summaryrefslogtreecommitdiffstats
path: root/hw/mcf_intc.c
blob: e469c31192cdb72a400869d5875e9095c1ac38ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * ColdFire Interrupt Controller emulation.
 *
 * Copyright (c) 2007 CodeSourcery.
 *
 * This code is licenced under the GPL
 */
#include "vl.h"

typedef struct {
    uint64_t ipr;
    uint64_t imr;
    uint64_t ifr;
    uint64_t enabled;
    uint8_t icr[64];
    CPUState *env;
    int active_vector;
} mcf_intc_state;

static void mcf_intc_update(mcf_intc_state *s)
{
    uint64_t active;
    int i;
    int best;
    int best_level;

    active = (s->ipr | s->ifr) & s->enabled & ~s->imr;
    best_level = 0;
    best = 64;
    if (active) {
        for (i = 0; i < 64; i++) {
            if ((active & 1) != 0 && s->icr[i] >= best_level) {
                best_level = s->icr[i];
                best = i;
            }
            active >>= 1;
        }
    }
    s->active_vector = ((best == 64) ? 24 : (best + 64));
    m68k_set_irq_level(s->env, best_level, s->active_vector);
}

static uint32_t mcf_intc_read(void *opaque, target_phys_addr_t addr)
{
    int offset;
    mcf_intc_state *s = (mcf_intc_state *)opaque;
    offset = addr & 0xff;
    if (offset >= 0x40 && offset < 0x80) {
        return s->icr[offset - 0x40];
    }
    switch (offset) {
    case 0x00:
        return (uint32_t)(s->ipr >> 32);
    case 0x04:
        return (uint32_t)s->ipr;
    case 0x08:
        return (uint32_t)(s->imr >> 32);
    case 0x0c:
        return (uint32_t)s->imr;
    case 0x10:
        return (uint32_t)(s->ifr >> 32);
    case 0x14:
        return (uint32_t)s->ifr;
    case 0xe0: /* SWIACK.  */
        return s->active_vector;
    case 0xe1: case 0xe2: case 0xe3: case 0xe4:
    case 0xe5: case 0xe6: case 0xe7:
        /* LnIACK */
        cpu_abort(cpu_single_env, "mcf_intc_read: LnIACK not implemented\n");
    default:
        return 0;
    }
}

static void mcf_intc_write(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    int offset;
    mcf_intc_state *s = (mcf_intc_state *)opaque;
    offset = addr & 0xff;
    if (offset >= 0x40 && offset < 0x80) {
        int n = offset - 0x40;
        s->icr[n] = val;
        if (val == 0)
            s->enabled &= ~(1ull << n);
        else
            s->enabled |= (1ull << n);
        mcf_intc_update(s);
        return;
    }
    switch (offset) {
    case 0x00: case 0x04:
        /* Ignore IPR writes.  */
        return;
    case 0x08:
        s->imr = (s->imr & 0xffffffff) | ((uint64_t)val << 32);
        break;
    case 0x0c:
        s->imr = (s->imr & 0xffffffff00000000ull) | (uint32_t)val;
        break;
    default:
        cpu_abort(cpu_single_env, "mcf_intc_write: Bad write offset %d\n",
                  offset);
        break;
    }
    mcf_intc_update(s);
}

static void mcf_intc_set_irq(void *opaque, int irq, int level)
{
    mcf_intc_state *s = (mcf_intc_state *)opaque;
    if (irq >= 64)
        return;
    if (level)
        s->ipr |= 1ull << irq;
    else
        s->ipr &= ~(1ull << irq);
    mcf_intc_update(s);
}

static void mcf_intc_reset(mcf_intc_state *s)
{
    s->imr = ~0ull;
    s->ipr = 0;
    s->ifr = 0;
    s->enabled = 0;
    memset(s->icr, 0, 64);
    s->active_vector = 24;
}

static CPUReadMemoryFunc *mcf_intc_readfn[] = {
   mcf_intc_read,
   mcf_intc_read,
   mcf_intc_read
};

static CPUWriteMemoryFunc *mcf_intc_writefn[] = {
   mcf_intc_write,
   mcf_intc_write,
   mcf_intc_write
};

qemu_irq *mcf_intc_init(target_phys_addr_t base, CPUState *env)
{
    mcf_intc_state *s;
    int iomemtype;

    s = qemu_mallocz(sizeof(mcf_intc_state));
    s->env = env;
    mcf_intc_reset(s);

    iomemtype = cpu_register_io_memory(0, mcf_intc_readfn,
                                       mcf_intc_writefn, s);
    cpu_register_physical_memory(base, 0x100, iomemtype);

    return qemu_allocate_irqs(mcf_intc_set_irq, s, 64);
}