simple (no discriminator or
base), and flat (both discriminator and base).

Each BRANCH of the 'data' object defines a branch of the union.  A
union must have at least one branch.

The BRANCH's STRING name is the branch name.

The BRANCH's value defines the branch's properties, in particular its
type.  The form TYPE-REF_ is shorthand for :code:`{ 'type': TYPE-REF }`.

A simple union type defines a mapping from automatic discriminator
values to data types like in this example::

 { 'struct': 'BlockdevOptionsFile', 'data': { 'filename': 'str' } }
 { 'struct': 'BlockdevOptionsQcow2',
   'data': { 'backing': 'str', '*lazy-refcounts': 'bool' } }

 { 'union': 'BlockdevOptionsSimple',
   'data': { 'file': 'BlockdevOptionsFile',
             'qcow2': 'BlockdevOptionsQcow2' } }

In the Client JSON Protocol, a simple union is represented by an
object that contains the 'type' member as a discriminator, and a
'data' member that is of the specified data type corresponding to the
discriminator value, as in these examples::

 { "type": "file", "data": { "filename": "/some/place/my-image" } }
 { "type": "qcow2", "data": { "backing": "/some/place/my-image",
                              "lazy-refcounts": true } }

The generated C code uses a struct containing a union.  Additionally,
an implicit C enum 'NameKind' is created, corresponding to the union
'Name', for accessing the various branches of the union.  The value
for each branch can be of any type.

Flat unions permit arbitrary common members that occur in all variants
of the union, not just a discriminator.  Their discriminators need not
be named 'type'.  They also avoid nesting on the wire.

The 'base' member defines the common members.  If it is a MEMBERS_
object, it defines common members just like a struct type's 'data'
member defines struct type members.  If it is a STRING, it names a
struct type whose members are the common members.

All flat union branches must be `Struct types`_.

In the Client JSON Protocol, a flat union is represented by an object
with the common members (from the base type) and the selected branch's
members.  The two sets of member names must be disjoint.  Member
'discriminator' must name a non-optional enum-typed member of the base
struct.

The following example enhances the above simple union example by
adding an optional common member 'read-only', renaming the
discriminator to something more applicable than the simple union's
default of 'type', and reducing the number of ``{}`` required on the wire::

 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
 { 'union': 'BlockdevOptions',
   'base': { 'driver': 'BlockdevDriver', '*read-only': 'bool' },
   'discriminator': 'driver',
   'data': { 'file': 'BlockdevOptionsFile',
             'qcow2': 'BlockdevOptionsQcow2' } }

Resulting in these JSON objects::

 { "driver": "file", "read-only": true,
   "filename": "/some/place/my-image" }
 { "driver": "qcow2", "read-only": false,
   "backing": "/some/place/my-image", "lazy-refcounts": true }

Notice that in a flat union, the discriminator name is controlled by
the user, but because it must map to a base member with enum type, the
code generator ensures that branches match the existing values of the
enum.  The order of branches need not match the order of the enum
values.  The branches need not cover all possible enum values.
Omitted enum values are still valid branches that add no additional
members to the data type.  In the resulting generated C data types, a
flat union is represented as a struct with the base members in QAPI
schema order, and then a union of structures for each branch of the
struct.

A simple union can always be re-written as a flat union where the base
class has a single member named 'type', and where each branch of the
union has a struct with a single member named 'data'.  That is, ::

 { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }

is identical on the wire to::

 { 'enum': 'Enum', 'data': ['one', 'two'] }
 { 'struct': 'Branch1', 'data': { 'data': 'str' } }
 { 'struct': 'Branch2', 'data': { 'data': 'int' } }
 { 'union': 'Flat', 'base': { 'type': 'Enum' }, 'discriminator': 'type',
   'data': { 'one': 'Branch1', 'two': 'Branch2' } }

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


Alternate types
---------------

Syntax::

    ALTERNATE = { 'alternate': STRING,
                  'data': ALTERNATIVES,
                  '*if': COND,
                  '*features': FEATURES }
    ALTERNATIVES = { ALTERNATIVE, ... }
    ALTERNATIVE = STRING : STRING
                | STRING : { 'type': STRING, '*if': COND }

Member 'alternate' names the alternate type.

Each ALTERNATIVE of the 'data' object defines a branch of the
alternate.  An alternate must have at least one branch.

The ALTERNATIVE's STRING name is the branch name.

The ALTERNATIVE's value defines the branch's properties, in particular
its type.  The form STRING is shorthand for :code:`{ 'type': STRING }`.

Example::

 { 'alternate': 'BlockdevRef',
   'data': { 'definition': 'BlockdevOptions',
             'reference': 'str' } }

An alternate type is like a union type, except there is no
discriminator on the wire.  Instead, the branch to use is inferred
from the value.  An alternate can only express a choice between types
represented differently on the wire.

If a branch is typed as the 'bool' built-in, the alternate accepts
true and false; if it is typed as any of the various numeric
built-ins, it accepts a JSON number; if it is typed as a 'str'
built-in or named enum type, it accepts a JSON string; if it is typed
as the 'null' built-in, it accepts JSON null; and if it is typed as a
complex type (struct or union), it accepts a JSON object.

The example alternate declaration above allows using both of the
following example objects::

 { "file": "my_existing_block_device_id" }
 { "file": { "driver": "file",
             "read-only": false,
             "filename": "/tmp/mydisk.qcow2" } }

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


Commands
--------

Syntax::

    COMMAND = { 'command': STRING,
                (
                '*data': ( MEMBERS | STRING ),
                |
                'data': STRING,
                'boxed': true,
                )
                '*returns': TYPE-REF,
                '*success-response': false,
                '*gen': false,
                '*allow-oob': true,
                '*allow-preconfig': true,
                '*coroutine': true,
                '*if': COND,
                '*features': FEATURES }

Member 'command' names the command.

Member 'data' defines the arguments.  It defaults to an empty MEMBERS_
object.

If 'data' is a MEMBERS_ object, then MEMBERS defines arguments just
like a struct type's 'data' defines struct type members.

If 'data' is a STRING, then STRING names a complex type whose members
are the arguments.  A union type requires ``'boxed': true``.

Member 'returns' defines the command's return type.  It defaults to an
empty struct type.  It must normally be a complex type or an array of
a complex type.  To return anything else, the command must be listed
in pragma 'commands-returns-exceptions'.  If you do this, extending
the command to return additional information will be harder.  Use of
the pragma for new commands is strongly discouraged.

A command's error responses are not specified in the QAPI schema.
Error conditions should be documented in comments.

In the Client JSON Protocol, the value of the "execute" or "exec-oob"
member is the command name.  The value of the "arguments" member then
has to conform to the arguments, and the value of the success
response's "return" member will conform to the return type.

Some example commands::

 { 'command': 'my-first-command',
   'data': { 'arg1': 'str', '*arg2': 'str' } }
 { 'struct': 'MyType', 'data': { '*value': 'str' } }
 { 'command': 'my-second-command',
   'returns': [ 'MyType' ] }

which would validate this Client JSON Protocol transaction::

 => { "execute": "my-first-command",
      "arguments": { "arg1": "hello" } }
 <= { "return": { } }
 => { "execute": "my-second-command" }
 <= { "return": [ { "value": "one" }, { } ] }

The generator emits a prototype for the C function implementing the
command.  The function itself needs to be written by hand.  See
section `Code generated for commands`_ for examples.

The function returns the return type.  When member 'boxed' is absent,
it takes the command arguments as arguments one by one, in QAPI schema
order.  Else it takes them wrapped in the C struct generated for the
complex argument type.  It takes an additional ``Error **`` argument in
either case.

The generator also emits a marshalling function that extracts
arguments for the user's function out of an input QDict, calls the
user's function, and if it succeeded, builds an output QObject from
its return value.  This is for use by the QMP monitor core.

In rare cases, QAPI cannot express a type-safe representation of a
corresponding Client JSON Protocol command.  You then have to suppress
generation of a marshalling function by including a member 'gen' with
boolean value false, and instead write your own function.  For
example::

 { 'command': 'netdev_add',
   'data': {'type': 'str', 'id': 'str'},
   'gen': false }

Please try to avoid adding new commands that rely on this, and instead
use type-safe unions.

Normally, the QAPI schema is used to describe synchronous exchanges,
where a response is expected.  But in some cases, the action of a
command is expected to change state in a way that a successful
response is not possible (although the command will still return an
error object on failure).  When a successful reply is not possible,
the command definition includes the optional member 'success-response'
with boolean value false.  So far, only QGA makes use of this member.

Member 'allow-oob' declares whether the command supports out-of-band
(OOB) execution.  It defaults to false.  For example::

 { 'command': 'migrate_recover',
   'data': { 'uri': 'str' }, 'allow-oob': true }

See qmp-spec.txt for out-of-band execution syntax and semantics.

Commands supporting out-of-band execution can still be executed
in-band.

When a command is executed in-band, its handler runs in the main
thread with the BQL held.

When a command is executed out-of-band, its handler runs in a
dedicated monitor I/O thread with the BQL *not* held.

An OOB-capable command handler must satisfy the following conditions:

- It terminates quickly.
- It does not invoke system calls that may block.
- It does not access guest RAM that may block when userfaultfd is
  enabled for postcopy live migration.
- It takes only "fast" locks, i.e. all critical sections protected by
  any lock it takes also satisfy the conditions for OOB command
  handler code.

The restrictions on locking limit access to shared state.  Such access
requires synchronization, but OOB commands can't take the BQL or any
other "slow" lock.

When in doubt, do not implement OOB execution support.

Member 'allow-preconfig' declares whether the command is available
before the machine is built.  It defaults to false.  For example::

 { 'enum': 'QMPCapability',
   'data': [ 'oob' ] }
 { 'command': 'qmp_capabilities',
   'data': { '*enable': [ 'QMPCapability' ] },
   'allow-preconfig': true }

QMP is available before the machine is built only when QEMU was
started with --preconfig.

Member 'coroutine' tells the QMP dispatcher whether the command handler
is safe to be run in a coroutine.  It defaults to false.  If it is true,
the command handler is called from coroutine context and may yield while
waiting for an external event (such as I/O completion) in order to avoid
blocking the guest and other background operations.

Coroutine safety can be hard to prove, similar to thread safety.  Common
pitfalls are:

- The global mutex isn't held across ``qemu_coroutine_yield()``, so
  operations that used to assume that they execute atomically may have
  to be more careful to protect against changes in the global state.

- Nested event loops (``AIO_WAIT_WHILE()`` etc.) are problematic in
  coroutine context and can easily lead to deadlocks.  They should be
  replaced by yielding and reentering the coroutine when the condition
  becomes false.

Since the command handler may assume coroutine context, any callers
other than the QMP dispatcher must also call it in coroutine context.
In particular, HMP commands calling such a QMP command handler must be
marked ``.coroutine = true`` in hmp-commands.hx.

It is an error to specify both ``'coroutine': true`` and ``'allow-oob': true``
for a command.  We don't currently have a use case for both together and
without a use case, it's not entirely clear what the semantics should
be.

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


Events
------

Syntax::

    EVENT = { 'event': STRING,
              (
              '*data': ( MEMBERS | STRING ),
              |
              'data': STRING,
              'boxed': true,
              )
              '*if': COND,
              '*features': FEATURES }

Member 'event' names the event.  This is the event name used in the
Client JSON Protocol.

Member 'data' defines the event-specific data.  It defaults to an
empty MEMBERS object.

If 'data' is a MEMBERS object, then MEMBERS defines event-specific
data just like a struct type's 'data' defines struct type members.

If 'data' is a STRING, then STRING names a complex type whose members
are the event-specific data.  A union type requires ``'boxed': true``.

An example event is::

 { 'event': 'EVENT_C',
   'data': { '*a': 'int', 'b': 'str' } }

Resulting in this JSON object::

 { "event": "EVENT_C",
   "data": { "b": "test string" },
   "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }

The generator emits a function to send the event.  When member 'boxed'
is absent, it takes event-specific data one by one, in QAPI schema
order.  Else it takes them wrapped in the C struct generated for the
complex type.  See section `Code generated for events`_ for examples.

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

The optional 'features' member specifies features.  See Features_
below for more on this.


.. _FEATURE:

Features
--------

Syntax::

    FEATURES = [ FEATURE, ... ]
    FEATURE = STRING
            | { 'name': STRING, '*if': COND }

Sometimes, the behaviour of QEMU changes compatibly, but without a
change in the QMP syntax (usually by allowing values or operations
that previously resulted in an error).  QMP clients may still need to
know whether the extension is available.

For this purpose, a list of features can be specified for a command or
struct type.  Each list member can either be ``{ 'name': STRING, '*if':
COND }``, or STRING, which is shorthand for ``{ 'name': STRING }``.

The optional 'if' member specifies a conditional.  See `Configuring
the schema`_ below for more on this.

Example::

 { 'struct': 'TestType',
   'data': { 'number': 'int' },
   'features': [ 'allow-negative-numbers' ] }

The feature strings are exposed to clients in introspection, as
explained in section `Client JSON Protocol introspection`_.

Intended use is to have each feature string signal that this build of
QEMU shows a certain behaviour.


Special features
~~~~~~~~~~~~~~~~

Feature "deprecated" marks a command, event, or struct member as
deprecated.  It is not supported elsewhere so far.


Naming rules and reserved names
-------------------------------

All names must begin with a letter, and contain only ASCII letters,
digits, hyphen, and underscore.  There are two exceptions: enum values
may start with a digit, and names that are downstream extensions (see
section `Downstream extensions`_) start with underscore.

Names beginning with ``q_`` are reserved for the generator, which uses
them for munging QMP names that resemble C keywords or other
problematic strings.  For example, a member named ``default`` in qapi
becomes ``q_default`` in the generated C code.

Types, commands, and events share a common namespace.  Therefore,
generally speaking, type definitions should always use CamelCase for
user-defined type names, while built-in types are lowercase.

Type names ending with ``Kind`` or ``List`` are reserved for the
generator, which uses them for implicit union enums and array types,
respectively.

Command names, and member names within a type, should be all lower
case with words separated by a hyphen.  However, some existing older
commands and complex types use underscore; when extending them,
consistency is preferred over blindly avoiding underscore.

Event names should be ALL_CAPS with words separated by underscore.

Member name ``u`` and names starting with ``has-`` or ``has_`` are reserved
for the generator, which uses them for unions and for tracking
optional members.

Any name (command, event, type, member, or enum value) beginning with
``x-`` is marked experimental, and may be withdrawn or changed
incompatibly in a future release.

Pragmas ``command-name-exceptions`` and ``member-name-exceptions`` let
you violate naming rules.  Use for new code is strongly discouraged. See
`Pragma directives`_ for details.


Downstream extensions
---------------------

QAPI schema names that are externally visible, say in the Client JSON
Protocol, need to be managed with care.  Names starting with a
downstream prefix of the form __RFQDN_ are reserved for the downstream
who controls the valid, reverse fully qualified domain name RFQDN.
RFQDN may only contain ASCII letters, digits, hyphen and period.

Example: Red Hat, Inc. controls redhat.com, and may therefore add a
downstream command ``__com.redhat_drive-mirror``.


Configuring the schema
----------------------

Syntax::

    COND = STRING
         | { 'all: [ COND, ... ] }
         | { 'any: [ COND, ... ] }
         | { 'not': COND }

All definitions take an optional 'if' member.  Its value must be a
string, or an object with a single member 'all', 'any' or 'not'.

The C code generated for the definition will then be guarded by an #if
preprocessing directive with an operand generated from that condition:

 * STRING will generate defined(STRING)
 * { 'all': [COND, ...] } will generate (COND && ...)
 * { 'any': [COND, ...] } will generate (COND || ...)
 * { 'not': COND } will generate !COND

Example: a conditional struct ::

 { 'struct': 'IfStruct', 'data': { 'foo': 'int' },
   'if': { 'all': [ 'CONFIG_FOO', 'HAVE_BAR' ] } }

gets its generated code guarded like this::

 #if defined(CONFIG_FOO) && defined(HAVE_BAR)
 ... generated code ...
 #endif /* defined(HAVE_BAR) && defined(CONFIG_FOO) */

Individual members of complex types, commands arguments, and
event-specific data can also be made conditional.  This requires the
longhand form of MEMBER.

Example: a struct type with unconditional member 'foo' and conditional
member 'bar' ::

 { 'struct': 'IfStruct', 'data':
   { 'foo': 'int',
     'bar': { 'type': 'int', 'if': 'IFCOND'} } }

A union's discriminator may not be conditional.

Likewise, individual enumeration values be conditional.  This requires
the longhand form of ENUM-VALUE_.

Example: an enum type with unconditional value 'foo' and conditional
value 'bar' ::

 { 'enum': 'IfEnum', 'data':
   [ 'foo',
     { 'name' : 'bar', 'if': 'IFCOND' } ] }

Likewise, features can be conditional.  This requires the longhand
form of FEATURE_.

Example: a struct with conditional feature 'allow-negative-numbers' ::

 { 'struct': 'TestType',
   'data': { 'number': 'int' },
   'features': [ { 'name': 'allow-negative-numbers',
                   'if': 'IFCOND' } ] }

Please note that you are responsible to ensure that the C code will
compile with an arbitrary combination of conditions, since the
generator is unable to check it at this point.

The conditions apply to introspection as well, i.e. introspection
shows a conditional entity only when the condition is satisfied in
this particular build.


Documentation comments
----------------------

A multi-line comment that starts and ends with a ``##`` line is a
documentation comment.

If the documentation comment starts like ::

    ##
    # @SYMBOL:

it documents the definition of SYMBOL, else it's free-form
documentation.

See below for more on `Definition documentation`_.

Free-form documentation may be used to provide additional text and
structuring content.


Headings and subheadings
~~~~~~~~~~~~~~~~~~~~~~~~

A free-form documentation comment containing a line which starts with
some ``=`` symbols and then a space defines a section heading::

    ##
    # = This is a top level heading
    #
    # This is a free-form comment which will go under the
    # top level heading.
    ##

    ##
    # == This is a second level heading
    ##

A heading line must be the first line of the documentation
comment block.

Section headings must always be correctly nested, so you can only
define a third-level heading inside a second-level heading, and so on.


Documentation markup
~~~~~~~~~~~~~~~~~~~~

Documentation comments can use most rST markup.  In particular,
a ``::`` literal block can be used for examples::

    # ::
    #
    #   Text of the example, may span
    #   multiple lines

``*`` starts an itemized list::

    # * First item, may span
    #   multiple lines
    # * Second item

You can also use ``-`` instead of ``*``.

A decimal number followed by ``.`` starts a numbered list::

    # 1. First item, may span
    #    multiple lines
    # 2. Second item

The actual number doesn't matter.

Lists of either kind must be preceded and followed by a blank line.
If a list item's text spans multiple lines, then the second and
subsequent lines must be correctly indented to line up with the
first character of the first line.

The usual ****strong****, *\*emphasized\** and ````literal```` markup
should be used.  If you need a single literal ``*``, you will need to
backslash-escape it.  As an extension beyond the usual rST syntax, you
can also use ``@foo`` to reference a name in the schema; this is rendered
the same way as ````foo````.

Example::

 ##
 # Some text foo with **bold** and *emphasis*
 # 1. with a list
 # 2. like that
 #
 # And some code:
 #
 # ::
 #
 #   $ echo foo
 #   -> do this
 #   <- get that
 ##


Definition documentation
~~~~~~~~~~~~~~~~~~~~~~~~

Definition documentation, if present, must immediately precede the
definition it documents.

When documentation is required (see pragma_ 'doc-required'), every
definition must have documentation.

Definition documentation starts with a line naming the definition,
followed by an optional overview, a description of each argument (for
commands and events), member (for structs and unions), branch (for
alternates), or value (for enums), and finally optional tagged
sections.

Descriptions of arguments can span multiple lines.  The description
text can start on the line following the '\@argname:', in which case it
must not be indented at all.  It can also start on the same line as
the '\@argname:'.  In this case if it spans multiple lines then second
and subsequent lines must be indented to line up with the first
character of the first line of the description::

 # @argone:
 # This is a two line description
 # in the first style.
 #
 # @argtwo: This is a two line description
 #          in the second style.

The number of spaces between the ':' and the text is not significant.

.. admonition:: FIXME

   The parser accepts these things in almost any order.

.. admonition:: FIXME

   union branches should be described, too.

Extensions added after the definition was first released carry a
'(since x.y.z)' comment.

A tagged section starts with one of the following words:
"Note:"/"Notes:", "Since:", "Example"/"Examples", "Returns:", "TODO:".
The section ends with the start of a new section.

The text of a section can start on a new line, in
which case it must not be indented at all.  It can also start
on the same line as the 'Note:', 'Returns:', etc tag.  In this
case if it spans multiple lines then second and subsequent
lines must be indented to match the first, in the same way as
multiline argument descriptions.

A 'Since: x.y.z' tagged section lists the release that introduced the
definition.

The text of a section can start on a new line, in
which case it must not be indented at all.  It can also start
on the same line as the 'Note:', 'Returns:', etc tag.  In this
case if it spans multiple lines then second and subsequent
lines must be indented to match the first.

An 'Example' or 'Examples' section is automatically rendered
entirely as literal fixed-width text.  In other sections,
the text is formatted, and rST markup can be used.

For example::

 ##
 # @BlockStats:
 #
 # Statistics of a virtual block device or a block backing device.
 #
 # @device: If the stats are for a virtual block device, the name
 #          corresponding to the virtual block device.
 #
 # @node-name: The node name of the device. (since 2.3)
 #
 # ... more members ...
 #
 # Since: 0.14.0
 ##
 { 'struct': 'BlockStats',
   'data': {'*device': 'str', '*node-name': 'str',
            ... more members ... } }

 ##
 # @query-blockstats:
 #
 # Query the @BlockStats for all virtual block devices.
 #
 # @query-nodes: If true, the command will query all the
 #               block nodes ... explain, explain ...  (since 2.3)
 #
 # Returns: A list of @BlockStats for each virtual block devices.
 #
 # Since: 0.14.0
 #
 # Example:
 #
 # -> { "execute": "query-blockstats" }
 # <- {
 #      ... lots of output ...
 #    }
 #
 ##
 { 'command': 'query-blockstats',
   'data': { '*query-nodes': 'bool' },
   'returns': ['BlockStats'] }


Client JSON Protocol introspection
==================================

Clients of a Client JSON Protocol commonly need to figure out what
exactly the server (QEMU) supports.

For this purpose, QMP provides introspection via command
query-qmp-schema.  QGA currently doesn't support introspection.

While Client JSON Protocol wire compatibility should be maintained
between qemu versions, we cannot make the same guarantees for
introspection stability.  For example, one version of qemu may provide
a non-variant optional member of a struct, and a later version rework
the member to instead be non-optional and associated with a variant.
Likewise, one version of qemu may list a member with open-ended type
'str', and a later version could convert it to a finite set of strings
via an enum type; or a member may be converted from a specific type to
an alternate that represents a choice between the original type and
something else.

query-qmp-schema returns a JSON array of SchemaInfo objects.  These
objects together describe the wire ABI, as defined in the QAPI schema.
There is no specified order to the SchemaInfo objects returned; a
client must search for a particular name throughout the entire array
to learn more about that name, but is at least guaranteed that there
will be no collisions between type, command, and event names.

However, the SchemaInfo can't reflect all the rules and restrictions
that apply to QMP.  It's interface introspection (figuring out what's
there), not interface specification.  The specification is in the QAPI
schema.  To understand how QMP is to be used, you need to study the
QAPI schema.

Like any other command, query-qmp-schema is itself defined in the QAPI
schema, along with the SchemaInfo type.  This text attempts to give an
overview how things work.  For details you need to consult the QAPI
schema.

SchemaInfo objects have common members "name", "meta-type",
"features", and additional variant members depending on the value of
meta-type.

Each SchemaInfo object describes a wire ABI entity of a certain
meta-type: a command, event or one of several kinds of type.

SchemaInfo for commands and events have the same name as in the QAPI
schema.

Command and event names are part of the wire ABI, but type names are
not.  Therefore, the SchemaInfo for types have auto-generated
meaningless names.  For readability, the examples in this section use
meaningful type names instead.

Optional member "features" exposes the entity's feature strings as a
JSON array of strings.

To examine a type, start with a command or event using it, then follow
references by name.

QAPI schema definitions not reachable that way are omitted.

The SchemaInfo for a command has meta-type "command", and variant
members "arg-type", "ret-type" and "allow-oob".  On the wire, the
"arguments" member of a client's "execute" command must conform to the
object type named by "arg-type".  The "return" member that the server
passes in a success response conforms to the type named by "ret-type".
When "allow-oob" is true, it means the command supports out-of-band
execution.  It defaults to false.

If the command takes no arguments, "arg-type" names an object type
without members.  Likewise, if the command returns nothing, "ret-type"
names an object type without members.

Example: the SchemaInfo for command query-qmp-schema ::

 { "name": "query-qmp-schema", "meta-type": "command",
   "arg-type": "q_empty", "ret-type": "SchemaInfoList" }

   Type "q_empty" is an automatic object type without members, and type
   "SchemaInfoList" is the array of SchemaInfo type.

The SchemaInfo for an event has meta-type "event", and variant member
"arg-type".  On the wire, a "data" member that the server passes in an
event conforms to the object type named by "arg-type".

If the event carries no additional information, "arg-type" names an
object type without members.  The event may not have a data member on
the wire then.

Each command or event defined with 'data' as MEMBERS object in the
QAPI schema implicitly defines an object type.

Example: the SchemaInfo for EVENT_C from section Events_ ::

    { "name": "EVENT_C", "meta-type": "event",
      "arg-type": "q_obj-EVENT_C-arg" }

    Type "q_obj-EVENT_C-arg" is an implicitly defined object type with
    the two members from the event's definition.

The SchemaInfo for struct and union types has meta-type "object".

The SchemaInfo for a struct type has variant member "members".

The SchemaInfo for a union type additionally has variant members "tag"
and "variants".

"members" is a JSON array describing the object's common members, if
any.  Each element is a JSON object with members "name" (the member's
name), "type" (the name of its type), and optionally "default".  The
member is optional if "default" is present.  Currently, "default" can
only have value null.  Other values are reserved for future
extensions.  The "members" array is in no particular order; clients
must search the entire object when learning whether a particular
member is supported.

Example: the SchemaInfo for MyType from section `Struct types`_ ::

    { "name": "MyType", "meta-type": "object",
      "members": [
          { "name": "member1", "type": "str" },
          { "name": "member2", "type": "int" },
          { "name": "member3", "type": "str", "default": null } ] }

"features" exposes the command's feature strings as a JSON array of
strings.

Example: the SchemaInfo for TestType from section Features_::

    { "name": "TestType", "meta-type": "object",
      "members": [
          { "name": "number", "type": "int" } ],
      "features": ["allow-negative-numbers"] }

"tag" is the name of the common member serving as type tag.
"variants" is a JSON array describing the object's variant members.
Each element is a JSON object with members "case" (the value of type
tag this element applies to) and "type" (the name of an object type
that provides the variant members for this type tag value).  The
"variants" array is in no particular order, and is not guaranteed to
list cases in the same order as the corresponding "tag" enum type.

Example: the SchemaInfo for flat union BlockdevOptions from section
`Union types`_ ::

    { "name": "BlockdevOptions", "meta-type": "object",
      "members": [
          { "name": "driver", "type": "BlockdevDriver" },
          { "name": "read-only", "type": "bool", "default": null } ],
      "tag": "driver",
      "variants": [
          { "case": "file", "type": "BlockdevOptionsFile" },
          { "case": "qcow2", "type": "BlockdevOptionsQcow2" } ] }

Note that base types are "flattened": its members are included in the
"members" array.

A simple union implicitly defines an enumeration type for its implicit
discriminator (called "type" on the wire, see section `Union types`_).

A simple union implicitly defines an object type for each of its
variants.

Example: the SchemaInfo for simple union BlockdevOptionsSimple from section
`Union types`_ ::

    { "name": "BlockdevOptionsSimple", "meta-type": "object",
      "members": [
          { "name": "type", "type": "BlockdevOptionsSimpleKind" } ],
      "tag": "type",
      "variants": [
          { "case": "file", "type": "q_obj-BlockdevOptionsFile-wrapper" },
          { "case": "qcow2", "type": "q_obj-BlockdevOptionsQcow2-wrapper" } ] }

    Enumeration type "BlockdevOptionsSimpleKind" and the object types
    "q_obj-BlockdevOptionsFile-wrapper", "q_obj-BlockdevOptionsQcow2-wrapper"
    are implicitly defined.

The SchemaInfo for an alternate type has meta-type "alternate", and
variant member "members".  "members" is a JSON array.  Each element is
a JSON object with member "type", which names a type.  Values of the
alternate type conform to exactly one of its member types.  There is
no guarantee on the order in which "members" will be listed.

Example: the SchemaInfo for BlockdevRef from section `Alternate types`_ ::

    { "name": "BlockdevRef", "meta-type": "alternate",
      "members": [
          { "type": "BlockdevOptions" },
          { "type": "str" } ] }

The SchemaInfo for an array type has meta-type "array", and variant
member "element-type", which names the array's element type.  Array
types are implicitly defined.  For convenience, the array's name may
resemble the element type; however, clients should examine member
"element-type" instead of making assumptions based on parsing member
"name".

Example: the SchemaInfo for ['str'] ::

    { "name": "[str]", "meta-type": "array",
      "element-type": "str" }

The SchemaInfo for an enumeration type has meta-type "enum" and
variant member "values".  The values are listed in no particular
order; clients must search the entire enum when learning whether a
particular value is supported.

Example: the SchemaInfo for MyEnum from section `Enumeration types`_ ::

    { "name": "MyEnum", "meta-type": "enum",
      "values": [ "value1", "value2", "value3" ] }

The SchemaInfo for a built-in type has the same name as the type in
the QAPI schema (see section `Built-in Types`_), with one exception
detailed below.  It has variant member "json-type" that shows how
values of this type are encoded on the wire.

Example: the SchemaInfo for str ::

    { "name": "str", "meta-type": "builtin", "json-type": "string" }

The QAPI schema supports a number of integer types that only differ in
how they map to C.  They are identical as far as SchemaInfo is
concerned.  Therefore, they get all mapped to a single type "int" in
SchemaInfo.

As explained above, type names are not part of the wire ABI.  Not even
the names of built-in types.  Clients should examine member
"json-type" instead of hard-coding names of built-in types.


Compatibility considerations
============================

Maintaining backward compatibility at the Client JSON Protocol level
while evolving the schema requires some care.  This section is about
syntactic compatibility, which is necessary, but not sufficient, for
actual compatibility.

Clients send commands with argument data, and receive command
responses with return data and events with event data.

Adding opt-in functionality to the send direction is backwards
compatible: adding commands, optional arguments, enumeration values,
union and alternate branches; turning an argument type into an
alternate of that type; making mandatory arguments optional.  Clients
oblivious of the new functionality continue to work.

Incompatible changes include removing commands, command arguments,
enumeration values, union and alternate branches, adding mandatory
command arguments, and making optional arguments mandatory.

The specified behavior of an absent optional argument should remain
the same.  With proper documentation, this policy still allows some
flexibility; for example, when an optional 'buffer-size' argument is
specified to default to a sensible buffer size, the actual default
value can still be changed.  The specified default behavior is not the
exact size of the buffer, only that the default size is sensible.

Adding functionality to the receive direction is generally backwards
compatible: adding events, adding return and event data members.
Clients are expected to ignore the ones they don't know.

Removing "unreachable" stuff like events that can't be triggered
anymore, optional return or event data members that can't be sent
anymore, and return or event data member (enumeration) values that
can't be sent anymore makes no difference to clients, except for
introspection.  The latter can conceivably confuse clients, so tread
carefully.

Incompatible changes include removing return and event data members.

Any change to a command definition's 'data' or one of the types used
there (recursively) needs to consider send direction compatibility.

Any change to a command definition's 'return', an event definition's
'data', or one of the types used there (recursively) needs to consider
receive direction compatibility.

Any change to types used in both contexts need to consider both.

Enumeration type values and complex and alternate type members may be
reordered freely.  For enumerations and alternate types, this doesn't
affect the wire encoding.  For complex types, this might make the
implementation emit JSON object members in a different order, which
the Client JSON Protocol permits.

Since type names are not visible in the Client JSON Protocol, types
may be freely renamed.  Even certain refactorings are invisible, such
as splitting members from one type into a common base type.


Code generation
===============

The QAPI code generator qapi-gen.py generates code and documentation
from the schema.  Together with the core QAPI libraries, this code
provides everything required to take JSON commands read in by a Client
JSON Protocol server, unmarshal the arguments into the underlying C
types, call into the corresponding C function, map the response back
to a Client JSON Protocol response to be returned to the user, and
introspect the commands.

As an example, we'll use the following schema, which describes a
single complex user-defined type, along with command which takes a
list of that type as a parameter, and returns a single element of that
type.  The user is responsible for writing the implementation of
qmp_my_command(); everything else is produced by the generator. ::

    $ cat example-schema.json
    { 'struct': 'UserDefOne',
      'data': { 'integer': 'int', '*string': 'str' } }

    { 'command': 'my-command',
      'data': { 'arg1': ['UserDefOne'] },
      'returns': 'UserDefOne' }

    { 'event': 'MY_EVENT' }

We run qapi-gen.py like this::

    $ python scripts/qapi-gen.py --output-dir="qapi-generated" \
    --prefix="example-" example-schema.json

For a more thorough look at generated code, the testsuite includes
tests/qapi-schema/qapi-schema-tests.json that covers more examples of
what the generator will accept, and compiles the resulting C code as
part of 'make check-unit'.


Code generated for QAPI types
-----------------------------

The following files are created:

 ``$(prefix)qapi-types.h``
     C types corresponding to types defined in the schema

 ``$(prefix)qapi-types.c``
     Cleanup functions for the above C types

The $(prefix) is an optional parameter used as a namespace to keep the
generated code from one schema/code-generation separated from others so code
can be generated/used from multiple schemas without clobbering previously
created code.

Example::

    $ cat qapi-generated/example-qapi-types.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_TYPES_H
    #define EXAMPLE_QAPI_TYPES_H

    #include "qapi/qapi-builtin-types.h"

    typedef struct UserDefOne UserDefOne;

    typedef struct UserDefOneList UserDefOneList;

    typedef struct q_obj_my_command_arg q_obj_my_command_arg;

    struct UserDefOne {
        int64_t integer;
        bool has_string;
        char *string;
    };

    void qapi_free_UserDefOne(UserDefOne *obj);
    G_DEFINE_AUTOPTR_CLEANUP_FUNC(UserDefOne, qapi_free_UserDefOne)

    struct UserDefOneList {
        UserDefOneList *next;
        UserDefOne *value;
    };

    void qapi_free_UserDefOneList(UserDefOneList *obj);
    G_DEFINE_AUTOPTR_CLEANUP_FUNC(UserDefOneList, qapi_free_UserDefOneList)

    struct q_obj_my_command_arg {
        UserDefOneList *arg1;
    };

    #endif /* EXAMPLE_QAPI_TYPES_H */
    $ cat qapi-generated/example-qapi-types.c
    [Uninteresting stuff omitted...]

    void qapi_free_UserDefOne(UserDefOne *obj)
    {
        Visitor *v;

        if (!obj) {
            return;
        }

        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOne(v, NULL, &obj, NULL);
        visit_free(v);
    }

    void qapi_free_UserDefOneList(UserDefOneList *obj)
    {
        Visitor *v;

        if (!obj) {
            return;
        }

        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOneList(v, NULL, &obj, NULL);
        visit_free(v);
    }

    [Uninteresting stuff omitted...]

For a modular QAPI schema (see section `Include directives`_), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into ::

 SUBDIR/$(prefix)qapi-types-SUBMODULE.h
 SUBDIR/$(prefix)qapi-types-SUBMODULE.c

If qapi-gen.py is run with option --builtins, additional files are
created:

 ``qapi-builtin-types.h``
     C types corresponding to built-in types

 ``qapi-builtin-types.c``
     Cleanup functions for the above C types


Code generated for visiting QAPI types
--------------------------------------

These are the visitor functions used to walk through and convert
between a native QAPI C data structure and some other format (such as
QObject); the generated functions are named visit_type_FOO() and
visit_type_FOO_members().

The following files are generated:

 ``$(prefix)qapi-visit.c``
     Visitor function for a particular C type, used to automagically
     convert QObjects into the corresponding C type and vice-versa, as
     well as for deallocating memory for an existing C type

 ``$(prefix)qapi-visit.h``
     Declarations for previously mentioned visitor functions

Example::

    $ cat qapi-generated/example-qapi-visit.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_VISIT_H
    #define EXAMPLE_QAPI_VISIT_H

    #include "qapi/qapi-builtin-visit.h"
    #include "example-qapi-types.h"


    bool visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp);

    bool visit_type_UserDefOne(Visitor *v, const char *name,
                     UserDefOne **obj, Error **errp);

    bool visit_type_UserDefOneList(Visitor *v, const char *name,
                     UserDefOneList **obj, Error **errp);

    bool visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp);

    #endif /* EXAMPLE_QAPI_VISIT_H */
    $ cat qapi-generated/example-qapi-visit.c
    [Uninteresting stuff omitted...]

    bool visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp)
    {
        if (!visit_type_int(v, "integer", &obj->integer, errp)) {
            return false;
        }
        if (visit_optional(v, "string", &obj->has_string)) {
            if (!visit_type_str(v, "string", &obj->string, errp)) {
                return false;
            }
        }
        return true;
    }

    bool visit_type_UserDefOne(Visitor *v, const char *name,
                     UserDefOne **obj, Error **errp)
    {
        bool ok = false;

        if (!visit_start_struct(v, name, (void **)obj, sizeof(UserDefOne), errp)) {
            return false;
        }
        if (!*obj) {
            /* incomplete */
            assert(visit_is_dealloc(v));
            ok = true;
            goto out_obj;
        }
        if (!visit_type_UserDefOne_members(v, *obj, errp)) {
            goto out_obj;
        }
        ok = visit_check_struct(v, errp);
    out_obj:
        visit_end_struct(v, (void **)obj);
        if (!ok && visit_is_input(v)) {
            qapi_free_UserDefOne(*obj);
            *obj = NULL;
        }
        return ok;
    }

    bool visit_type_UserDefOneList(Visitor *v, const char *name,
                     UserDefOneList **obj, Error **errp)
    {
        bool ok = false;
        UserDefOneList *tail;
        size_t size = sizeof(**obj);

        if (!visit_start_list(v, name, (GenericList **)obj, size, errp)) {
            return false;
        }

        for (tail = *obj; tail;
             tail = (UserDefOneList *)visit_next_list(v, (GenericList *)tail, size)) {
            if (!visit_type_UserDefOne(v, NULL, &tail->value, errp)) {
                goto out_obj;
            }
        }

        ok = visit_check_list(v, errp);
    out_obj:
        visit_end_list(v, (void **)obj);
        if (!ok && visit_is_input(v)) {
            qapi_free_UserDefOneList(*obj);
            *obj = NULL;
        }
        return ok;
    }

    bool visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp)
    {
        if (!visit_type_UserDefOneList(v, "arg1", &obj->arg1, errp)) {
            return false;
        }
        return true;
    }

    [Uninteresting stuff omitted...]

For a modular QAPI schema (see section `Include directives`_), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into ::

 SUBDIR/$(prefix)qapi-visit-SUBMODULE.h
 SUBDIR/$(prefix)qapi-visit-SUBMODULE.c

If qapi-gen.py is run with option --builtins, additional files are
created:

 ``qapi-builtin-visit.h``
     Visitor functions for built-in types

 ``qapi-builtin-visit.c``
     Declarations for these visitor functions


Code generated for commands
---------------------------

These are the marshaling/dispatch functions for the commands defined
in the schema.  The generated code provides qmp_marshal_COMMAND(), and
declares qmp_COMMAND() that the user must implement.

The following files are generated:

 ``$(prefix)qapi-commands.c``
     Command marshal/dispatch functions for each QMP command defined in
     the schema

 ``$(prefix)qapi-commands.h``
     Function prototypes for the QMP commands specified in the schema

 ``$(prefix)qapi-init-commands.h``
     Command initialization prototype

 ``$(prefix)qapi-init-commands.c``
     Command initialization code

Example::

    $ cat qapi-generated/example-qapi-commands.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_COMMANDS_H
    #define EXAMPLE_QAPI_COMMANDS_H

    #include "example-qapi-types.h"

    UserDefOne *qmp_my_command(UserDefOneList *arg1, Error **errp);
    void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp);

    #endif /* EXAMPLE_QAPI_COMMANDS_H */
    $ cat qapi-generated/example-qapi-commands.c
    [Uninteresting stuff omitted...]


    static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in,
                                    QObject **ret_out, Error **errp)
    {
        Visitor *v;

        v = qobject_output_visitor_new_qmp(ret_out);
        if (visit_type_UserDefOne(v, "unused", &ret_in, errp)) {
            visit_complete(v, ret_out);
        }
        visit_free(v);
        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOne(v, "unused", &ret_in, NULL);
        visit_free(v);
    }

    void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp)
    {
        Error *err = NULL;
        bool ok = false;
        Visitor *v;
        UserDefOne *retval;
        q_obj_my_command_arg arg = {0};

        v = qobject_input_visitor_new_qmp(QOBJECT(args));
        if (!visit_start_struct(v, NULL, NULL, 0, errp)) {
            goto out;
        }
        if (visit_type_q_obj_my_command_arg_members(v, &arg, errp)) {
            ok = visit_check_struct(v, errp);
        }
        visit_end_struct(v, NULL);
        if (!ok) {
            goto out;
        }

        retval = qmp_my_command(arg.arg1, &err);
        error_propagate(errp, err);
        if (err) {
            goto out;
        }

        qmp_marshal_output_UserDefOne(retval, ret, errp);

    out:
        visit_free(v);
        v = qapi_dealloc_visitor_new();
        visit_start_struct(v, NULL, NULL, 0, NULL);
        visit_type_q_obj_my_command_arg_members(v, &arg, NULL);
        visit_end_struct(v, NULL);
        visit_free(v);
    }

    [Uninteresting stuff omitted...]
    $ cat qapi-generated/example-qapi-init-commands.h
    [Uninteresting stuff omitted...]
    #ifndef EXAMPLE_QAPI_INIT_COMMANDS_H
    #define EXAMPLE_QAPI_INIT_COMMANDS_H

    #include "qapi/qmp/dispatch.h"

    void example_qmp_init_marshal(QmpCommandList *cmds);

    #endif /* EXAMPLE_QAPI_INIT_COMMANDS_H */
    $ cat qapi-generated/example-qapi-init-commands.c
    [Uninteresting stuff omitted...]
    void example_qmp_init_marshal(QmpCommandList *cmds)
    {
        QTAILQ_INIT(cmds);

        qmp_register_command(cmds, "my-command",
                             qmp_marshal_my_command, QCO_NO_OPTIONS);
    }
    [Uninteresting stuff omitted...]

For a modular QAPI schema (see section `Include directives`_), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into::

 SUBDIR/$(prefix)qapi-commands-SUBMODULE.h
 SUBDIR/$(prefix)qapi-commands-SUBMODULE.c


Code generated for events
-------------------------

This is the code related to events defined in the schema, providing
qapi_event_send_EVENT().

The following files are created:

 ``$(prefix)qapi-events.h``
     Function prototypes for each event type

 ``$(prefix)qapi-events.c``
     Implementation of functions to send an event

 ``$(prefix)qapi-emit-events.h``
     Enumeration of all event names, and common event code declarations

 ``$(prefix)qapi-emit-events.c``
     Common event code definitions

Example::

    $ cat qapi-generated/example-qapi-events.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_EVENTS_H
    #define EXAMPLE_QAPI_EVENTS_H

    #include "qapi/util.h"
    #include "example-qapi-types.h"

    void qapi_event_send_my_event(void);

    #endif /* EXAMPLE_QAPI_EVENTS_H */
    $ cat qapi-generated/example-qapi-events.c
    [Uninteresting stuff omitted...]

    void qapi_event_send_my_event(void)
    {
        QDict *qmp;

        qmp = qmp_event_build_dict("MY_EVENT");

        example_qapi_event_emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp);

        qobject_unref(qmp);
    }

    [Uninteresting stuff omitted...]
    $ cat qapi-generated/example-qapi-emit-events.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_EMIT_EVENTS_H
    #define EXAMPLE_QAPI_EMIT_EVENTS_H

    #include "qapi/util.h"

    typedef enum example_QAPIEvent {
        EXAMPLE_QAPI_EVENT_MY_EVENT,
        EXAMPLE_QAPI_EVENT__MAX,
    } example_QAPIEvent;

    #define example_QAPIEvent_str(val) \
        qapi_enum_lookup(&example_QAPIEvent_lookup, (val))

    extern const QEnumLookup example_QAPIEvent_lookup;

    void example_qapi_event_emit(example_QAPIEvent event, QDict *qdict);

    #endif /* EXAMPLE_QAPI_EMIT_EVENTS_H */
    $ cat qapi-generated/example-qapi-emit-events.c
    [Uninteresting stuff omitted...]

    const QEnumLookup example_QAPIEvent_lookup = {
        .array = (const char *const[]) {
            [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT",
        },
        .size = EXAMPLE_QAPI_EVENT__MAX
    };

    [Uninteresting stuff omitted...]

For a modular QAPI schema (see section `Include directives`_), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into ::

 SUBDIR/$(prefix)qapi-events-SUBMODULE.h
 SUBDIR/$(prefix)qapi-events-SUBMODULE.c


Code generated for introspection
--------------------------------

The following files are created:

 ``$(prefix)qapi-introspect.c``
     Defines a string holding a JSON description of the schema

 ``$(prefix)qapi-introspect.h``
     Declares the above string

Example::

    $ cat qapi-generated/example-qapi-introspect.h
    [Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_INTROSPECT_H
    #define EXAMPLE_QAPI_INTROSPECT_H

    #include "qapi/qmp/qlit.h"

    extern const QLitObject example_qmp_schema_qlit;

    #endif /* EXAMPLE_QAPI_INTROSPECT_H */
    $ cat qapi-generated/example-qapi-introspect.c
    [Uninteresting stuff omitted...]

    const QLitObject example_qmp_schema_qlit = QLIT_QLIST(((QLitObject[]) {
        QLIT_QDICT(((QLitDictEntry[]) {
            { "arg-type", QLIT_QSTR("0"), },
            { "meta-type", QLIT_QSTR("command"), },
            { "name", QLIT_QSTR("my-command"), },
            { "ret-type", QLIT_QSTR("1"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "arg-type", QLIT_QSTR("2"), },
            { "meta-type", QLIT_QSTR("event"), },
            { "name", QLIT_QSTR("MY_EVENT"), },
            {}
        })),
        /* "0" = q_obj_my-command-arg */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "name", QLIT_QSTR("arg1"), },
                    { "type", QLIT_QSTR("[1]"), },
                    {}
                })),
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("0"), },
            {}
        })),
        /* "1" = UserDefOne */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "name", QLIT_QSTR("integer"), },
                    { "type", QLIT_QSTR("int"), },
                    {}
                })),
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "default", QLIT_QNULL, },
                    { "name", QLIT_QSTR("string"), },
                    { "type", QLIT_QSTR("str"), },
                    {}
                })),
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("1"), },
            {}
        })),
        /* "2" = q_empty */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("2"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "element-type", QLIT_QSTR("1"), },
            { "meta-type", QLIT_QSTR("array"), },
            { "name", QLIT_QSTR("[1]"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "json-type", QLIT_QSTR("int"), },
            { "meta-type", QLIT_QSTR("builtin"), },
            { "name", QLIT_QSTR("int"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "json-type", QLIT_QSTR("string"), },
            { "meta-type", QLIT_QSTR("builtin"), },
            { "name", QLIT_QSTR("str"), },
            {}
        })),
        {}
    }));

    [Uninteresting stuff omitted...]