summaryrefslogtreecommitdiffstats
path: root/hw/intc/arm_gicv3_kvm.c
blob: 3ca643ecba4ae485fe52d2f3d7bbeb9d3b2cd107 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/*
 * ARM Generic Interrupt Controller using KVM in-kernel support
 *
 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
 * Written by Pavel Fedin
 * Based on vGICv2 code by Peter Maydell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/intc/arm_gicv3_common.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "sysemu/kvm.h"
#include "sysemu/runstate.h"
#include "kvm_arm.h"
#include "gicv3_internal.h"
#include "vgic_common.h"
#include "migration/blocker.h"
#include "qom/object.h"
#include "target/arm/cpregs.h"


#ifdef DEBUG_GICV3_KVM
#define DPRINTF(fmt, ...) \
    do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
    do { } while (0)
#endif

#define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
typedef struct KVMARMGICv3Class KVMARMGICv3Class;
/* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
                     KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)

#define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
                             (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
                              ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
                              ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
                              ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
                              ARM64_SYS_REG_SHIFT_MASK(op2, OP2))

#define ICC_PMR_EL1     \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
#define ICC_BPR0_EL1    \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
#define ICC_AP0R_EL1(n) \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
#define ICC_AP1R_EL1(n) \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
#define ICC_BPR1_EL1    \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
#define ICC_CTLR_EL1    \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
#define ICC_SRE_EL1 \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
#define ICC_IGRPEN0_EL1 \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
#define ICC_IGRPEN1_EL1 \
    KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)

struct KVMARMGICv3Class {
    ARMGICv3CommonClass parent_class;
    DeviceRealize parent_realize;
    void (*parent_reset)(DeviceState *dev);
};

static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
{
    GICv3State *s = (GICv3State *)opaque;

    kvm_arm_gic_set_irq(s->num_irq, irq, level);
}

#define KVM_VGIC_ATTR(reg, typer) \
    ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))

static inline void kvm_gicd_access(GICv3State *s, int offset,
                                   uint32_t *val, bool write)
{
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
                      KVM_VGIC_ATTR(offset, 0),
                      val, write, &error_abort);
}

static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
                                   uint32_t *val, bool write)
{
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
                      KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
                      val, write, &error_abort);
}

static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
                                   uint64_t *val, bool write)
{
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
                      KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
                      val, write, &error_abort);
}

static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
                                             uint32_t *val, bool write)
{
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
                      KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
                      (VGIC_LEVEL_INFO_LINE_LEVEL <<
                       KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
                      val, write, &error_abort);
}

/* Loop through each distributor IRQ related register; since bits
 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
 * is enabled, we skip those.
 */
#define for_each_dist_irq_reg(_irq, _max, _field_width) \
    for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))

static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
{
    uint32_t reg, *field;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the first 8
     * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
     * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
     * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
     * offset.
     */
    field = (uint32_t *)(bmp + GIC_INTERNAL);
    offset += (GIC_INTERNAL * 8) / 8;
    for_each_dist_irq_reg(irq, s->num_irq, 8) {
        kvm_gicd_access(s, offset, &reg, false);
        *field = reg;
        offset += 4;
        field++;
    }
}

static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
{
    uint32_t reg, *field;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the first 8
     * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
     * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
     * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
     * offset.
     */
    field = (uint32_t *)(bmp + GIC_INTERNAL);
    offset += (GIC_INTERNAL * 8) / 8;
    for_each_dist_irq_reg(irq, s->num_irq, 8) {
        reg = *field;
        kvm_gicd_access(s, offset, &reg, true);
        offset += 4;
        field++;
    }
}

static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
                                      uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the first 2
     * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
     * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
     * This matches the for_each_dist_irq_reg() macro which also skips the
     * first GIC_INTERNAL irqs.
     */
    offset += (GIC_INTERNAL * 2) / 8;
    for_each_dist_irq_reg(irq, s->num_irq, 2) {
        kvm_gicd_access(s, offset, &reg, false);
        reg = half_unshuffle32(reg >> 1);
        if (irq % 32 != 0) {
            reg = (reg << 16);
        }
        *gic_bmp_ptr32(bmp, irq) |=  reg;
        offset += 4;
    }
}

static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
                                      uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the first 2
     * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
     * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
     * This matches the for_each_dist_irq_reg() macro which also skips the
     * first GIC_INTERNAL irqs.
     */
    offset += (GIC_INTERNAL * 2) / 8;
    for_each_dist_irq_reg(irq, s->num_irq, 2) {
        reg = *gic_bmp_ptr32(bmp, irq);
        if (irq % 32 != 0) {
            reg = (reg & 0xffff0000) >> 16;
        } else {
            reg = reg & 0xffff;
        }
        reg = half_shuffle32(reg) << 1;
        kvm_gicd_access(s, offset, &reg, true);
        offset += 4;
    }
}

static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    for_each_dist_irq_reg(irq, s->num_irq, 1) {
        kvm_gic_line_level_access(s, irq, 0, &reg, false);
        *gic_bmp_ptr32(bmp, irq) = reg;
    }
}

static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    for_each_dist_irq_reg(irq, s->num_irq, 1) {
        reg = *gic_bmp_ptr32(bmp, irq);
        kvm_gic_line_level_access(s, irq, 0, &reg, true);
    }
}

/* Read a bitmap register group from the kernel VGIC. */
static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the
     * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
     * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
     * functionality is replaced by the GICR registers. It doesn't need to sync
     * them. So it should increase the offset to skip GIC_INTERNAL irqs.
     * This matches the for_each_dist_irq_reg() macro which also skips the
     * first GIC_INTERNAL irqs.
     */
    offset += (GIC_INTERNAL * 1) / 8;
    for_each_dist_irq_reg(irq, s->num_irq, 1) {
        kvm_gicd_access(s, offset, &reg, false);
        *gic_bmp_ptr32(bmp, irq) = reg;
        offset += 4;
    }
}

static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
                            uint32_t clroffset, uint32_t *bmp)
{
    uint32_t reg;
    int irq;

    /* For the KVM GICv3, affinity routing is always enabled, and the
     * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
     * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
     * functionality is replaced by the GICR registers. It doesn't need to sync
     * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
     * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
     * first GIC_INTERNAL irqs.
     */
    offset += (GIC_INTERNAL * 1) / 8;
    if (clroffset != 0) {
        clroffset += (GIC_INTERNAL * 1) / 8;
    }

    for_each_dist_irq_reg(irq, s->num_irq, 1) {
        /* If this bitmap is a set/clear register pair, first write to the
         * clear-reg to clear all bits before using the set-reg to write
         * the 1 bits.
         */
        if (clroffset != 0) {
            reg = 0;
            kvm_gicd_access(s, clroffset, &reg, true);
            clroffset += 4;
        }
        reg = *gic_bmp_ptr32(bmp, irq);
        kvm_gicd_access(s, offset, &reg, true);
        offset += 4;
    }
}

static void kvm_arm_gicv3_check(GICv3State *s)
{
    uint32_t reg;
    uint32_t num_irq;

    /* Sanity checking s->num_irq */
    kvm_gicd_access(s, GICD_TYPER, &reg, false);
    num_irq = ((reg & 0x1f) + 1) * 32;

    if (num_irq < s->num_irq) {
        error_report("Model requests %u IRQs, but kernel supports max %u",
                     s->num_irq, num_irq);
        abort();
    }
}

static void kvm_arm_gicv3_put(GICv3State *s)
{
    uint32_t regl, regh, reg;
    uint64_t reg64, redist_typer;
    int ncpu, i;

    kvm_arm_gicv3_check(s);

    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
    redist_typer = ((uint64_t)regh << 32) | regl;

    reg = s->gicd_ctlr;
    kvm_gicd_access(s, GICD_CTLR, &reg, true);

    if (redist_typer & GICR_TYPER_PLPIS) {
        /*
         * Restore base addresses before LPIs are potentially enabled by
         * GICR_CTLR write
         */
        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
            GICv3CPUState *c = &s->cpu[ncpu];

            reg64 = c->gicr_propbaser;
            regl = (uint32_t)reg64;
            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
            regh = (uint32_t)(reg64 >> 32);
            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);

            reg64 = c->gicr_pendbaser;
            regl = (uint32_t)reg64;
            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
            regh = (uint32_t)(reg64 >> 32);
            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
        }
    }

    /* Redistributor state (one per CPU) */

    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
        GICv3CPUState *c = &s->cpu[ncpu];

        reg = c->gicr_ctlr;
        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);

        reg = c->gicr_statusr[GICV3_NS];
        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);

        reg = c->gicr_waker;
        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);

        reg = c->gicr_igroupr0;
        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);

        reg = ~0;
        kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
        reg = c->gicr_ienabler0;
        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);

        /* Restore config before pending so we treat level/edge correctly */
        reg = half_shuffle32(c->edge_trigger >> 16) << 1;
        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);

        reg = c->level;
        kvm_gic_line_level_access(s, 0, ncpu, &reg, true);

        reg = ~0;
        kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
        reg = c->gicr_ipendr0;
        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);

        reg = ~0;
        kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
        reg = c->gicr_iactiver0;
        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);

        for (i = 0; i < GIC_INTERNAL; i += 4) {
            reg = c->gicr_ipriorityr[i] |
                (c->gicr_ipriorityr[i + 1] << 8) |
                (c->gicr_ipriorityr[i + 2] << 16) |
                (c->gicr_ipriorityr[i + 3] << 24);
            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
        }
    }

    /* Distributor state (shared between all CPUs */
    reg = s->gicd_statusr[GICV3_NS];
    kvm_gicd_access(s, GICD_STATUSR, &reg, true);

    /* s->enable bitmap -> GICD_ISENABLERn */
    kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);

    /* s->group bitmap -> GICD_IGROUPRn */
    kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);

    /* Restore targets before pending to ensure the pending state is set on
     * the appropriate CPU interfaces in the kernel
     */

    /* s->gicd_irouter[irq] -> GICD_IROUTERn
     * We can't use kvm_dist_put() here because the registers are 64-bit
     */
    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
        uint32_t offset;

        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
        reg = (uint32_t)s->gicd_irouter[i];
        kvm_gicd_access(s, offset, &reg, true);

        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
        reg = (uint32_t)(s->gicd_irouter[i] >> 32);
        kvm_gicd_access(s, offset, &reg, true);
    }

    /* s->trigger bitmap -> GICD_ICFGRn
     * (restore configuration registers before pending IRQs so we treat
     * level/edge correctly)
     */
    kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);

    /* s->level bitmap ->  line_level */
    kvm_gic_put_line_level_bmp(s, s->level);

    /* s->pending bitmap -> GICD_ISPENDRn */
    kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);

    /* s->active bitmap -> GICD_ISACTIVERn */
    kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);

    /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
    kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);

    /* CPU Interface state (one per CPU) */

    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
        GICv3CPUState *c = &s->cpu[ncpu];
        int num_pri_bits;

        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
                        &c->icc_ctlr_el1[GICV3_NS], true);
        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
                        &c->icc_igrpen[GICV3_G0], true);
        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
                        &c->icc_igrpen[GICV3_G1NS], true);
        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);

        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
                        ICC_CTLR_EL1_PRIBITS_MASK) >>
                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;

        switch (num_pri_bits) {
        case 7:
            reg64 = c->icc_apr[GICV3_G0][3];
            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
            reg64 = c->icc_apr[GICV3_G0][2];
            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
            /* fall through */
        case 6:
            reg64 = c->icc_apr[GICV3_G0][1];
            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
            /* fall through */
        default:
            reg64 = c->icc_apr[GICV3_G0][0];
            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
        }

        switch (num_pri_bits) {
        case 7:
            reg64 = c->icc_apr[GICV3_G1NS][3];
            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
            reg64 = c->icc_apr[GICV3_G1NS][2];
            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
            /* fall through */
        case 6:
            reg64 = c->icc_apr[GICV3_G1NS][1];
            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
            /* fall through */
        default:
            reg64 = c->icc_apr[GICV3_G1NS][0];
            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
        }
    }
}

static void kvm_arm_gicv3_get(GICv3State *s)
{
    uint32_t regl, regh, reg;
    uint64_t reg64, redist_typer;
    int ncpu, i;

    kvm_arm_gicv3_check(s);

    kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
    kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
    redist_typer = ((uint64_t)regh << 32) | regl;

    kvm_gicd_access(s, GICD_CTLR, &reg, false);
    s->gicd_ctlr = reg;

    /* Redistributor state (one per CPU) */

    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
        GICv3CPUState *c = &s->cpu[ncpu];

        kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
        c->gicr_ctlr = reg;

        kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
        c->gicr_statusr[GICV3_NS] = reg;

        kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
        c->gicr_waker = reg;

        kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
        c->gicr_igroupr0 = reg;
        kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
        c->gicr_ienabler0 = reg;
        kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
        c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
        kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
        c->level = reg;
        kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
        c->gicr_ipendr0 = reg;
        kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
        c->gicr_iactiver0 = reg;

        for (i = 0; i < GIC_INTERNAL; i += 4) {
            kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
            c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
            c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
            c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
            c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
        }
    }

    if (redist_typer & GICR_TYPER_PLPIS) {
        for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
            GICv3CPUState *c = &s->cpu[ncpu];

            kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
            kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
            c->gicr_propbaser = ((uint64_t)regh << 32) | regl;

            kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
            kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
            c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
        }
    }

    /* Distributor state (shared between all CPUs */

    kvm_gicd_access(s, GICD_STATUSR, &reg, false);
    s->gicd_statusr[GICV3_NS] = reg;

    /* GICD_IGROUPRn -> s->group bitmap */
    kvm_dist_getbmp(s, GICD_IGROUPR, s->group);

    /* GICD_ISENABLERn -> s->enabled bitmap */
    kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);

    /* Line level of irq */
    kvm_gic_get_line_level_bmp(s, s->level);
    /* GICD_ISPENDRn -> s->pending bitmap */
    kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);

    /* GICD_ISACTIVERn -> s->active bitmap */
    kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);

    /* GICD_ICFGRn -> s->trigger bitmap */
    kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);

    /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
    kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);

    /* GICD_IROUTERn -> s->gicd_irouter[irq] */
    for (i = GIC_INTERNAL; i < s->num_irq; i++) {
        uint32_t offset;

        offset = GICD_IROUTER + (sizeof(uint32_t) * i);
        kvm_gicd_access(s, offset, &regl, false);
        offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
        kvm_gicd_access(s, offset, &regh, false);
        s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
    }

    /*****************************************************************
     * CPU Interface(s) State
     */

    for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
        GICv3CPUState *c = &s->cpu[ncpu];
        int num_pri_bits;

        kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
        kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
                        &c->icc_ctlr_el1[GICV3_NS], false);
        kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
                        &c->icc_igrpen[GICV3_G0], false);
        kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
                        &c->icc_igrpen[GICV3_G1NS], false);
        kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
        kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
        kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
        num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
                        ICC_CTLR_EL1_PRIBITS_MASK) >>
                        ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;

        switch (num_pri_bits) {
        case 7:
            kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
            c->icc_apr[GICV3_G0][3] = reg64;
            kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
            c->icc_apr[GICV3_G0][2] = reg64;
            /* fall through */
        case 6:
            kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
            c->icc_apr[GICV3_G0][1] = reg64;
            /* fall through */
        default:
            kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
            c->icc_apr[GICV3_G0][0] = reg64;
        }

        switch (num_pri_bits) {
        case 7:
            kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
            c->icc_apr[GICV3_G1NS][3] = reg64;
            kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
            c->icc_apr[GICV3_G1NS][2] = reg64;
            /* fall through */
        case 6:
            kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
            c->icc_apr[GICV3_G1NS][1] = reg64;
            /* fall through */
        default:
            kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
            c->icc_apr[GICV3_G1NS][0] = reg64;
        }
    }
}

static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3State *s;
    GICv3CPUState *c;

    c = (GICv3CPUState *)env->gicv3state;
    s = c->gic;

    c->icc_pmr_el1 = 0;
    /*
     * Architecturally the reset value of the ICC_BPR registers
     * is UNKNOWN. We set them all to 0 here; when the kernel
     * uses these values to program the ICH_VMCR_EL2 fields that
     * determine the guest-visible ICC_BPR register values, the
     * hardware's "writing a value less than the minimum sets
     * the field to the minimum value" behaviour will result in
     * them effectively resetting to the correct minimum value
     * for the host GIC.
     */
    c->icc_bpr[GICV3_G0] = 0;
    c->icc_bpr[GICV3_G1] = 0;
    c->icc_bpr[GICV3_G1NS] = 0;

    c->icc_sre_el1 = 0x7;
    memset(c->icc_apr, 0, sizeof(c->icc_apr));
    memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));

    if (s->migration_blocker) {
        return;
    }

    /* Initialize to actual HW supported configuration */
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
                      KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
                      &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);

    c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
}

static void kvm_arm_gicv3_reset(DeviceState *dev)
{
    GICv3State *s = ARM_GICV3_COMMON(dev);
    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);

    DPRINTF("Reset\n");

    kgc->parent_reset(dev);

    if (s->migration_blocker) {
        DPRINTF("Cannot put kernel gic state, no kernel interface\n");
        return;
    }

    kvm_arm_gicv3_put(s);
}

/*
 * CPU interface registers of GIC needs to be reset on CPU reset.
 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
 * below ARMCPRegInfo. As we reset the whole cpu interface under single
 * register reset, we define only one register of CPU interface instead
 * of defining all the registers.
 */
static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
      /*
       * If ARM_CP_NOP is used, resetfn is not called,
       * So ARM_CP_NO_RAW is appropriate type.
       */
      .type = ARM_CP_NO_RAW,
      .access = PL1_RW,
      .readfn = arm_cp_read_zero,
      .writefn = arm_cp_write_ignore,
      /*
       * We hang the whole cpu interface reset routine off here
       * rather than parcelling it out into one little function
       * per register
       */
      .resetfn = arm_gicv3_icc_reset,
    },
};

/**
 * vm_change_state_handler - VM change state callback aiming at flushing
 * RDIST pending tables into guest RAM
 *
 * The tables get flushed to guest RAM whenever the VM gets stopped.
 */
static void vm_change_state_handler(void *opaque, bool running,
                                    RunState state)
{
    GICv3State *s = (GICv3State *)opaque;
    Error *err = NULL;
    int ret;

    if (running) {
        return;
    }

    ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
                           KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
                           NULL, true, &err);
    if (err) {
        error_report_err(err);
    }
    if (ret < 0 && ret != -EFAULT) {
        abort();
    }
}


static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
{
    GICv3State *s = KVM_ARM_GICV3(dev);
    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
    bool multiple_redist_region_allowed;
    Error *local_err = NULL;
    int i;

    DPRINTF("kvm_arm_gicv3_realize\n");

    kgc->parent_realize(dev, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    if (s->revision != 3) {
        error_setg(errp, "unsupported GIC revision %d for in-kernel GIC",
                   s->revision);
    }

    if (s->security_extn) {
        error_setg(errp, "the in-kernel VGICv3 does not implement the "
                   "security extensions");
        return;
    }

    gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);

    for (i = 0; i < s->num_cpu; i++) {
        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));

        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
    }

    /* Try to create the device via the device control API */
    s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
    if (s->dev_fd < 0) {
        error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
        return;
    }

    multiple_redist_region_allowed =
        kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
                              KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);

    if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
        error_setg(errp, "Multiple VGICv3 redistributor regions are not "
                   "supported by this host kernel");
        error_append_hint(errp, "A maximum of %d VCPUs can be used",
                          s->redist_region_count[0]);
        return;
    }

    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
                      0, &s->num_irq, true, &error_abort);

    /* Tell the kernel to complete VGIC initialization now */
    kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
                      KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);

    kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
                            KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);

    if (!multiple_redist_region_allowed) {
        kvm_arm_register_device(&s->redist_regions[0].iomem, -1,
                                KVM_DEV_ARM_VGIC_GRP_ADDR,
                                KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
    } else {
        /* we register regions in reverse order as "devices" are inserted at
         * the head of a QSLIST and the list is then popped from the head
         * onwards by kvm_arm_machine_init_done()
         */
        for (i = s->nb_redist_regions - 1; i >= 0; i--) {
            /* Address mask made of the rdist region index and count */
            uint64_t addr_ormask =
                        i | ((uint64_t)s->redist_region_count[i] << 52);

            kvm_arm_register_device(&s->redist_regions[i].iomem, -1,
                                    KVM_DEV_ARM_VGIC_GRP_ADDR,
                                    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
                                    s->dev_fd, addr_ormask);
        }
    }

    if (kvm_has_gsi_routing()) {
        /* set up irq routing */
        for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
            kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
        }

        kvm_gsi_routing_allowed = true;

        kvm_irqchip_commit_routes(kvm_state);
    }

    if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
                               GICD_CTLR)) {
        error_setg(&s->migration_blocker, "This operating system kernel does "
                                          "not support vGICv3 migration");
        if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
            error_free(s->migration_blocker);
            return;
        }
    }
    if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
                              KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
        qemu_add_vm_change_state_handler(vm_change_state_handler, s);
    }
}

static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
    KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);

    agcc->pre_save = kvm_arm_gicv3_get;
    agcc->post_load = kvm_arm_gicv3_put;
    device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
                                    &kgc->parent_realize);
    device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
}

static const TypeInfo kvm_arm_gicv3_info = {
    .name = TYPE_KVM_ARM_GICV3,
    .parent = TYPE_ARM_GICV3_COMMON,
    .instance_size = sizeof(GICv3State),
    .class_init = kvm_arm_gicv3_class_init,
    .class_size = sizeof(KVMARMGICv3Class),
};

static void kvm_arm_gicv3_register_types(void)
{
    type_register_static(&kvm_arm_gicv3_info);
}

type_init(kvm_arm_gicv3_register_types)