summaryrefslogtreecommitdiffstats
path: root/docs/interop/qmp-spec.txt
blob: f8b53560159eee5751b22f6649a96c355091b55f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
QEMU Machine Protocol Specification

0. About This Document
======================

Copyright (C) 2009-2016 Red Hat, Inc.

This work is licensed under the terms of the GNU GPL, version 2 or
later. See the COPYING file in the top-level directory.

1. Introduction
===============

This document specifies the QEMU Machine Protocol (QMP), a JSON-based
protocol which is available for applications to operate QEMU at the
machine-level.  It is also in use by the QEMU Guest Agent (QGA), which
is available for host applications to interact with the guest
operating system.

2. Protocol Specification
=========================

This section details the protocol format. For the purpose of this document
"Client" is any application which is using QMP to communicate with QEMU and
"Server" is QEMU itself.

JSON data structures, when mentioned in this document, are always in the
following format:

    json-DATA-STRUCTURE-NAME

Where DATA-STRUCTURE-NAME is any valid JSON data structure, as defined
by the JSON standard:

http://www.ietf.org/rfc/rfc7159.txt

The protocol is always encoded in UTF-8 except for synchronization
bytes (documented below); although thanks to json-string escape
sequences, the server will reply using only the strict ASCII subset.

For convenience, json-object members mentioned in this document will
be in a certain order. However, in real protocol usage they can be in
ANY order, thus no particular order should be assumed. On the other
hand, use of json-array elements presumes that preserving order is
important unless specifically documented otherwise.  Repeating a key
within a json-object gives unpredictable results.

Also for convenience, the server will accept an extension of
'single-quoted' strings in place of the usual "double-quoted"
json-string, and both input forms of strings understand an additional
escape sequence of "\'" for a single quote. The server will only use
double quoting on output.

2.1 General Definitions
-----------------------

2.1.1 All interactions transmitted by the Server are json-objects, always
      terminating with CRLF

2.1.2 All json-objects members are mandatory when not specified otherwise

2.2 Server Greeting
-------------------

Right when connected the Server will issue a greeting message, which signals
that the connection has been successfully established and that the Server is
ready for capabilities negotiation (for more information refer to section
'4. Capabilities Negotiation').

The greeting message format is:

{ "QMP": { "version": json-object, "capabilities": json-array } }

 Where,

- The "version" member contains the Server's version information (the format
  is the same of the query-version command)
- The "capabilities" member specify the availability of features beyond the
  baseline specification; the order of elements in this array has no
  particular significance, so a client must search the entire array
  when looking for a particular capability

2.2.1 Capabilities
------------------

As of the date this document was last revised, no server or client
capability strings have been defined.


2.3 Issuing Commands
--------------------

The format for command execution is:

{ "execute": json-string, "arguments": json-object, "id": json-value }

 Where,

- The "execute" member identifies the command to be executed by the Server
- The "arguments" member is used to pass any arguments required for the
  execution of the command, it is optional when no arguments are
  required. Each command documents what contents will be considered
  valid when handling the json-argument
- The "id" member is a transaction identification associated with the
  command execution, it is optional and will be part of the response if
  provided. The "id" member can be any json-value, although most
  clients merely use a json-number incremented for each successive
  command

2.4 Commands Responses
----------------------

There are two possible responses which the Server will issue as the result
of a command execution: success or error.

2.4.1 success
-------------

The format of a success response is:

{ "return": json-value, "id": json-value }

 Where,

- The "return" member contains the data returned by the command, which
  is defined on a per-command basis (usually a json-object or
  json-array of json-objects, but sometimes a json-number, json-string,
  or json-array of json-strings); it is an empty json-object if the
  command does not return data
- The "id" member contains the transaction identification associated
  with the command execution if issued by the Client

2.4.2 error
-----------

The format of an error response is:

{ "error": { "class": json-string, "desc": json-string }, "id": json-value }

 Where,

- The "class" member contains the error class name (eg. "GenericError")
- The "desc" member is a human-readable error message. Clients should
  not attempt to parse this message.
- The "id" member contains the transaction identification associated with
  the command execution if issued by the Client

NOTE: Some errors can occur before the Server is able to read the "id" member,
in these cases the "id" member will not be part of the error response, even
if provided by the client.

2.5 Asynchronous events
-----------------------

As a result of state changes, the Server may send messages unilaterally
to the Client at any time, when not in the middle of any other
response. They are called "asynchronous events".

The format of asynchronous events is:

{ "event": json-string, "data": json-object,
  "timestamp": { "seconds": json-number, "microseconds": json-number } }

 Where,

- The "event" member contains the event's name
- The "data" member contains event specific data, which is defined in a
  per-event basis, it is optional
- The "timestamp" member contains the exact time of when the event
  occurred in the Server. It is a fixed json-object with time in
  seconds and microseconds relative to the Unix Epoch (1 Jan 1970); if
  there is a failure to retrieve host time, both members of the
  timestamp will be set to -1.

For a listing of supported asynchronous events, please, refer to the
qmp-events.txt file.

Some events are rate-limited to at most one per second.  If additional
"similar" events arrive within one second, all but the last one are
dropped, and the last one is delayed.  "Similar" normally means same
event type.  See qmp-events.txt for details.

2.6 QGA Synchronization
-----------------------

When using QGA, an additional synchronization feature is built into
the protocol.  If the Client sends a raw 0xFF sentinel byte (not valid
JSON), then the Server will reset its state and discard all pending
data prior to the sentinel.  Conversely, if the Client makes use of
the 'guest-sync-delimited' command, the Server will send a raw 0xFF
sentinel byte prior to its response, to aid the Client in discarding
any data prior to the sentinel.


3. QMP Examples
===============

This section provides some examples of real QMP usage, in all of them
"C" stands for "Client" and "S" stands for "Server".

3.1 Server greeting
-------------------

S: { "QMP": { "version": { "qemu": { "micro": 50, "minor": 6, "major": 1 },
     "package": ""}, "capabilities": []}}

3.2 Client QMP negotiation
--------------------------
C: { "execute": "qmp_capabilities" }
S: { "return": {}}

3.3 Simple 'stop' execution
---------------------------

C: { "execute": "stop" }
S: { "return": {} }

3.4 KVM information
-------------------

C: { "execute": "query-kvm", "id": "example" }
S: { "return": { "enabled": true, "present": true }, "id": "example"}

3.5 Parsing error
------------------

C: { "execute": }
S: { "error": { "class": "GenericError", "desc": "Invalid JSON syntax" } }

3.6 Powerdown event
-------------------

S: { "timestamp": { "seconds": 1258551470, "microseconds": 802384 },
    "event": "POWERDOWN" }

4. Capabilities Negotiation
===========================

When a Client successfully establishes a connection, the Server is in
Capabilities Negotiation mode.

In this mode only the qmp_capabilities command is allowed to run, all
other commands will return the CommandNotFound error. Asynchronous
messages are not delivered either.

Clients should use the qmp_capabilities command to enable capabilities
advertised in the Server's greeting (section '2.2 Server Greeting') they
support.

When the qmp_capabilities command is issued, and if it does not return an
error, the Server enters in Command mode where capabilities changes take
effect, all commands (except qmp_capabilities) are allowed and asynchronous
messages are delivered.

5 Compatibility Considerations
==============================

All protocol changes or new features which modify the protocol format in an
incompatible way are disabled by default and will be advertised by the
capabilities array (section '2.2 Server Greeting'). Thus, Clients can check
that array and enable the capabilities they support.

The QMP Server performs a type check on the arguments to a command.  It
generates an error if a value does not have the expected type for its
key, or if it does not understand a key that the Client included.  The
strictness of the Server catches wrong assumptions of Clients about
the Server's schema.  Clients can assume that, when such validation
errors occur, they will be reported before the command generated any
side effect.

However, Clients must not assume any particular:

- Length of json-arrays
- Size of json-objects; in particular, future versions of QEMU may add
  new keys and Clients should be able to ignore them.
- Order of json-object members or json-array elements
- Amount of errors generated by a command, that is, new errors can be added
  to any existing command in newer versions of the Server

Any command or member name beginning with "x-" is deemed experimental,
and may be withdrawn or changed in an incompatible manner in a future
release.

Of course, the Server does guarantee to send valid JSON.  But apart from
this, a Client should be "conservative in what they send, and liberal in
what they accept".

6. Downstream extension of QMP
==============================

We recommend that downstream consumers of QEMU do *not* modify QMP.
Management tools should be able to support both upstream and downstream
versions of QMP without special logic, and downstream extensions are
inherently at odds with that.

However, we recognize that it is sometimes impossible for downstreams to
avoid modifying QMP.  Both upstream and downstream need to take care to
preserve long-term compatibility and interoperability.

To help with that, QMP reserves JSON object member names beginning with
'__' (double underscore) for downstream use ("downstream names").  This
means upstream will never use any downstream names for its commands,
arguments, errors, asynchronous events, and so forth.

Any new names downstream wishes to add must begin with '__'.  To
ensure compatibility with other downstreams, it is strongly
recommended that you prefix your downstream names with '__RFQDN_' where
RFQDN is a valid, reverse fully qualified domain name which you
control.  For example, a qemu-kvm specific monitor command would be:

    (qemu) __org.linux-kvm_enable_irqchip

Downstream must not change the server greeting (section 2.2) other than
to offer additional capabilities.  But see below for why even that is
discouraged.

Section '5 Compatibility Considerations' applies to downstream as well
as to upstream, obviously.  It follows that downstream must behave
exactly like upstream for any input not containing members with
downstream names ("downstream members"), except it may add members
with downstream names to its output.

Thus, a client should not be able to distinguish downstream from
upstream as long as it doesn't send input with downstream members, and
properly ignores any downstream members in the output it receives.

Advice on downstream modifications:

1. Introducing new commands is okay.  If you want to extend an existing
   command, consider introducing a new one with the new behaviour
   instead.

2. Introducing new asynchronous messages is okay.  If you want to extend
   an existing message, consider adding a new one instead.

3. Introducing new errors for use in new commands is okay.  Adding new
   errors to existing commands counts as extension, so 1. applies.

4. New capabilities are strongly discouraged.  Capabilities are for
   evolving the basic protocol, and multiple diverging basic protocol
   dialects are most undesirable.