summaryrefslogtreecommitdiffstats
path: root/hw/arm/xlnx-versal-virt.c
blob: 878a27514001b859769590d3971433f265e6d8b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * Xilinx Versal Virtual board.
 *
 * Copyright (c) 2018 Xilinx Inc.
 * Written by Edgar E. Iglesias
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "sysemu/device_tree.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/sysbus.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/arm/fdt.h"
#include "cpu.h"
#include "hw/arm/xlnx-versal.h"

#define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
#define XLNX_VERSAL_VIRT_MACHINE(obj) \
    OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)

typedef struct VersalVirt {
    MachineState parent_obj;

    Versal soc;

    void *fdt;
    int fdt_size;
    struct {
        uint32_t gic;
        uint32_t ethernet_phy[2];
        uint32_t clk_125Mhz;
        uint32_t clk_25Mhz;
    } phandle;
    struct arm_boot_info binfo;

    struct {
        bool secure;
    } cfg;
} VersalVirt;

static void fdt_create(VersalVirt *s)
{
    MachineClass *mc = MACHINE_GET_CLASS(s);
    int i;

    s->fdt = create_device_tree(&s->fdt_size);
    if (!s->fdt) {
        error_report("create_device_tree() failed");
        exit(1);
    }

    /* Allocate all phandles.  */
    s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
    for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
        s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
    }
    s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
    s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);

    /* Create /chosen node for load_dtb.  */
    qemu_fdt_add_subnode(s->fdt, "/chosen");

    /* Header */
    qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
    qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
    qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
    qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
    qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
}

static void fdt_add_clk_node(VersalVirt *s, const char *name,
                             unsigned int freq_hz, uint32_t phandle)
{
    qemu_fdt_add_subnode(s->fdt, name);
    qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
    qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
    qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
    qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
    qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
}

static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
{
    int i;

    qemu_fdt_add_subnode(s->fdt, "/cpus");
    qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
    qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);

    for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
        char *name = g_strdup_printf("/cpus/cpu@%d", i);
        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));

        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
        if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
            qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
        }
        qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
        qemu_fdt_setprop_string(s->fdt, name, "compatible",
                                armcpu->dtb_compatible);
        g_free(name);
    }
}

static void fdt_add_gic_nodes(VersalVirt *s)
{
    char *nodename;

    nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
    qemu_fdt_add_subnode(s->fdt, nodename);
    qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
    qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
                           GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
    qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
                                 2, MM_GIC_APU_DIST_MAIN,
                                 2, MM_GIC_APU_DIST_MAIN_SIZE,
                                 2, MM_GIC_APU_REDIST_0,
                                 2, MM_GIC_APU_REDIST_0_SIZE);
    qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
    qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
    g_free(nodename);
}

static void fdt_add_timer_nodes(VersalVirt *s)
{
    const char compat[] = "arm,armv8-timer";
    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;

    qemu_fdt_add_subnode(s->fdt, "/timer");
    qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
    qemu_fdt_setprop(s->fdt, "/timer", "compatible",
                     compat, sizeof(compat));
}

static void fdt_add_uart_nodes(VersalVirt *s)
{
    uint64_t addrs[] = { MM_UART1, MM_UART0 };
    unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
    const char compat[] = "arm,pl011\0arm,sbsa-uart";
    const char clocknames[] = "uartclk\0apb_pclk";
    int i;

    for (i = 0; i < ARRAY_SIZE(addrs); i++) {
        char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
        qemu_fdt_setprop_cells(s->fdt, name, "clocks",
                               s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
        qemu_fdt_setprop(s->fdt, name, "clock-names",
                         clocknames, sizeof(clocknames));

        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, addrs[i], 2, 0x1000);
        qemu_fdt_setprop(s->fdt, name, "compatible",
                         compat, sizeof(compat));
        qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);

        if (addrs[i] == MM_UART0) {
            /* Select UART0.  */
            qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
        }
        g_free(name);
    }
}

static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
                                     uint32_t phandle)
{
    char *name = g_strdup_printf("%s/fixed-link", gemname);

    qemu_fdt_add_subnode(s->fdt, name);
    qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
    qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
    qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
    g_free(name);
}

static void fdt_add_gem_nodes(VersalVirt *s)
{
    uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
    unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
    const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
    const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
    int i;

    for (i = 0; i < ARRAY_SIZE(addrs); i++) {
        char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
        qemu_fdt_add_subnode(s->fdt, name);

        fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
        qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
        qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
                              s->phandle.ethernet_phy[i]);
        qemu_fdt_setprop_cells(s->fdt, name, "clocks",
                               s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
                               s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
        qemu_fdt_setprop(s->fdt, name, "clock-names",
                         clocknames, sizeof(clocknames));
        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI,
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, addrs[i], 2, 0x1000);
        qemu_fdt_setprop(s->fdt, name, "compatible",
                         compat_gem, sizeof(compat_gem));
        qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
        qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
        g_free(name);
    }
}

static void fdt_add_zdma_nodes(VersalVirt *s)
{
    const char clocknames[] = "clk_main\0clk_apb";
    const char compat[] = "xlnx,zynqmp-dma-1.0";
    int i;

    for (i = XLNX_VERSAL_NR_ADMAS - 1; i >= 0; i--) {
        uint64_t addr = MM_ADMA_CH0 + MM_ADMA_CH0_SIZE * i;
        char *name = g_strdup_printf("/dma@%" PRIx64, addr);

        qemu_fdt_add_subnode(s->fdt, name);

        qemu_fdt_setprop_cell(s->fdt, name, "xlnx,bus-width", 64);
        qemu_fdt_setprop_cells(s->fdt, name, "clocks",
                               s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
        qemu_fdt_setprop(s->fdt, name, "clock-names",
                         clocknames, sizeof(clocknames));
        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, VERSAL_ADMA_IRQ_0 + i,
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, addr, 2, 0x1000);
        qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
        g_free(name);
    }
}

static void fdt_nop_memory_nodes(void *fdt, Error **errp)
{
    Error *err = NULL;
    char **node_path;
    int n = 0;

    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    while (node_path[n]) {
        if (g_str_has_prefix(node_path[n], "/memory")) {
            qemu_fdt_nop_node(fdt, node_path[n]);
        }
        n++;
    }
    g_strfreev(node_path);
}

static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
{
    /* Describes the various split DDR access regions.  */
    static const struct {
        uint64_t base;
        uint64_t size;
    } addr_ranges[] = {
        { MM_TOP_DDR, MM_TOP_DDR_SIZE },
        { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
        { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
        { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
    };
    uint64_t mem_reg_prop[8] = {0};
    uint64_t size = ram_size;
    Error *err = NULL;
    char *name;
    int i;

    fdt_nop_memory_nodes(fdt, &err);
    if (err) {
        error_report_err(err);
        return;
    }

    name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
    for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
        uint64_t mapsize;

        mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;

        mem_reg_prop[i * 2] = addr_ranges[i].base;
        mem_reg_prop[i * 2 + 1] = mapsize;
        size -= mapsize;
    }
    qemu_fdt_add_subnode(fdt, name);
    qemu_fdt_setprop_string(fdt, name, "device_type", "memory");

    switch (i) {
    case 1:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1]);
        break;
    case 2:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3]);
        break;
    case 3:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3],
                                     2, mem_reg_prop[4],
                                     2, mem_reg_prop[5]);
        break;
    case 4:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3],
                                     2, mem_reg_prop[4],
                                     2, mem_reg_prop[5],
                                     2, mem_reg_prop[6],
                                     2, mem_reg_prop[7]);
        break;
    default:
        g_assert_not_reached();
    }
    g_free(name);
}

static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
                                    void *fdt)
{
    VersalVirt *s = container_of(binfo, VersalVirt, binfo);

    fdt_add_memory_nodes(s, fdt, binfo->ram_size);
}

static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
                                  int *fdt_size)
{
    const VersalVirt *board = container_of(binfo, VersalVirt, binfo);

    *fdt_size = board->fdt_size;
    return board->fdt;
}

#define NUM_VIRTIO_TRANSPORT 8
static void create_virtio_regions(VersalVirt *s)
{
    int virtio_mmio_size = 0x200;
    int i;

    for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
        char *name = g_strdup_printf("virtio%d", i);
        hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
        int irq = VERSAL_RSVD_IRQ_FIRST + i;
        MemoryRegion *mr;
        DeviceState *dev;
        qemu_irq pic_irq;

        pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
        dev = qdev_create(NULL, "virtio-mmio");
        object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev),
                                  &error_fatal);
        qdev_init_nofail(dev);
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
        memory_region_add_subregion(&s->soc.mr_ps, base, mr);
        g_free(name);
    }

    for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
        hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
        int irq = VERSAL_RSVD_IRQ_FIRST + i;
        char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);

        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irq,
                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, base, 2, virtio_mmio_size);
        qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
        g_free(name);
    }
}

static void versal_virt_init(MachineState *machine)
{
    VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
    int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;

    /*
     * If the user provides an Operating System to be loaded, we expect them
     * to use the -kernel command line option.
     *
     * Users can load firmware or boot-loaders with the -device loader options.
     *
     * When loading an OS, we generate a dtb and let arm_load_kernel() select
     * where it gets loaded. This dtb will be passed to the kernel in x0.
     *
     * If there's no -kernel option, we generate a DTB and place it at 0x1000
     * for the bootloaders or firmware to pick up.
     *
     * If users want to provide their own DTB, they can use the -dtb option.
     * These dtb's will have their memory nodes modified to match QEMU's
     * selected ram_size option before they get passed to the kernel or fw.
     *
     * When loading an OS, we turn on QEMU's PSCI implementation with SMC
     * as the PSCI conduit. When there's no -kernel, we assume the user
     * provides EL3 firmware to handle PSCI.
     */
    if (machine->kernel_filename) {
        psci_conduit = QEMU_PSCI_CONDUIT_SMC;
    }

    sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc,
                          sizeof(s->soc), TYPE_XLNX_VERSAL);
    object_property_set_link(OBJECT(&s->soc), OBJECT(machine->ram),
                             "ddr", &error_abort);
    object_property_set_int(OBJECT(&s->soc), psci_conduit,
                            "psci-conduit", &error_abort);
    object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal);

    fdt_create(s);
    create_virtio_regions(s);
    fdt_add_gem_nodes(s);
    fdt_add_uart_nodes(s);
    fdt_add_gic_nodes(s);
    fdt_add_timer_nodes(s);
    fdt_add_zdma_nodes(s);
    fdt_add_cpu_nodes(s, psci_conduit);
    fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
    fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);

    /* Make the APU cpu address space visible to virtio and other
     * modules unaware of muliple address-spaces.  */
    memory_region_add_subregion_overlap(get_system_memory(),
                                        0, &s->soc.fpd.apu.mr, 0);

    s->binfo.ram_size = machine->ram_size;
    s->binfo.loader_start = 0x0;
    s->binfo.get_dtb = versal_virt_get_dtb;
    s->binfo.modify_dtb = versal_virt_modify_dtb;
    if (machine->kernel_filename) {
        arm_load_kernel(s->soc.fpd.apu.cpu[0], machine, &s->binfo);
    } else {
        AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0],
                                                  &s->binfo);
        /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
         * Offset things by 4K.  */
        s->binfo.loader_start = 0x1000;
        s->binfo.dtb_limit = 0x1000000;
        if (arm_load_dtb(s->binfo.loader_start,
                         &s->binfo, s->binfo.dtb_limit, as, machine) < 0) {
            exit(EXIT_FAILURE);
        }
    }
}

static void versal_virt_machine_instance_init(Object *obj)
{
}

static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "Xilinx Versal Virtual development board";
    mc->init = versal_virt_init;
    mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
    mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
    mc->no_cdrom = true;
    mc->default_ram_id = "ddr";
}

static const TypeInfo versal_virt_machine_init_typeinfo = {
    .name       = TYPE_XLNX_VERSAL_VIRT_MACHINE,
    .parent     = TYPE_MACHINE,
    .class_init = versal_virt_machine_class_init,
    .instance_init = versal_virt_machine_instance_init,
    .instance_size = sizeof(VersalVirt),
};

static void versal_virt_machine_init_register_types(void)
{
    type_register_static(&versal_virt_machine_init_typeinfo);
}

type_init(versal_virt_machine_init_register_types)

#n2571'>2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/*
 * QEMU USB EHCI Emulation
 *
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
 * Copyright(c) 2011-2012 Red Hat, Inc.
 *
 * Red Hat Authors:
 * Gerd Hoffmann <kraxel@redhat.com>
 * Hans de Goede <hdegoede@redhat.com>
 *
 * EHCI project was started by Mark Burkley, with contributions by
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/usb/ehci-regs.h"
#include "hw/usb/hcd-ehci.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "sysemu/runstate.h"

#define FRAME_TIMER_FREQ 1000
#define FRAME_TIMER_NS   (NANOSECONDS_PER_SECOND / FRAME_TIMER_FREQ)
#define UFRAME_TIMER_NS  (FRAME_TIMER_NS / 8)

#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
#define MAX_QH           100      // Max allowable queue heads in a chain
#define MIN_UFR_PER_TICK 24       /* Min frames to process when catching up */
#define PERIODIC_ACTIVE  512      /* Micro-frames */

/*  Internal periodic / asynchronous schedule state machine states
 */
typedef enum {
    EST_INACTIVE = 1000,
    EST_ACTIVE,
    EST_EXECUTING,
    EST_SLEEPING,
    /*  The following states are internal to the state machine function
    */
    EST_WAITLISTHEAD,
    EST_FETCHENTRY,
    EST_FETCHQH,
    EST_FETCHITD,
    EST_FETCHSITD,
    EST_ADVANCEQUEUE,
    EST_FETCHQTD,
    EST_EXECUTE,
    EST_WRITEBACK,
    EST_HORIZONTALQH
} EHCI_STATES;

/* macros for accessing fields within next link pointer entry */
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid

/* link pointer types */
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
#define NLPTR_TYPE_QH            1     // queue head
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
#define NLPTR_TYPE_FSTN          3     // frame span traversal node

#define SET_LAST_RUN_CLOCK(s) \
    (s)->last_run_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);

/* nifty macros from Arnon's EHCI version  */
#define get_field(data, field) \
    (((data) & field##_MASK) >> field##_SH)

#define set_field(data, newval, field) do { \
    uint32_t val = *data; \
    val &= ~ field##_MASK; \
    val |= ((newval) << field##_SH) & field##_MASK; \
    *data = val; \
    } while(0)

static const char *ehci_state_names[] = {
    [EST_INACTIVE]     = "INACTIVE",
    [EST_ACTIVE]       = "ACTIVE",
    [EST_EXECUTING]    = "EXECUTING",
    [EST_SLEEPING]     = "SLEEPING",
    [EST_WAITLISTHEAD] = "WAITLISTHEAD",
    [EST_FETCHENTRY]   = "FETCH ENTRY",
    [EST_FETCHQH]      = "FETCH QH",
    [EST_FETCHITD]     = "FETCH ITD",
    [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
    [EST_FETCHQTD]     = "FETCH QTD",
    [EST_EXECUTE]      = "EXECUTE",
    [EST_WRITEBACK]    = "WRITEBACK",
    [EST_HORIZONTALQH] = "HORIZONTALQH",
};

static const char *ehci_mmio_names[] = {
    [USBCMD]            = "USBCMD",
    [USBSTS]            = "USBSTS",
    [USBINTR]           = "USBINTR",
    [FRINDEX]           = "FRINDEX",
    [PERIODICLISTBASE]  = "P-LIST BASE",
    [ASYNCLISTADDR]     = "A-LIST ADDR",
    [CONFIGFLAG]        = "CONFIGFLAG",
};

static int ehci_state_executing(EHCIQueue *q);
static int ehci_state_writeback(EHCIQueue *q);
static int ehci_state_advqueue(EHCIQueue *q);
static int ehci_fill_queue(EHCIPacket *p);
static void ehci_free_packet(EHCIPacket *p);

static const char *nr2str(const char **n, size_t len, uint32_t nr)
{
    if (nr < len && n[nr] != NULL) {
        return n[nr];
    } else {
        return "unknown";
    }
}

static const char *state2str(uint32_t state)
{
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
}

static const char *addr2str(hwaddr addr)
{
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
}

static void ehci_trace_usbsts(uint32_t mask, int state)
{
    /* interrupts */
    if (mask & USBSTS_INT) {
        trace_usb_ehci_usbsts("INT", state);
    }
    if (mask & USBSTS_ERRINT) {
        trace_usb_ehci_usbsts("ERRINT", state);
    }
    if (mask & USBSTS_PCD) {
        trace_usb_ehci_usbsts("PCD", state);
    }
    if (mask & USBSTS_FLR) {
        trace_usb_ehci_usbsts("FLR", state);
    }
    if (mask & USBSTS_HSE) {
        trace_usb_ehci_usbsts("HSE", state);
    }
    if (mask & USBSTS_IAA) {
        trace_usb_ehci_usbsts("IAA", state);
    }

    /* status */
    if (mask & USBSTS_HALT) {
        trace_usb_ehci_usbsts("HALT", state);
    }
    if (mask & USBSTS_REC) {
        trace_usb_ehci_usbsts("REC", state);
    }
    if (mask & USBSTS_PSS) {
        trace_usb_ehci_usbsts("PSS", state);
    }
    if (mask & USBSTS_ASS) {
        trace_usb_ehci_usbsts("ASS", state);
    }
}

static inline void ehci_set_usbsts(EHCIState *s, int mask)
{
    if ((s->usbsts & mask) == mask) {
        return;
    }
    ehci_trace_usbsts(mask, 1);
    s->usbsts |= mask;
}

static inline void ehci_clear_usbsts(EHCIState *s, int mask)
{
    if ((s->usbsts & mask) == 0) {
        return;
    }
    ehci_trace_usbsts(mask, 0);
    s->usbsts &= ~mask;
}

/* update irq line */
static inline void ehci_update_irq(EHCIState *s)
{
    int level = 0;

    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
        level = 1;
    }

    trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
    qemu_set_irq(s->irq, level);
}

/* flag interrupt condition */
static inline void ehci_raise_irq(EHCIState *s, int intr)
{
    if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) {
        s->usbsts |= intr;
        ehci_update_irq(s);
    } else {
        s->usbsts_pending |= intr;
    }
}

/*
 * Commit pending interrupts (added via ehci_raise_irq),
 * at the rate allowed by "Interrupt Threshold Control".
 */
static inline void ehci_commit_irq(EHCIState *s)
{
    uint32_t itc;

    if (!s->usbsts_pending) {
        return;
    }
    if (s->usbsts_frindex > s->frindex) {
        return;
    }

    itc = (s->usbcmd >> 16) & 0xff;
    s->usbsts |= s->usbsts_pending;
    s->usbsts_pending = 0;
    s->usbsts_frindex = s->frindex + itc;
    ehci_update_irq(s);
}

static void ehci_update_halt(EHCIState *s)
{
    if (s->usbcmd & USBCMD_RUNSTOP) {
        ehci_clear_usbsts(s, USBSTS_HALT);
    } else {
        if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
            ehci_set_usbsts(s, USBSTS_HALT);
        }
    }
}

static void ehci_set_state(EHCIState *s, int async, int state)
{
    if (async) {
        trace_usb_ehci_state("async", state2str(state));
        s->astate = state;
        if (s->astate == EST_INACTIVE) {
            ehci_clear_usbsts(s, USBSTS_ASS);
            ehci_update_halt(s);
        } else {
            ehci_set_usbsts(s, USBSTS_ASS);
        }
    } else {
        trace_usb_ehci_state("periodic", state2str(state));
        s->pstate = state;
        if (s->pstate == EST_INACTIVE) {
            ehci_clear_usbsts(s, USBSTS_PSS);
            ehci_update_halt(s);
        } else {
            ehci_set_usbsts(s, USBSTS_PSS);
        }
    }
}

static int ehci_get_state(EHCIState *s, int async)
{
    return async ? s->astate : s->pstate;
}

static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
{
    if (async) {
        s->a_fetch_addr = addr;
    } else {
        s->p_fetch_addr = addr;
    }
}

static int ehci_get_fetch_addr(EHCIState *s, int async)
{
    return async ? s->a_fetch_addr : s->p_fetch_addr;
}

static void ehci_trace_qh(EHCIQueue *q, hwaddr addr, EHCIqh *qh)
{
    /* need three here due to argument count limits */
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
    trace_usb_ehci_qh_fields(addr,
                             get_field(qh->epchar, QH_EPCHAR_RL),
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
                             get_field(qh->epchar, QH_EPCHAR_EPS),
                             get_field(qh->epchar, QH_EPCHAR_EP),
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
    trace_usb_ehci_qh_bits(addr,
                           (bool)(qh->epchar & QH_EPCHAR_C),
                           (bool)(qh->epchar & QH_EPCHAR_H),
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
                           (bool)(qh->epchar & QH_EPCHAR_I));
}

static void ehci_trace_qtd(EHCIQueue *q, hwaddr addr, EHCIqtd *qtd)
{
    /* need three here due to argument count limits */
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
    trace_usb_ehci_qtd_fields(addr,
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
                              get_field(qtd->token, QTD_TOKEN_CERR),
                              get_field(qtd->token, QTD_TOKEN_PID));
    trace_usb_ehci_qtd_bits(addr,
                            (bool)(qtd->token & QTD_TOKEN_IOC),
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
                            (bool)(qtd->token & QTD_TOKEN_HALT),
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
}

static void ehci_trace_itd(EHCIState *s, hwaddr addr, EHCIitd *itd)
{
    trace_usb_ehci_itd(addr, itd->next,
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
}

static void ehci_trace_sitd(EHCIState *s, hwaddr addr,
                            EHCIsitd *sitd)
{
    trace_usb_ehci_sitd(addr, sitd->next,
                        (bool)(sitd->results & SITD_RESULTS_ACTIVE));
}

static void ehci_trace_guest_bug(EHCIState *s, const char *message)
{
    trace_usb_ehci_guest_bug(message);
    warn_report("%s", message);
}

static inline bool ehci_enabled(EHCIState *s)
{
    return s->usbcmd & USBCMD_RUNSTOP;
}

static inline bool ehci_async_enabled(EHCIState *s)
{
    return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
}

static inline bool ehci_periodic_enabled(EHCIState *s)
{
    return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
}

/* Get an array of dwords from main memory */
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
                             uint32_t *buf, int num)
{
    int i;

    if (!ehci->as) {
        ehci_raise_irq(ehci, USBSTS_HSE);
        ehci->usbcmd &= ~USBCMD_RUNSTOP;
        trace_usb_ehci_dma_error();
        return -1;
    }

    for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
        dma_memory_read(ehci->as, addr, buf, sizeof(*buf));
        *buf = le32_to_cpu(*buf);
    }

    return num;
}

/* Put an array of dwords in to main memory */
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
                             uint32_t *buf, int num)
{
    int i;

    if (!ehci->as) {
        ehci_raise_irq(ehci, USBSTS_HSE);
        ehci->usbcmd &= ~USBCMD_RUNSTOP;
        trace_usb_ehci_dma_error();
        return -1;
    }

    for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
        uint32_t tmp = cpu_to_le32(*buf);
        dma_memory_write(ehci->as, addr, &tmp, sizeof(tmp));
    }

    return num;
}

static int ehci_get_pid(EHCIqtd *qtd)
{
    switch (get_field(qtd->token, QTD_TOKEN_PID)) {
    case 0:
        return USB_TOKEN_OUT;
    case 1:
        return USB_TOKEN_IN;
    case 2:
        return USB_TOKEN_SETUP;
    default:
        fprintf(stderr, "bad token\n");
        return 0;
    }
}

static bool ehci_verify_qh(EHCIQueue *q, EHCIqh *qh)
{
    uint32_t devaddr = get_field(qh->epchar, QH_EPCHAR_DEVADDR);
    uint32_t endp    = get_field(qh->epchar, QH_EPCHAR_EP);
    if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) ||
        (endp    != get_field(q->qh.epchar, QH_EPCHAR_EP)) ||
        (qh->current_qtd != q->qh.current_qtd) ||
        (q->async && qh->next_qtd != q->qh.next_qtd) ||
        (memcmp(&qh->altnext_qtd, &q->qh.altnext_qtd,
                                 7 * sizeof(uint32_t)) != 0) ||
        (q->dev != NULL && q->dev->addr != devaddr)) {
        return false;
    } else {
        return true;
    }
}

static bool ehci_verify_qtd(EHCIPacket *p, EHCIqtd *qtd)
{
    if (p->qtdaddr != p->queue->qtdaddr ||
        (p->queue->async && !NLPTR_TBIT(p->qtd.next) &&
            (p->qtd.next != qtd->next)) ||
        (!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd->altnext)) ||
        p->qtd.token != qtd->token ||
        p->qtd.bufptr[0] != qtd->bufptr[0]) {
        return false;
    } else {
        return true;
    }
}

static bool ehci_verify_pid(EHCIQueue *q, EHCIqtd *qtd)
{
    int ep  = get_field(q->qh.epchar, QH_EPCHAR_EP);
    int pid = ehci_get_pid(qtd);

    /* Note the pid changing is normal for ep 0 (the control ep) */
    if (q->last_pid && ep != 0 && pid != q->last_pid) {
        return false;
    } else {
        return true;
    }
}

/* Finish executing and writeback a packet outside of the regular
   fetchqh -> fetchqtd -> execute -> writeback cycle */
static void ehci_writeback_async_complete_packet(EHCIPacket *p)
{
    EHCIQueue *q = p->queue;
    EHCIqtd qtd;
    EHCIqh qh;
    int state;

    /* Verify the qh + qtd, like we do when going through fetchqh & fetchqtd */
    get_dwords(q->ehci, NLPTR_GET(q->qhaddr),
               (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
    get_dwords(q->ehci, NLPTR_GET(q->qtdaddr),
               (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
    if (!ehci_verify_qh(q, &qh) || !ehci_verify_qtd(p, &qtd)) {
        p->async = EHCI_ASYNC_INITIALIZED;
        ehci_free_packet(p);
        return;
    }

    state = ehci_get_state(q->ehci, q->async);
    ehci_state_executing(q);
    ehci_state_writeback(q); /* Frees the packet! */
    if (!(q->qh.token & QTD_TOKEN_HALT)) {
        ehci_state_advqueue(q);
    }
    ehci_set_state(q->ehci, q->async, state);
}

/* packet management */

static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
{
    EHCIPacket *p;

    p = g_new0(EHCIPacket, 1);
    p->queue = q;
    usb_packet_init(&p->packet);
    QTAILQ_INSERT_TAIL(&q->packets, p, next);
    trace_usb_ehci_packet_action(p->queue, p, "alloc");
    return p;
}

static void ehci_free_packet(EHCIPacket *p)
{
    if (p->async == EHCI_ASYNC_FINISHED &&
            !(p->queue->qh.token & QTD_TOKEN_HALT)) {
        ehci_writeback_async_complete_packet(p);
        return;
    }
    trace_usb_ehci_packet_action(p->queue, p, "free");
    if (p->async == EHCI_ASYNC_INFLIGHT) {
        usb_cancel_packet(&p->packet);
    }
    if (p->async == EHCI_ASYNC_FINISHED &&
            p->packet.status == USB_RET_SUCCESS) {
        fprintf(stderr,
                "EHCI: Dropping completed packet from halted %s ep %02X\n",
                (p->pid == USB_TOKEN_IN) ? "in" : "out",
                get_field(p->queue->qh.epchar, QH_EPCHAR_EP));
    }
    if (p->async != EHCI_ASYNC_NONE) {
        usb_packet_unmap(&p->packet, &p->sgl);
        qemu_sglist_destroy(&p->sgl);
    }
    QTAILQ_REMOVE(&p->queue->packets, p, next);
    usb_packet_cleanup(&p->packet);
    g_free(p);
}

/* queue management */

static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    EHCIQueue *q;

    q = g_malloc0(sizeof(*q));
    q->ehci = ehci;
    q->qhaddr = addr;
    q->async = async;
    QTAILQ_INIT(&q->packets);
    QTAILQ_INSERT_HEAD(head, q, next);
    trace_usb_ehci_queue_action(q, "alloc");
    return q;
}

static void ehci_queue_stopped(EHCIQueue *q)
{
    int endp  = get_field(q->qh.epchar, QH_EPCHAR_EP);

    if (!q->last_pid || !q->dev) {
        return;
    }

    usb_device_ep_stopped(q->dev, usb_ep_get(q->dev, q->last_pid, endp));
}

static int ehci_cancel_queue(EHCIQueue *q)
{
    EHCIPacket *p;
    int packets = 0;

    p = QTAILQ_FIRST(&q->packets);
    if (p == NULL) {
        goto leave;
    }

    trace_usb_ehci_queue_action(q, "cancel");
    do {
        ehci_free_packet(p);
        packets++;
    } while ((p = QTAILQ_FIRST(&q->packets)) != NULL);

leave:
    ehci_queue_stopped(q);
    return packets;
}

static int ehci_reset_queue(EHCIQueue *q)
{
    int packets;

    trace_usb_ehci_queue_action(q, "reset");
    packets = ehci_cancel_queue(q);
    q->dev = NULL;
    q->qtdaddr = 0;
    q->last_pid = 0;
    return packets;
}

static void ehci_free_queue(EHCIQueue *q, const char *warn)
{
    EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
    int cancelled;

    trace_usb_ehci_queue_action(q, "free");
    cancelled = ehci_cancel_queue(q);
    if (warn && cancelled > 0) {
        ehci_trace_guest_bug(q->ehci, warn);
    }
    QTAILQ_REMOVE(head, q, next);
    g_free(q);
}

static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
                                        int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    EHCIQueue *q;

    QTAILQ_FOREACH(q, head, next) {
        if (addr == q->qhaddr) {
            return q;
        }
    }
    return NULL;
}

static void ehci_queues_rip_unused(EHCIState *ehci, int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    const char *warn = async ? "guest unlinked busy QH" : NULL;
    uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
    EHCIQueue *q, *tmp;

    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
        if (q->seen) {
            q->seen = 0;
            q->ts = ehci->last_run_ns;
            continue;
        }
        if (ehci->last_run_ns < q->ts + maxage) {
            continue;
        }
        ehci_free_queue(q, warn);
    }
}

static void ehci_queues_rip_unseen(EHCIState *ehci, int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    EHCIQueue *q, *tmp;

    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
        if (!q->seen) {
            ehci_free_queue(q, NULL);
        }
    }
}

static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    EHCIQueue *q, *tmp;

    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
        if (q->dev != dev) {
            continue;
        }
        ehci_free_queue(q, NULL);
    }
}

static void ehci_queues_rip_all(EHCIState *ehci, int async)
{
    EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
    const char *warn = async ? "guest stopped busy async schedule" : NULL;
    EHCIQueue *q, *tmp;

    QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
        ehci_free_queue(q, warn);
    }
}

/* Attach or detach a device on root hub */

static void ehci_attach(USBPort *port)
{
    EHCIState *s = port->opaque;
    uint32_t *portsc = &s->portsc[port->index];
    const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";

    trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);

    if (*portsc & PORTSC_POWNER) {
        USBPort *companion = s->companion_ports[port->index];
        companion->dev = port->dev;
        companion->ops->attach(companion);
        return;
    }

    *portsc |= PORTSC_CONNECT;
    *portsc |= PORTSC_CSC;

    ehci_raise_irq(s, USBSTS_PCD);
}

static void ehci_detach(USBPort *port)
{
    EHCIState *s = port->opaque;
    uint32_t *portsc = &s->portsc[port->index];
    const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";

    trace_usb_ehci_port_detach(port->index, owner);

    if (*portsc & PORTSC_POWNER) {
        USBPort *companion = s->companion_ports[port->index];
        companion->ops->detach(companion);
        companion->dev = NULL;
        /*
         * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
         * the port ownership is returned immediately to the EHCI controller."
         */
        *portsc &= ~PORTSC_POWNER;
        return;
    }

    ehci_queues_rip_device(s, port->dev, 0);
    ehci_queues_rip_device(s, port->dev, 1);

    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED|PORTSC_SUSPEND);
    *portsc |= PORTSC_CSC;

    ehci_raise_irq(s, USBSTS_PCD);
}

static void ehci_child_detach(USBPort *port, USBDevice *child)
{
    EHCIState *s = port->opaque;
    uint32_t portsc = s->portsc[port->index];

    if (portsc & PORTSC_POWNER) {
        USBPort *companion = s->companion_ports[port->index];
        companion->ops->child_detach(companion, child);
        return;
    }

    ehci_queues_rip_device(s, child, 0);
    ehci_queues_rip_device(s, child, 1);
}

static void ehci_wakeup(USBPort *port)
{
    EHCIState *s = port->opaque;
    uint32_t *portsc = &s->portsc[port->index];

    if (*portsc & PORTSC_POWNER) {
        USBPort *companion = s->companion_ports[port->index];
        if (companion->ops->wakeup) {
            companion->ops->wakeup(companion);
        }
        return;
    }

    if (*portsc & PORTSC_SUSPEND) {
        trace_usb_ehci_port_wakeup(port->index);
        *portsc |= PORTSC_FPRES;
        ehci_raise_irq(s, USBSTS_PCD);
    }

    qemu_bh_schedule(s->async_bh);
}

static void ehci_register_companion(USBBus *bus, USBPort *ports[],
                                    uint32_t portcount, uint32_t firstport,
                                    Error **errp)
{
    EHCIState *s = container_of(bus, EHCIState, bus);
    uint32_t i;

    if (firstport + portcount > NB_PORTS) {
        error_setg(errp, "firstport must be between 0 and %u",
                   NB_PORTS - portcount);
        return;
    }

    for (i = 0; i < portcount; i++) {
        if (s->companion_ports[firstport + i]) {
            error_setg(errp, "firstport %u asks for ports %u-%u,"
                       " but port %u has a companion assigned already",
                       firstport, firstport, firstport + portcount - 1,
                       firstport + i);
            return;
        }
    }

    for (i = 0; i < portcount; i++) {
        s->companion_ports[firstport + i] = ports[i];
        s->ports[firstport + i].speedmask |=
            USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
        /* Ensure devs attached before the initial reset go to the companion */
        s->portsc[firstport + i] = PORTSC_POWNER;
    }

    s->companion_count++;
    s->caps[0x05] = (s->companion_count << 4) | portcount;
}

static void ehci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep,
                                 unsigned int stream)
{
    EHCIState *s = container_of(bus, EHCIState, bus);
    uint32_t portsc = s->portsc[ep->dev->port->index];

    if (portsc & PORTSC_POWNER) {
        return;
    }

    s->periodic_sched_active = PERIODIC_ACTIVE;
    qemu_bh_schedule(s->async_bh);
}

static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
{
    USBDevice *dev;
    USBPort *port;
    int i;

    for (i = 0; i < NB_PORTS; i++) {
        port = &ehci->ports[i];
        if (!(ehci->portsc[i] & PORTSC_PED)) {
            DPRINTF("Port %d not enabled\n", i);
            continue;
        }
        dev = usb_find_device(port, addr);
        if (dev != NULL) {
            return dev;
        }
    }
    return NULL;
}

/* 4.1 host controller initialization */
void ehci_reset(void *opaque)
{
    EHCIState *s = opaque;
    int i;
    USBDevice *devs[NB_PORTS];

    trace_usb_ehci_reset();

    /*
     * Do the detach before touching portsc, so that it correctly gets send to
     * us or to our companion based on PORTSC_POWNER before the reset.
     */
    for(i = 0; i < NB_PORTS; i++) {
        devs[i] = s->ports[i].dev;
        if (devs[i] && devs[i]->attached) {
            usb_detach(&s->ports[i]);
        }
    }

    memset(&s->opreg, 0x00, sizeof(s->opreg));
    memset(&s->portsc, 0x00, sizeof(s->portsc));

    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
    s->usbsts = USBSTS_HALT;
    s->usbsts_pending = 0;
    s->usbsts_frindex = 0;
    ehci_update_irq(s);

    s->astate = EST_INACTIVE;
    s->pstate = EST_INACTIVE;

    for(i = 0; i < NB_PORTS; i++) {
        if (s->companion_ports[i]) {
            s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
        } else {
            s->portsc[i] = PORTSC_PPOWER;
        }
        if (devs[i] && devs[i]->attached) {
            usb_attach(&s->ports[i]);
            usb_device_reset(devs[i]);
        }
    }
    ehci_queues_rip_all(s, 0);
    ehci_queues_rip_all(s, 1);
    timer_del(s->frame_timer);
    qemu_bh_cancel(s->async_bh);
}

static uint64_t ehci_caps_read(void *ptr, hwaddr addr,
                               unsigned size)
{
    EHCIState *s = ptr;
    return s->caps[addr];
}

static void ehci_caps_write(void *ptr, hwaddr addr,
                             uint64_t val, unsigned size)
{
}

static uint64_t ehci_opreg_read(void *ptr, hwaddr addr,
                                unsigned size)
{
    EHCIState *s = ptr;
    uint32_t val;

    switch (addr) {
    case FRINDEX:
        /* Round down to mult of 8, else it can go backwards on migration */
        val = s->frindex & ~7;
        break;
    default:
        val = s->opreg[addr >> 2];
    }

    trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val);
    return val;
}

static uint64_t ehci_port_read(void *ptr, hwaddr addr,
                               unsigned size)
{
    EHCIState *s = ptr;
    uint32_t val;

    val = s->portsc[addr >> 2];
    trace_usb_ehci_portsc_read(addr + s->portscbase, addr >> 2, val);
    return val;
}

static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
{
    USBDevice *dev = s->ports[port].dev;
    uint32_t *portsc = &s->portsc[port];
    uint32_t orig;

    if (s->companion_ports[port] == NULL)
        return;

    owner = owner & PORTSC_POWNER;
    orig  = *portsc & PORTSC_POWNER;

    if (!(owner ^ orig)) {
        return;
    }

    if (dev && dev->attached) {
        usb_detach(&s->ports[port]);
    }

    *portsc &= ~PORTSC_POWNER;
    *portsc |= owner;

    if (dev && dev->attached) {
        usb_attach(&s->ports[port]);
    }
}

static void ehci_port_write(void *ptr, hwaddr addr,
                            uint64_t val, unsigned size)
{
    EHCIState *s = ptr;
    int port = addr >> 2;
    uint32_t *portsc = &s->portsc[port];
    uint32_t old = *portsc;
    USBDevice *dev = s->ports[port].dev;

    trace_usb_ehci_portsc_write(addr + s->portscbase, addr >> 2, val);

    /* Clear rwc bits */
    *portsc &= ~(val & PORTSC_RWC_MASK);
    /* The guest may clear, but not set the PED bit */
    *portsc &= val | ~PORTSC_PED;
    /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
    handle_port_owner_write(s, port, val);
    /* And finally apply RO_MASK */
    val &= PORTSC_RO_MASK;

    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
        trace_usb_ehci_port_reset(port, 1);
    }

    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
        trace_usb_ehci_port_reset(port, 0);
        if (dev && dev->attached) {
            usb_port_reset(&s->ports[port]);
            *portsc &= ~PORTSC_CSC;
        }

        /*
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
         *  to SW that this port has a high speed device attached
         */
        if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
            val |= PORTSC_PED;
        }
    }

    if ((val & PORTSC_SUSPEND) && !(*portsc & PORTSC_SUSPEND)) {
        trace_usb_ehci_port_suspend(port);
    }
    if (!(val & PORTSC_FPRES) && (*portsc & PORTSC_FPRES)) {
        trace_usb_ehci_port_resume(port);
        val &= ~PORTSC_SUSPEND;
    }

    *portsc &= ~PORTSC_RO_MASK;
    *portsc |= val;
    trace_usb_ehci_portsc_change(addr + s->portscbase, addr >> 2, *portsc, old);
}

static void ehci_opreg_write(void *ptr, hwaddr addr,
                             uint64_t val, unsigned size)
{
    EHCIState *s = ptr;
    uint32_t *mmio = s->opreg + (addr >> 2);
    uint32_t old = *mmio;
    int i;

    trace_usb_ehci_opreg_write(addr + s->opregbase, addr2str(addr), val);

    switch (addr) {
    case USBCMD:
        if (val & USBCMD_HCRESET) {
            ehci_reset(s);
            val = s->usbcmd;
            break;
        }

        /* not supporting dynamic frame list size at the moment */