summaryrefslogtreecommitdiffstats
path: root/hw/char/cadence_uart.c
blob: b4b5e8a3ee00b599560d76b0aca7e250c71b27bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Device model for Cadence UART
 *
 * Reference: Xilinx Zynq 7000 reference manual
 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
 *   - Chapter 19 UART Controller
 *   - Appendix B for Register details
 *
 * Copyright (c) 2010 Xilinx Inc.
 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
 * Copyright (c) 2012 PetaLogix Pty Ltd.
 * Written by Haibing Ma
 *            M.Habib
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/char/cadence_uart.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties-system.h"
#include "trace.h"

#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
    fprintf(stderr,  ": %s: ", __func__); \
    fprintf(stderr, ## __VA_ARGS__); \
    } while (0)
#else
    #define DB_PRINT(...)
#endif

#define UART_SR_INTR_RTRIG     0x00000001
#define UART_SR_INTR_REMPTY    0x00000002
#define UART_SR_INTR_RFUL      0x00000004
#define UART_SR_INTR_TEMPTY    0x00000008
#define UART_SR_INTR_TFUL      0x00000010
/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
#define UART_SR_TTRIG          0x00002000
#define UART_INTR_TTRIG        0x00000400
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
 * SR, then the same bit in CISR is set high too */
#define UART_SR_TO_CISR_MASK   0x0000001F

#define UART_INTR_ROVR         0x00000020
#define UART_INTR_FRAME        0x00000040
#define UART_INTR_PARE         0x00000080
#define UART_INTR_TIMEOUT      0x00000100
#define UART_INTR_DMSI         0x00000200
#define UART_INTR_TOVR         0x00001000

#define UART_SR_RACTIVE    0x00000400
#define UART_SR_TACTIVE    0x00000800
#define UART_SR_FDELT      0x00001000

#define UART_CR_RXRST       0x00000001
#define UART_CR_TXRST       0x00000002
#define UART_CR_RX_EN       0x00000004
#define UART_CR_RX_DIS      0x00000008
#define UART_CR_TX_EN       0x00000010
#define UART_CR_TX_DIS      0x00000020
#define UART_CR_RST_TO      0x00000040
#define UART_CR_STARTBRK    0x00000080
#define UART_CR_STOPBRK     0x00000100

#define UART_MR_CLKS            0x00000001
#define UART_MR_CHRL            0x00000006
#define UART_MR_CHRL_SH         1
#define UART_MR_PAR             0x00000038
#define UART_MR_PAR_SH          3
#define UART_MR_NBSTOP          0x000000C0
#define UART_MR_NBSTOP_SH       6
#define UART_MR_CHMODE          0x00000300
#define UART_MR_CHMODE_SH       8
#define UART_MR_UCLKEN          0x00000400
#define UART_MR_IRMODE          0x00000800

#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)

#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)

#define R_CR       (0x00/4)
#define R_MR       (0x04/4)
#define R_IER      (0x08/4)
#define R_IDR      (0x0C/4)
#define R_IMR      (0x10/4)
#define R_CISR     (0x14/4)
#define R_BRGR     (0x18/4)
#define R_RTOR     (0x1C/4)
#define R_RTRIG    (0x20/4)
#define R_MCR      (0x24/4)
#define R_MSR      (0x28/4)
#define R_SR       (0x2C/4)
#define R_TX_RX    (0x30/4)
#define R_BDIV     (0x34/4)
#define R_FDEL     (0x38/4)
#define R_PMIN     (0x3C/4)
#define R_PWID     (0x40/4)
#define R_TTRIG    (0x44/4)


static void uart_update_status(CadenceUARTState *s)
{
    s->r[R_SR] = 0;

    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
                                                           : 0;
    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;

    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
                                                           : 0;
    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;

    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
}

static void fifo_trigger_update(void *opaque)
{
    CadenceUARTState *s = opaque;

    if (s->r[R_RTOR]) {
        s->r[R_CISR] |= UART_INTR_TIMEOUT;
        uart_update_status(s);
    }
}

static void uart_rx_reset(CadenceUARTState *s)
{
    s->rx_wpos = 0;
    s->rx_count = 0;
    qemu_chr_fe_accept_input(&s->chr);
}

static void uart_tx_reset(CadenceUARTState *s)
{
    s->tx_count = 0;
}

static void uart_send_breaks(CadenceUARTState *s)
{
    int break_enabled = 1;

    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
                      &break_enabled);
}

static void uart_parameters_setup(CadenceUARTState *s)
{
    QEMUSerialSetParams ssp;
    unsigned int baud_rate, packet_size, input_clk;
    input_clk = clock_get_hz(s->refclk);

    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
    baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
    trace_cadence_uart_baudrate(baud_rate);

    ssp.speed = baud_rate;

    packet_size = 1;

    switch (s->r[R_MR] & UART_MR_PAR) {
    case UART_PARITY_EVEN:
        ssp.parity = 'E';
        packet_size++;
        break;
    case UART_PARITY_ODD:
        ssp.parity = 'O';
        packet_size++;
        break;
    default:
        ssp.parity = 'N';
        break;
    }

    switch (s->r[R_MR] & UART_MR_CHRL) {
    case UART_DATA_BITS_6:
        ssp.data_bits = 6;
        break;
    case UART_DATA_BITS_7:
        ssp.data_bits = 7;
        break;
    default:
        ssp.data_bits = 8;
        break;
    }

    switch (s->r[R_MR] & UART_MR_NBSTOP) {
    case UART_STOP_BITS_1:
        ssp.stop_bits = 1;
        break;
    default:
        ssp.stop_bits = 2;
        break;
    }

    packet_size += ssp.data_bits + ssp.stop_bits;
    if (ssp.speed == 0) {
        /*
         * Avoid division-by-zero below.
         * TODO: find something better
         */
        ssp.speed = 1;
    }
    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}

static int uart_can_receive(void *opaque)
{
    CadenceUARTState *s = opaque;
    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;

    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
    }
    return ret;
}

static void uart_ctrl_update(CadenceUARTState *s)
{
    if (s->r[R_CR] & UART_CR_TXRST) {
        uart_tx_reset(s);
    }

    if (s->r[R_CR] & UART_CR_RXRST) {
        uart_rx_reset(s);
    }

    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);

    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
        uart_send_breaks(s);
    }
}

static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
{
    CadenceUARTState *s = opaque;
    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    int i;

    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
        s->r[R_CISR] |= UART_INTR_ROVR;
    } else {
        for (i = 0; i < size; i++) {
            s->rx_fifo[s->rx_wpos] = buf[i];
            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
            s->rx_count++;
        }
        timer_mod(s->fifo_trigger_handle, new_rx_time +
                                                (s->char_tx_time * 4));
    }
    uart_update_status(s);
}

static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
                                  void *opaque)
{
    CadenceUARTState *s = opaque;
    int ret;

    /* instant drain the fifo when there's no back-end */
    if (!qemu_chr_fe_backend_connected(&s->chr)) {
        s->tx_count = 0;
        return FALSE;
    }

    if (!s->tx_count) {
        return FALSE;
    }

    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);

    if (ret >= 0) {
        s->tx_count -= ret;
        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
    }

    if (s->tx_count) {
        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
                                        cadence_uart_xmit, s);
        if (!r) {
            s->tx_count = 0;
            return FALSE;
        }
    }

    uart_update_status(s);
    return FALSE;
}

static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
                               int size)
{
    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
        return;
    }

    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
        /*
         * This can only be a guest error via a bad tx fifo register push,
         * as can_receive() should stop remote loop and echo modes ever getting
         * us to here.
         */
        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
        s->r[R_CISR] |= UART_INTR_ROVR;
    }

    memcpy(s->tx_fifo + s->tx_count, buf, size);
    s->tx_count += size;

    cadence_uart_xmit(NULL, G_IO_OUT, s);
}

static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
    CadenceUARTState *s = opaque;
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;

    /* ignore characters when unclocked or in reset */
    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
        return;
    }

    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
        uart_write_rx_fifo(opaque, buf, size);
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
        uart_write_tx_fifo(s, buf, size);
    }
}

static void uart_event(void *opaque, QEMUChrEvent event)
{
    CadenceUARTState *s = opaque;
    uint8_t buf = '\0';

    /* ignore characters when unclocked or in reset */
    if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
        return;
    }

    if (event == CHR_EVENT_BREAK) {
        uart_write_rx_fifo(opaque, &buf, 1);
    }

    uart_update_status(s);
}

static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
{
    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

    if (s->rx_count) {
        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
        *c = s->rx_fifo[rx_rpos];
        s->rx_count--;

        qemu_chr_fe_accept_input(&s->chr);
    } else {
        *c = 0;
    }

    uart_update_status(s);
}

static void uart_write(void *opaque, hwaddr offset,
                          uint64_t value, unsigned size)
{
    CadenceUARTState *s = opaque;

    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
    offset >>= 2;
    if (offset >= CADENCE_UART_R_MAX) {
        return;
    }
    switch (offset) {
    case R_IER: /* ier (wts imr) */
        s->r[R_IMR] |= value;
        break;
    case R_IDR: /* idr (wtc imr) */
        s->r[R_IMR] &= ~value;
        break;
    case R_IMR: /* imr (read only) */
        break;
    case R_CISR: /* cisr (wtc) */
        s->r[R_CISR] &= ~value;
        break;
    case R_TX_RX: /* UARTDR */
        switch (s->r[R_MR] & UART_MR_CHMODE) {
        case NORMAL_MODE:
            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
            break;
        case LOCAL_LOOPBACK:
            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
            break;
        }
        break;
    case R_BRGR: /* Baud rate generator */
        if (value >= 0x01) {
            s->r[offset] = value & 0xFFFF;
        }
        break;
    case R_BDIV:    /* Baud rate divider */
        if (value >= 0x04) {
            s->r[offset] = value & 0xFF;
        }
        break;
    default:
        s->r[offset] = value;
    }

    switch (offset) {
    case R_CR:
        uart_ctrl_update(s);
        break;
    case R_MR:
        uart_parameters_setup(s);
        break;
    }
    uart_update_status(s);
}

static uint64_t uart_read(void *opaque, hwaddr offset,
        unsigned size)
{
    CadenceUARTState *s = opaque;
    uint32_t c = 0;

    offset >>= 2;
    if (offset >= CADENCE_UART_R_MAX) {
        c = 0;
    } else if (offset == R_TX_RX) {
        uart_read_rx_fifo(s, &c);
    } else {
       c = s->r[offset];
    }

    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
    return c;
}

static const MemoryRegionOps uart_ops = {
    .read = uart_read,
    .write = uart_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void cadence_uart_reset_init(Object *obj, ResetType type)
{
    CadenceUARTState *s = CADENCE_UART(obj);

    s->r[R_CR] = 0x00000128;
    s->r[R_IMR] = 0;
    s->r[R_CISR] = 0;
    s->r[R_RTRIG] = 0x00000020;
    s->r[R_BRGR] = 0x0000028B;
    s->r[R_BDIV] = 0x0000000F;
    s->r[R_TTRIG] = 0x00000020;
}

static void cadence_uart_reset_hold(Object *obj)
{
    CadenceUARTState *s = CADENCE_UART(obj);

    uart_rx_reset(s);
    uart_tx_reset(s);

    uart_update_status(s);
}

static void cadence_uart_realize(DeviceState *dev, Error **errp)
{
    CadenceUARTState *s = CADENCE_UART(dev);

    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
                                          fifo_trigger_update, s);

    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
                             uart_event, NULL, s, NULL, true);
}

static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
{
    CadenceUARTState *s = opaque;

    /* recompute uart's speed on clock change */
    uart_parameters_setup(s);
}

static void cadence_uart_init(Object *obj)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    CadenceUARTState *s = CADENCE_UART(obj);

    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
    sysbus_init_irq(sbd, &s->irq);

    s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
                                   cadence_uart_refclk_update, s, ClockUpdate);
    /* initialize the frequency in case the clock remains unconnected */
    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);

    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
}

static int cadence_uart_pre_load(void *opaque)
{
    CadenceUARTState *s = opaque;

    /* the frequency will be overriden if the refclk field is present */
    clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
    return 0;
}

static int cadence_uart_post_load(void *opaque, int version_id)
{
    CadenceUARTState *s = opaque;

    /* Ensure these two aren't invalid numbers */
    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
        /* Value is invalid, abort */
        return 1;
    }

    uart_parameters_setup(s);
    uart_update_status(s);
    return 0;
}

static const VMStateDescription vmstate_cadence_uart = {
    .name = "cadence_uart",
    .version_id = 3,
    .minimum_version_id = 2,
    .pre_load = cadence_uart_pre_load,
    .post_load = cadence_uart_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
                            CADENCE_UART_RX_FIFO_SIZE),
        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
                            CADENCE_UART_TX_FIFO_SIZE),
        VMSTATE_UINT32(rx_count, CadenceUARTState),
        VMSTATE_UINT32(tx_count, CadenceUARTState),
        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
        VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
        VMSTATE_END_OF_LIST()
    },
};

static Property cadence_uart_properties[] = {
    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
    DEFINE_PROP_END_OF_LIST(),
};

static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    ResettableClass *rc = RESETTABLE_CLASS(klass);

    dc->realize = cadence_uart_realize;
    dc->vmsd = &vmstate_cadence_uart;
    rc->phases.enter = cadence_uart_reset_init;
    rc->phases.hold  = cadence_uart_reset_hold;
    device_class_set_props(dc, cadence_uart_properties);
  }

static const TypeInfo cadence_uart_info = {
    .name          = TYPE_CADENCE_UART,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(CadenceUARTState),
    .instance_init = cadence_uart_init,
    .class_init    = cadence_uart_class_init,
};

static void cadence_uart_register_types(void)
{
    type_register_static(&cadence_uart_info);
}

type_init(cadence_uart_register_types)