summaryrefslogtreecommitdiffstats
path: root/hw/block/nand.c
blob: 0a2736b50eb54c1c111ba33dac52fb0e5c5cbd00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/*
 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
 * Samsung Electronic.
 *
 * Copyright (c) 2006 Openedhand Ltd.
 * Written by Andrzej Zaborowski <balrog@zabor.org>
 *
 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
 * from ST Microelectronics.
 *
 * This code is licensed under the GNU GPL v2.
 *
 * Contributions after 2012-01-13 are licensed under the terms of the
 * GNU GPL, version 2 or (at your option) any later version.
 */

#ifndef NAND_IO

#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "sysemu/block-backend.h"
#include "hw/qdev.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/module.h"

# define NAND_CMD_READ0		0x00
# define NAND_CMD_READ1		0x01
# define NAND_CMD_READ2		0x50
# define NAND_CMD_LPREAD2	0x30
# define NAND_CMD_NOSERIALREAD2	0x35
# define NAND_CMD_RANDOMREAD1	0x05
# define NAND_CMD_RANDOMREAD2	0xe0
# define NAND_CMD_READID	0x90
# define NAND_CMD_RESET		0xff
# define NAND_CMD_PAGEPROGRAM1	0x80
# define NAND_CMD_PAGEPROGRAM2	0x10
# define NAND_CMD_CACHEPROGRAM2	0x15
# define NAND_CMD_BLOCKERASE1	0x60
# define NAND_CMD_BLOCKERASE2	0xd0
# define NAND_CMD_READSTATUS	0x70
# define NAND_CMD_COPYBACKPRG1	0x85

# define NAND_IOSTATUS_ERROR	(1 << 0)
# define NAND_IOSTATUS_PLANE0	(1 << 1)
# define NAND_IOSTATUS_PLANE1	(1 << 2)
# define NAND_IOSTATUS_PLANE2	(1 << 3)
# define NAND_IOSTATUS_PLANE3	(1 << 4)
# define NAND_IOSTATUS_READY    (1 << 6)
# define NAND_IOSTATUS_UNPROTCT	(1 << 7)

# define MAX_PAGE		0x800
# define MAX_OOB		0x40

typedef struct NANDFlashState NANDFlashState;
struct NANDFlashState {
    DeviceState parent_obj;

    uint8_t manf_id, chip_id;
    uint8_t buswidth; /* in BYTES */
    int size, pages;
    int page_shift, oob_shift, erase_shift, addr_shift;
    uint8_t *storage;
    BlockBackend *blk;
    int mem_oob;

    uint8_t cle, ale, ce, wp, gnd;

    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
    uint8_t *ioaddr;
    int iolen;

    uint32_t cmd;
    uint64_t addr;
    int addrlen;
    int status;
    int offset;

    void (*blk_write)(NANDFlashState *s);
    void (*blk_erase)(NANDFlashState *s);
    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);

    uint32_t ioaddr_vmstate;
};

#define TYPE_NAND "nand"

#define NAND(obj) \
    OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)

static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
{
    /* Like memcpy() but we logical-AND the data into the destination */
    int i;
    for (i = 0; i < n; i++) {
        dest[i] &= src[i];
    }
}

# define NAND_NO_AUTOINCR	0x00000001
# define NAND_BUSWIDTH_16	0x00000002
# define NAND_NO_PADDING	0x00000004
# define NAND_CACHEPRG		0x00000008
# define NAND_COPYBACK		0x00000010
# define NAND_IS_AND		0x00000020
# define NAND_4PAGE_ARRAY	0x00000040
# define NAND_NO_READRDY	0x00000100
# define NAND_SAMSUNG_LP	(NAND_NO_PADDING | NAND_COPYBACK)

# define NAND_IO

# define PAGE(addr)		((addr) >> ADDR_SHIFT)
# define PAGE_START(page)	(PAGE(page) * (PAGE_SIZE + OOB_SIZE))
# define PAGE_MASK		((1 << ADDR_SHIFT) - 1)
# define OOB_SHIFT		(PAGE_SHIFT - 5)
# define OOB_SIZE		(1 << OOB_SHIFT)
# define SECTOR(addr)		((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
# define SECTOR_OFFSET(addr)	((addr) & ((511 >> PAGE_SHIFT) << 8))

# define PAGE_SIZE		256
# define PAGE_SHIFT		8
# define PAGE_SECTORS		1
# define ADDR_SHIFT		8
# include "nand.c"
# define PAGE_SIZE		512
# define PAGE_SHIFT		9
# define PAGE_SECTORS		1
# define ADDR_SHIFT		8
# include "nand.c"
# define PAGE_SIZE		2048
# define PAGE_SHIFT		11
# define PAGE_SECTORS		4
# define ADDR_SHIFT		16
# include "nand.c"

/* Information based on Linux drivers/mtd/nand/nand_ids.c */
static const struct {
    int size;
    int width;
    int page_shift;
    int erase_shift;
    uint32_t options;
} nand_flash_ids[0x100] = {
    [0 ... 0xff] = { 0 },

    [0x6e] = { 1,	8,	8, 4, 0 },
    [0x64] = { 2,	8,	8, 4, 0 },
    [0x6b] = { 4,	8,	9, 4, 0 },
    [0xe8] = { 1,	8,	8, 4, 0 },
    [0xec] = { 1,	8,	8, 4, 0 },
    [0xea] = { 2,	8,	8, 4, 0 },
    [0xd5] = { 4,	8,	9, 4, 0 },
    [0xe3] = { 4,	8,	9, 4, 0 },
    [0xe5] = { 4,	8,	9, 4, 0 },
    [0xd6] = { 8,	8,	9, 4, 0 },

    [0x39] = { 8,	8,	9, 4, 0 },
    [0xe6] = { 8,	8,	9, 4, 0 },
    [0x49] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
    [0x59] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },

    [0x33] = { 16,	8,	9, 5, 0 },
    [0x73] = { 16,	8,	9, 5, 0 },
    [0x43] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x53] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },

    [0x35] = { 32,	8,	9, 5, 0 },
    [0x75] = { 32,	8,	9, 5, 0 },
    [0x45] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x55] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },

    [0x36] = { 64,	8,	9, 5, 0 },
    [0x76] = { 64,	8,	9, 5, 0 },
    [0x46] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x56] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },

    [0x78] = { 128,	8,	9, 5, 0 },
    [0x39] = { 128,	8,	9, 5, 0 },
    [0x79] = { 128,	8,	9, 5, 0 },
    [0x72] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x49] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x74] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
    [0x59] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },

    [0x71] = { 256,	8,	9, 5, 0 },

    /*
     * These are the new chips with large page size. The pagesize and the
     * erasesize is determined from the extended id bytes
     */
# define LP_OPTIONS	(NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
# define LP_OPTIONS16	(LP_OPTIONS | NAND_BUSWIDTH_16)

    /* 512 Megabit */
    [0xa2] = { 64,	8,	0, 0, LP_OPTIONS },
    [0xf2] = { 64,	8,	0, 0, LP_OPTIONS },
    [0xb2] = { 64,	16,	0, 0, LP_OPTIONS16 },
    [0xc2] = { 64,	16,	0, 0, LP_OPTIONS16 },

    /* 1 Gigabit */
    [0xa1] = { 128,	8,	0, 0, LP_OPTIONS },
    [0xf1] = { 128,	8,	0, 0, LP_OPTIONS },
    [0xb1] = { 128,	16,	0, 0, LP_OPTIONS16 },
    [0xc1] = { 128,	16,	0, 0, LP_OPTIONS16 },

    /* 2 Gigabit */
    [0xaa] = { 256,	8,	0, 0, LP_OPTIONS },
    [0xda] = { 256,	8,	0, 0, LP_OPTIONS },
    [0xba] = { 256,	16,	0, 0, LP_OPTIONS16 },
    [0xca] = { 256,	16,	0, 0, LP_OPTIONS16 },

    /* 4 Gigabit */
    [0xac] = { 512,	8,	0, 0, LP_OPTIONS },
    [0xdc] = { 512,	8,	0, 0, LP_OPTIONS },
    [0xbc] = { 512,	16,	0, 0, LP_OPTIONS16 },
    [0xcc] = { 512,	16,	0, 0, LP_OPTIONS16 },

    /* 8 Gigabit */
    [0xa3] = { 1024,	8,	0, 0, LP_OPTIONS },
    [0xd3] = { 1024,	8,	0, 0, LP_OPTIONS },
    [0xb3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
    [0xc3] = { 1024,	16,	0, 0, LP_OPTIONS16 },

    /* 16 Gigabit */
    [0xa5] = { 2048,	8,	0, 0, LP_OPTIONS },
    [0xd5] = { 2048,	8,	0, 0, LP_OPTIONS },
    [0xb5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
    [0xc5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
};

static void nand_reset(DeviceState *dev)
{
    NANDFlashState *s = NAND(dev);
    s->cmd = NAND_CMD_READ0;
    s->addr = 0;
    s->addrlen = 0;
    s->iolen = 0;
    s->offset = 0;
    s->status &= NAND_IOSTATUS_UNPROTCT;
    s->status |= NAND_IOSTATUS_READY;
}

static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
{
    s->ioaddr[s->iolen++] = value;
    for (value = s->buswidth; --value;) {
        s->ioaddr[s->iolen++] = 0;
    }
}

static void nand_command(NANDFlashState *s)
{
    unsigned int offset;
    switch (s->cmd) {
    case NAND_CMD_READ0:
        s->iolen = 0;
        break;

    case NAND_CMD_READID:
        s->ioaddr = s->io;
        s->iolen = 0;
        nand_pushio_byte(s, s->manf_id);
        nand_pushio_byte(s, s->chip_id);
        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
            /* Page Size, Block Size, Spare Size; bit 6 indicates
             * 8 vs 16 bit width NAND.
             */
            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
        } else {
            nand_pushio_byte(s, 0xc0); /* Multi-plane */
        }
        break;

    case NAND_CMD_RANDOMREAD2:
    case NAND_CMD_NOSERIALREAD2:
        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
            break;
        offset = s->addr & ((1 << s->addr_shift) - 1);
        s->blk_load(s, s->addr, offset);
        if (s->gnd)
            s->iolen = (1 << s->page_shift) - offset;
        else
            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
        break;

    case NAND_CMD_RESET:
        nand_reset(DEVICE(s));
        break;

    case NAND_CMD_PAGEPROGRAM1:
        s->ioaddr = s->io;
        s->iolen = 0;
        break;

    case NAND_CMD_PAGEPROGRAM2:
        if (s->wp) {
            s->blk_write(s);
        }
        break;

    case NAND_CMD_BLOCKERASE1:
        break;

    case NAND_CMD_BLOCKERASE2:
        s->addr &= (1ull << s->addrlen * 8) - 1;
        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
                                                                    16 : 8;

        if (s->wp) {
            s->blk_erase(s);
        }
        break;

    case NAND_CMD_READSTATUS:
        s->ioaddr = s->io;
        s->iolen = 0;
        nand_pushio_byte(s, s->status);
        break;

    default:
        printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
    }
}

static int nand_pre_save(void *opaque)
{
    NANDFlashState *s = NAND(opaque);

    s->ioaddr_vmstate = s->ioaddr - s->io;

    return 0;
}

static int nand_post_load(void *opaque, int version_id)
{
    NANDFlashState *s = NAND(opaque);

    if (s->ioaddr_vmstate > sizeof(s->io)) {
        return -EINVAL;
    }
    s->ioaddr = s->io + s->ioaddr_vmstate;

    return 0;
}

static const VMStateDescription vmstate_nand = {
    .name = "nand",
    .version_id = 1,
    .minimum_version_id = 1,
    .pre_save = nand_pre_save,
    .post_load = nand_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT8(cle, NANDFlashState),
        VMSTATE_UINT8(ale, NANDFlashState),
        VMSTATE_UINT8(ce, NANDFlashState),
        VMSTATE_UINT8(wp, NANDFlashState),
        VMSTATE_UINT8(gnd, NANDFlashState),
        VMSTATE_BUFFER(io, NANDFlashState),
        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
        VMSTATE_INT32(iolen, NANDFlashState),
        VMSTATE_UINT32(cmd, NANDFlashState),
        VMSTATE_UINT64(addr, NANDFlashState),
        VMSTATE_INT32(addrlen, NANDFlashState),
        VMSTATE_INT32(status, NANDFlashState),
        VMSTATE_INT32(offset, NANDFlashState),
        /* XXX: do we want to save s->storage too? */
        VMSTATE_END_OF_LIST()
    }
};

static void nand_realize(DeviceState *dev, Error **errp)
{
    int pagesize;
    NANDFlashState *s = NAND(dev);
    int ret;


    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
    s->size = nand_flash_ids[s->chip_id].size << 20;
    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
        s->page_shift = 11;
        s->erase_shift = 6;
    } else {
        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
    }

    switch (1 << s->page_shift) {
    case 256:
        nand_init_256(s);
        break;
    case 512:
        nand_init_512(s);
        break;
    case 2048:
        nand_init_2048(s);
        break;
    default:
        error_setg(errp, "Unsupported NAND block size %#x",
                   1 << s->page_shift);
        return;
    }

    pagesize = 1 << s->oob_shift;
    s->mem_oob = 1;
    if (s->blk) {
        if (blk_is_read_only(s->blk)) {
            error_setg(errp, "Can't use a read-only drive");
            return;
        }
        ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
                           BLK_PERM_ALL, errp);
        if (ret < 0) {
            return;
        }
        if (blk_getlength(s->blk) >=
                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
            pagesize = 0;
            s->mem_oob = 0;
        }
    } else {
        pagesize += 1 << s->page_shift;
    }
    if (pagesize) {
        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
                        0xff, s->pages * pagesize);
    }
    /* Give s->ioaddr a sane value in case we save state before it is used. */
    s->ioaddr = s->io;
}

static Property nand_properties[] = {
    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
    DEFINE_PROP_END_OF_LIST(),
};

static void nand_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = nand_realize;
    dc->reset = nand_reset;
    dc->vmsd = &vmstate_nand;
    dc->props = nand_properties;
}

static const TypeInfo nand_info = {
    .name          = TYPE_NAND,
    .parent        = TYPE_DEVICE,
    .instance_size = sizeof(NANDFlashState),
    .class_init    = nand_class_init,
};

static void nand_register_types(void)
{
    type_register_static(&nand_info);
}

/*
 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 * outputs are R/B and eight I/O pins.
 *
 * CE, WP and R/B are active low.
 */
void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
                  uint8_t ce, uint8_t wp, uint8_t gnd)
{
    NANDFlashState *s = NAND(dev);

    s->cle = cle;
    s->ale = ale;
    s->ce = ce;
    s->wp = wp;
    s->gnd = gnd;
    if (wp) {
        s->status |= NAND_IOSTATUS_UNPROTCT;
    } else {
        s->status &= ~NAND_IOSTATUS_UNPROTCT;
    }
}

void nand_getpins(DeviceState *dev, int *rb)
{
    *rb = 1;
}

void nand_setio(DeviceState *dev, uint32_t value)
{
    int i;
    NANDFlashState *s = NAND(dev);

    if (!s->ce && s->cle) {
        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
                return;
            if (value == NAND_CMD_RANDOMREAD1) {
                s->addr &= ~((1 << s->addr_shift) - 1);
                s->addrlen = 0;
                return;
            }
        }
        if (value == NAND_CMD_READ0) {
            s->offset = 0;
        } else if (value == NAND_CMD_READ1) {
            s->offset = 0x100;
            value = NAND_CMD_READ0;
        } else if (value == NAND_CMD_READ2) {
            s->offset = 1 << s->page_shift;
            value = NAND_CMD_READ0;
        }

        s->cmd = value;

        if (s->cmd == NAND_CMD_READSTATUS ||
                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
                s->cmd == NAND_CMD_BLOCKERASE1 ||
                s->cmd == NAND_CMD_BLOCKERASE2 ||
                s->cmd == NAND_CMD_NOSERIALREAD2 ||
                s->cmd == NAND_CMD_RANDOMREAD2 ||
                s->cmd == NAND_CMD_RESET) {
            nand_command(s);
        }

        if (s->cmd != NAND_CMD_RANDOMREAD2) {
            s->addrlen = 0;
        }
    }

    if (s->ale) {
        unsigned int shift = s->addrlen * 8;
        uint64_t mask = ~(0xffull << shift);
        uint64_t v = (uint64_t)value << shift;

        s->addr = (s->addr & mask) | v;
        s->addrlen ++;

        switch (s->addrlen) {
        case 1:
            if (s->cmd == NAND_CMD_READID) {
                nand_command(s);
            }
            break;
        case 2: /* fix cache address as a byte address */
            s->addr <<= (s->buswidth - 1);
            break;
        case 3:
            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
                    (s->cmd == NAND_CMD_READ0 ||
                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
                nand_command(s);
            }
            break;
        case 4:
            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
                    (s->cmd == NAND_CMD_READ0 ||
                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
                nand_command(s);
            }
            break;
        case 5:
            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
                    (s->cmd == NAND_CMD_READ0 ||
                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
                nand_command(s);
            }
            break;
        default:
            break;
        }
    }

    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
            for (i = s->buswidth; i--; value >>= 8) {
                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
            }
        }
    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
        if ((s->addr & ((1 << s->addr_shift) - 1)) <
                (1 << s->page_shift) + (1 << s->oob_shift)) {
            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
                    (uint8_t) (value & 0xff);
            }
        }
    }
}

uint32_t nand_getio(DeviceState *dev)
{
    int offset;
    uint32_t x = 0;
    NANDFlashState *s = NAND(dev);

    /* Allow sequential reading */
    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
        s->offset = 0;

        s->blk_load(s, s->addr, offset);
        if (s->gnd)
            s->iolen = (1 << s->page_shift) - offset;
        else
            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
    }

    if (s->ce || s->iolen <= 0) {
        return 0;
    }

    for (offset = s->buswidth; offset--;) {
        x |= s->ioaddr[offset] << (offset << 3);
    }
    /* after receiving READ STATUS command all subsequent reads will
     * return the status register value until another command is issued
     */
    if (s->cmd != NAND_CMD_READSTATUS) {
        s->addr   += s->buswidth;
        s->ioaddr += s->buswidth;
        s->iolen  -= s->buswidth;
    }
    return x;
}

uint32_t nand_getbuswidth(DeviceState *dev)
{
    NANDFlashState *s = (NANDFlashState *) dev;
    return s->buswidth << 3;
}

DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
{
    DeviceState *dev;

    if (nand_flash_ids[chip_id].size == 0) {
        hw_error("%s: Unsupported NAND chip ID.\n", __func__);
    }
    dev = DEVICE(object_new(TYPE_NAND));
    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
    qdev_prop_set_uint8(dev, "chip_id", chip_id);
    if (blk) {
        qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
    }

    qdev_init_nofail(dev);
    return dev;
}

type_init(nand_register_types)

#else

/* Program a single page */
static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
{
    uint64_t off, page, sector, soff;
    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
    if (PAGE(s->addr) >= s->pages)
        return;

    if (!s->blk) {
        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
                        s->offset, s->io, s->iolen);
    } else if (s->mem_oob) {
        sector = SECTOR(s->addr);
        off = (s->addr & PAGE_MASK) + s->offset;
        soff = SECTOR_OFFSET(s->addr);
        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
                      PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
            return;
        }

        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
        if (off + s->iolen > PAGE_SIZE) {
            page = PAGE(s->addr);
            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
        }

        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
                       PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
        }
    } else {
        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
        sector = off >> 9;
        soff = off & 0x1ff;
        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
                      (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
            return;
        }

        mem_and(iobuf + soff, s->io, s->iolen);

        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
        }
    }
    s->offset = 0;
}

/* Erase a single block */
static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
{
    uint64_t i, page, addr;
    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);

    if (PAGE(addr) >= s->pages) {
        return;
    }

    if (!s->blk) {
        memset(s->storage + PAGE_START(addr),
                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
    } else if (s->mem_oob) {
        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
                        0xff, OOB_SIZE << s->erase_shift);
        i = SECTOR(addr);
        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
        for (; i < page; i ++)
            if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
                           BDRV_SECTOR_SIZE, 0) < 0) {
                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
            }
    } else {
        addr = PAGE_START(addr);
        page = addr >> 9;
        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
                      BDRV_SECTOR_SIZE) < 0) {
            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
        }
        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
                       BDRV_SECTOR_SIZE, 0) < 0) {
            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
        }

        memset(iobuf, 0xff, 0x200);
        i = (addr & ~0x1ff) + 0x200;
        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
                        i < addr; i += 0x200) {
            if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
                printf("%s: write error in sector %" PRIu64 "\n",
                       __func__, i >> 9);
            }
        }

        page = i >> 9;
        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
                      BDRV_SECTOR_SIZE) < 0) {
            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
        }
        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
                       BDRV_SECTOR_SIZE, 0) < 0) {
            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
        }
    }
}

static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
                uint64_t addr, int offset)
{
    if (PAGE(addr) >= s->pages) {
        return;
    }

    if (s->blk) {
        if (s->mem_oob) {
            if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
                          PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
                printf("%s: read error in sector %" PRIu64 "\n",
                                __func__, SECTOR(addr));
            }
            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
                            OOB_SIZE);
            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
        } else {
            if (blk_pread(s->blk, PAGE_START(addr), s->io,
                          (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
                printf("%s: read error in sector %" PRIu64 "\n",
                                __func__, PAGE_START(addr) >> 9);
            }
            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
        }
    } else {
        memcpy(s->io, s->storage + PAGE_START(s->addr) +
                        offset, PAGE_SIZE + OOB_SIZE - offset);
        s->ioaddr = s->io;
    }
}

static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
{
    s->oob_shift = PAGE_SHIFT - 5;
    s->pages = s->size >> PAGE_SHIFT;
    s->addr_shift = ADDR_SHIFT;

    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
}

# undef PAGE_SIZE
# undef PAGE_SHIFT
# undef PAGE_SECTORS
# undef ADDR_SHIFT
#endif	/* NAND_IO */