summaryrefslogtreecommitdiffstats
path: root/hw/ppc/spapr_hcall.c
blob: 23e4bdb829c56671cf5e3755ac3a991de2e35a3b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "sysemu/hw_accel.h"
#include "sysemu/runstate.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "helper_regs.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "mmu-hash64.h"
#include "cpu-models.h"
#include "trace.h"
#include "kvm_ppc.h"
#include "hw/ppc/spapr_ovec.h"
#include "mmu-book3s-v3.h"
#include "hw/mem/memory-device.h"

static bool has_spr(PowerPCCPU *cpu, int spr)
{
    /* We can test whether the SPR is defined by checking for a valid name */
    return cpu->env.spr_cb[spr].name != NULL;
}

static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
{
    /*
     * hash value/pteg group index is normalized by HPT mask
     */
    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
        return false;
    }
    return true;
}

static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
{
    MachineState *machine = MACHINE(spapr);
    DeviceMemoryState *dms = machine->device_memory;

    if (addr < machine->ram_size) {
        return true;
    }
    if ((addr >= dms->base)
        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
        return true;
    }

    return false;
}

static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
                            target_ulong opcode, target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong ptex = args[1];
    target_ulong pteh = args[2];
    target_ulong ptel = args[3];
    unsigned apshift;
    target_ulong raddr;
    target_ulong slot;
    const ppc_hash_pte64_t *hptes;

    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
    if (!apshift) {
        /* Bad page size encoding */
        return H_PARAMETER;
    }

    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);

    if (is_ram_address(spapr, raddr)) {
        /* Regular RAM - should have WIMG=0010 */
        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
            return H_PARAMETER;
        }
    } else {
        target_ulong wimg_flags;
        /* Looks like an IO address */
        /* FIXME: What WIMG combinations could be sensible for IO?
         * For now we allow WIMG=010x, but are there others? */
        /* FIXME: Should we check against registered IO addresses? */
        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));

        if (wimg_flags != HPTE64_R_I &&
            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
            return H_PARAMETER;
        }
    }

    pteh &= ~0x60ULL;

    if (!valid_ptex(cpu, ptex)) {
        return H_PARAMETER;
    }

    slot = ptex & 7ULL;
    ptex = ptex & ~7ULL;

    if (likely((flags & H_EXACT) == 0)) {
        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
        for (slot = 0; slot < 8; slot++) {
            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
                break;
            }
        }
        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
        if (slot == 8) {
            return H_PTEG_FULL;
        }
    } else {
        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
            return H_PTEG_FULL;
        }
        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
    }

    spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);

    args[0] = ptex + slot;
    return H_SUCCESS;
}

typedef enum {
    REMOVE_SUCCESS = 0,
    REMOVE_NOT_FOUND = 1,
    REMOVE_PARM = 2,
    REMOVE_HW = 3,
} RemoveResult;

static RemoveResult remove_hpte(PowerPCCPU *cpu
                                , target_ulong ptex,
                                target_ulong avpn,
                                target_ulong flags,
                                target_ulong *vp, target_ulong *rp)
{
    const ppc_hash_pte64_t *hptes;
    target_ulong v, r;

    if (!valid_ptex(cpu, ptex)) {
        return REMOVE_PARM;
    }

    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
    v = ppc_hash64_hpte0(cpu, hptes, 0);
    r = ppc_hash64_hpte1(cpu, hptes, 0);
    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);

    if ((v & HPTE64_V_VALID) == 0 ||
        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
        return REMOVE_NOT_FOUND;
    }
    *vp = v;
    *rp = r;
    spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
    return REMOVE_SUCCESS;
}

static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
                             target_ulong opcode, target_ulong *args)
{
    CPUPPCState *env = &cpu->env;
    target_ulong flags = args[0];
    target_ulong ptex = args[1];
    target_ulong avpn = args[2];
    RemoveResult ret;

    ret = remove_hpte(cpu, ptex, avpn, flags,
                      &args[0], &args[1]);

    switch (ret) {
    case REMOVE_SUCCESS:
        check_tlb_flush(env, true);
        return H_SUCCESS;

    case REMOVE_NOT_FOUND:
        return H_NOT_FOUND;

    case REMOVE_PARM:
        return H_PARAMETER;

    case REMOVE_HW:
        return H_HARDWARE;
    }

    g_assert_not_reached();
}

#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
#define   H_BULK_REMOVE_END            0xc000000000000000ULL
#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL

#define H_BULK_REMOVE_MAX_BATCH        4

static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                  target_ulong opcode, target_ulong *args)
{
    CPUPPCState *env = &cpu->env;
    int i;
    target_ulong rc = H_SUCCESS;

    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
        target_ulong *tsh = &args[i*2];
        target_ulong tsl = args[i*2 + 1];
        target_ulong v, r, ret;

        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
            break;
        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
            return H_PARAMETER;
        }

        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
        *tsh |= H_BULK_REMOVE_RESPONSE;

        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
            *tsh |= H_BULK_REMOVE_PARM;
            return H_PARAMETER;
        }

        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
                          &v, &r);

        *tsh |= ret << 60;

        switch (ret) {
        case REMOVE_SUCCESS:
            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
            break;

        case REMOVE_PARM:
            rc = H_PARAMETER;
            goto exit;

        case REMOVE_HW:
            rc = H_HARDWARE;
            goto exit;
        }
    }
 exit:
    check_tlb_flush(env, true);

    return rc;
}

static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
                              target_ulong opcode, target_ulong *args)
{
    CPUPPCState *env = &cpu->env;
    target_ulong flags = args[0];
    target_ulong ptex = args[1];
    target_ulong avpn = args[2];
    const ppc_hash_pte64_t *hptes;
    target_ulong v, r;

    if (!valid_ptex(cpu, ptex)) {
        return H_PARAMETER;
    }

    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
    v = ppc_hash64_hpte0(cpu, hptes, 0);
    r = ppc_hash64_hpte1(cpu, hptes, 0);
    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);

    if ((v & HPTE64_V_VALID) == 0 ||
        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
        return H_NOT_FOUND;
    }

    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
    r |= (flags << 55) & HPTE64_R_PP0;
    r |= (flags << 48) & HPTE64_R_KEY_HI;
    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
    spapr_store_hpte(cpu, ptex,
                     (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
    /* Flush the tlb */
    check_tlb_flush(env, true);
    /* Don't need a memory barrier, due to qemu's global lock */
    spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
    return H_SUCCESS;
}

static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong ptex = args[1];
    int i, ridx, n_entries = 1;
    const ppc_hash_pte64_t *hptes;

    if (!valid_ptex(cpu, ptex)) {
        return H_PARAMETER;
    }

    if (flags & H_READ_4) {
        /* Clear the two low order bits */
        ptex &= ~(3ULL);
        n_entries = 4;
    }

    hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
    for (i = 0, ridx = 0; i < n_entries; i++) {
        args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
        args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
    }
    ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);

    return H_SUCCESS;
}

struct SpaprPendingHpt {
    /* These fields are read-only after initialization */
    int shift;
    QemuThread thread;

    /* These fields are protected by the BQL */
    bool complete;

    /* These fields are private to the preparation thread if
     * !complete, otherwise protected by the BQL */
    int ret;
    void *hpt;
};

static void free_pending_hpt(SpaprPendingHpt *pending)
{
    if (pending->hpt) {
        qemu_vfree(pending->hpt);
    }

    g_free(pending);
}

static void *hpt_prepare_thread(void *opaque)
{
    SpaprPendingHpt *pending = opaque;
    size_t size = 1ULL << pending->shift;

    pending->hpt = qemu_memalign(size, size);
    if (pending->hpt) {
        memset(pending->hpt, 0, size);
        pending->ret = H_SUCCESS;
    } else {
        pending->ret = H_NO_MEM;
    }

    qemu_mutex_lock_iothread();

    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
        /* Ready to go */
        pending->complete = true;
    } else {
        /* We've been cancelled, clean ourselves up */
        free_pending_hpt(pending);
    }

    qemu_mutex_unlock_iothread();
    return NULL;
}

/* Must be called with BQL held */
static void cancel_hpt_prepare(SpaprMachineState *spapr)
{
    SpaprPendingHpt *pending = spapr->pending_hpt;

    /* Let the thread know it's cancelled */
    spapr->pending_hpt = NULL;

    if (!pending) {
        /* Nothing to do */
        return;
    }

    if (!pending->complete) {
        /* thread will clean itself up */
        return;
    }

    free_pending_hpt(pending);
}

/* Convert a return code from the KVM ioctl()s implementing resize HPT
 * into a PAPR hypercall return code */
static target_ulong resize_hpt_convert_rc(int ret)
{
    if (ret >= 100000) {
        return H_LONG_BUSY_ORDER_100_SEC;
    } else if (ret >= 10000) {
        return H_LONG_BUSY_ORDER_10_SEC;
    } else if (ret >= 1000) {
        return H_LONG_BUSY_ORDER_1_SEC;
    } else if (ret >= 100) {
        return H_LONG_BUSY_ORDER_100_MSEC;
    } else if (ret >= 10) {
        return H_LONG_BUSY_ORDER_10_MSEC;
    } else if (ret > 0) {
        return H_LONG_BUSY_ORDER_1_MSEC;
    }

    switch (ret) {
    case 0:
        return H_SUCCESS;
    case -EPERM:
        return H_AUTHORITY;
    case -EINVAL:
        return H_PARAMETER;
    case -ENXIO:
        return H_CLOSED;
    case -ENOSPC:
        return H_PTEG_FULL;
    case -EBUSY:
        return H_BUSY;
    case -ENOMEM:
        return H_NO_MEM;
    default:
        return H_HARDWARE;
    }
}

static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
                                         SpaprMachineState *spapr,
                                         target_ulong opcode,
                                         target_ulong *args)
{
    target_ulong flags = args[0];
    int shift = args[1];
    SpaprPendingHpt *pending = spapr->pending_hpt;
    uint64_t current_ram_size;
    int rc;

    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
        return H_AUTHORITY;
    }

    if (!spapr->htab_shift) {
        /* Radix guest, no HPT */
        return H_NOT_AVAILABLE;
    }

    trace_spapr_h_resize_hpt_prepare(flags, shift);

    if (flags != 0) {
        return H_PARAMETER;
    }

    if (shift && ((shift < 18) || (shift > 46))) {
        return H_PARAMETER;
    }

    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();

    /* We only allow the guest to allocate an HPT one order above what
     * we'd normally give them (to stop a small guest claiming a huge
     * chunk of resources in the HPT */
    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
        return H_RESOURCE;
    }

    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
    if (rc != -ENOSYS) {
        return resize_hpt_convert_rc(rc);
    }

    if (pending) {
        /* something already in progress */
        if (pending->shift == shift) {
            /* and it's suitable */
            if (pending->complete) {
                return pending->ret;
            } else {
                return H_LONG_BUSY_ORDER_100_MSEC;
            }
        }

        /* not suitable, cancel and replace */
        cancel_hpt_prepare(spapr);
    }

    if (!shift) {
        /* nothing to do */
        return H_SUCCESS;
    }

    /* start new prepare */

    pending = g_new0(SpaprPendingHpt, 1);
    pending->shift = shift;
    pending->ret = H_HARDWARE;

    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);

    spapr->pending_hpt = pending;

    /* In theory we could estimate the time more accurately based on
     * the new size, but there's not much point */
    return H_LONG_BUSY_ORDER_100_MSEC;
}

static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
{
    uint8_t *addr = htab;

    addr += pteg * HASH_PTEG_SIZE_64;
    addr += slot * HASH_PTE_SIZE_64;
    return  ldq_p(addr);
}

static void new_hpte_store(void *htab, uint64_t pteg, int slot,
                           uint64_t pte0, uint64_t pte1)
{
    uint8_t *addr = htab;

    addr += pteg * HASH_PTEG_SIZE_64;
    addr += slot * HASH_PTE_SIZE_64;

    stq_p(addr, pte0);
    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
}

static int rehash_hpte(PowerPCCPU *cpu,
                       const ppc_hash_pte64_t *hptes,
                       void *old_hpt, uint64_t oldsize,
                       void *new_hpt, uint64_t newsize,
                       uint64_t pteg, int slot)
{
    uint64_t old_hash_mask = (oldsize >> 7) - 1;
    uint64_t new_hash_mask = (newsize >> 7) - 1;
    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
    target_ulong pte1;
    uint64_t avpn;
    unsigned base_pg_shift;
    uint64_t hash, new_pteg, replace_pte0;

    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
        return H_SUCCESS;
    }

    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);

    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);

    if (pte0 & HPTE64_V_SECONDARY) {
        pteg = ~pteg;
    }

    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
        uint64_t offset, vsid;

        /* We only have 28 - 23 bits of offset in avpn */
        offset = (avpn & 0x1f) << 23;
        vsid = avpn >> 5;
        /* We can find more bits from the pteg value */
        if (base_pg_shift < 23) {
            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
        }

        hash = vsid ^ (offset >> base_pg_shift);
    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
        uint64_t offset, vsid;

        /* We only have 40 - 23 bits of seg_off in avpn */
        offset = (avpn & 0x1ffff) << 23;
        vsid = avpn >> 17;
        if (base_pg_shift < 23) {
            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
                << base_pg_shift;
        }

        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
    } else {
        error_report("rehash_pte: Bad segment size in HPTE");
        return H_HARDWARE;
    }

    new_pteg = hash & new_hash_mask;
    if (pte0 & HPTE64_V_SECONDARY) {
        assert(~pteg == (hash & old_hash_mask));
        new_pteg = ~new_pteg;
    } else {
        assert(pteg == (hash & old_hash_mask));
    }
    assert((oldsize != newsize) || (pteg == new_pteg));
    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
    /*
     * Strictly speaking, we don't need all these tests, since we only
     * ever rehash bolted HPTEs.  We might in future handle non-bolted
     * HPTEs, though so make the logic correct for those cases as
     * well.
     */
    if (replace_pte0 & HPTE64_V_VALID) {
        assert(newsize < oldsize);
        if (replace_pte0 & HPTE64_V_BOLTED) {
            if (pte0 & HPTE64_V_BOLTED) {
                /* Bolted collision, nothing we can do */
                return H_PTEG_FULL;
            } else {
                /* Discard this hpte */
                return H_SUCCESS;
            }
        }
    }

    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
    return H_SUCCESS;
}

static int rehash_hpt(PowerPCCPU *cpu,
                      void *old_hpt, uint64_t oldsize,
                      void *new_hpt, uint64_t newsize)
{
    uint64_t n_ptegs = oldsize >> 7;
    uint64_t pteg;
    int slot;
    int rc;

    for (pteg = 0; pteg < n_ptegs; pteg++) {
        hwaddr ptex = pteg * HPTES_PER_GROUP;
        const ppc_hash_pte64_t *hptes
            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);

        if (!hptes) {
            return H_HARDWARE;
        }

        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
                             pteg, slot);
            if (rc != H_SUCCESS) {
                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
                return rc;
            }
        }
        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
    }

    return H_SUCCESS;
}

static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
{
    int ret;

    cpu_synchronize_state(cs);

    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
    if (ret < 0) {
        error_report("failed to push sregs to KVM: %s", strerror(-ret));
        exit(1);
    }
}

static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
{
    CPUState *cs;

    /*
     * This is a hack for the benefit of KVM PR - it abuses the SDR1
     * slot in kvm_sregs to communicate the userspace address of the
     * HPT
     */
    if (!kvm_enabled() || !spapr->htab) {
        return;
    }

    CPU_FOREACH(cs) {
        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
    }
}

static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
                                        SpaprMachineState *spapr,
                                        target_ulong opcode,
                                        target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong shift = args[1];
    SpaprPendingHpt *pending = spapr->pending_hpt;
    int rc;
    size_t newsize;

    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
        return H_AUTHORITY;
    }

    if (!spapr->htab_shift) {
        /* Radix guest, no HPT */
        return H_NOT_AVAILABLE;
    }

    trace_spapr_h_resize_hpt_commit(flags, shift);

    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
    if (rc != -ENOSYS) {
        rc = resize_hpt_convert_rc(rc);
        if (rc == H_SUCCESS) {
            /* Need to set the new htab_shift in the machine state */
            spapr->htab_shift = shift;
        }
        return rc;
    }

    if (flags != 0) {
        return H_PARAMETER;
    }

    if (!pending || (pending->shift != shift)) {
        /* no matching prepare */
        return H_CLOSED;
    }

    if (!pending->complete) {
        /* prepare has not completed */
        return H_BUSY;
    }

    /* Shouldn't have got past PREPARE without an HPT */
    g_assert(spapr->htab_shift);

    newsize = 1ULL << pending->shift;
    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
                    pending->hpt, newsize);
    if (rc == H_SUCCESS) {
        qemu_vfree(spapr->htab);
        spapr->htab = pending->hpt;
        spapr->htab_shift = pending->shift;

        push_sregs_to_kvm_pr(spapr);

        pending->hpt = NULL; /* so it's not free()d */
    }

    /* Clean up */
    spapr->pending_hpt = NULL;
    free_pending_hpt(pending);

    return rc;
}

static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    cpu_synchronize_state(CPU(cpu));
    cpu->env.spr[SPR_SPRG0] = args[0];

    return H_SUCCESS;
}

static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
                               target_ulong opcode, target_ulong *args)
{
    if (!has_spr(cpu, SPR_DABR)) {
        return H_HARDWARE;              /* DABR register not available */
    }
    cpu_synchronize_state(CPU(cpu));

    if (has_spr(cpu, SPR_DABRX)) {
        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
        return H_RESERVED_DABR;
    }

    cpu->env.spr[SPR_DABR] = args[0];
    return H_SUCCESS;
}

static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    target_ulong dabrx = args[1];

    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
        return H_HARDWARE;
    }

    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
        return H_PARAMETER;
    }

    cpu_synchronize_state(CPU(cpu));
    cpu->env.spr[SPR_DABRX] = dabrx;
    cpu->env.spr[SPR_DABR] = args[0];

    return H_SUCCESS;
}

static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    target_ulong flags = args[0];
    hwaddr dst = args[1];
    hwaddr src = args[2];
    hwaddr len = TARGET_PAGE_SIZE;
    uint8_t *pdst, *psrc;
    target_long ret = H_SUCCESS;

    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
                  | H_COPY_PAGE | H_ZERO_PAGE)) {
        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
                      flags);
        return H_PARAMETER;
    }

    /* Map-in destination */
    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
        return H_PARAMETER;
    }
    pdst = cpu_physical_memory_map(dst, &len, 1);
    if (!pdst || len != TARGET_PAGE_SIZE) {
        return H_PARAMETER;
    }

    if (flags & H_COPY_PAGE) {
        /* Map-in source, copy to destination, and unmap source again */
        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
            ret = H_PARAMETER;
            goto unmap_out;
        }
        psrc = cpu_physical_memory_map(src, &len, 0);
        if (!psrc || len != TARGET_PAGE_SIZE) {
            ret = H_PARAMETER;
            goto unmap_out;
        }
        memcpy(pdst, psrc, len);
        cpu_physical_memory_unmap(psrc, len, 0, len);
    } else if (flags & H_ZERO_PAGE) {
        memset(pdst, 0, len);          /* Just clear the destination page */
    }

    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
        kvmppc_dcbst_range(cpu, pdst, len);
    }
    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
        if (kvm_enabled()) {
            kvmppc_icbi_range(cpu, pdst, len);
        } else {
            tb_flush(CPU(cpu));
        }
    }

unmap_out:
    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
    return ret;
}

#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL

static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    uint16_t size;
    uint8_t tmp;

    if (vpa == 0) {
        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
        return H_HARDWARE;
    }

    if (vpa % env->dcache_line_size) {
        return H_PARAMETER;
    }
    /* FIXME: bounds check the address */

    size = lduw_be_phys(cs->as, vpa + 0x4);

    if (size < VPA_MIN_SIZE) {
        return H_PARAMETER;
    }

    /* VPA is not allowed to cross a page boundary */
    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
        return H_PARAMETER;
    }

    spapr_cpu->vpa_addr = vpa;

    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
    tmp |= VPA_SHARED_PROC_VAL;
    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);

    return H_SUCCESS;
}

static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
{
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);

    if (spapr_cpu->slb_shadow_addr) {
        return H_RESOURCE;
    }

    if (spapr_cpu->dtl_addr) {
        return H_RESOURCE;
    }

    spapr_cpu->vpa_addr = 0;
    return H_SUCCESS;
}

static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    uint32_t size;

    if (addr == 0) {
        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
        return H_HARDWARE;
    }

    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
    if (size < 0x8) {
        return H_PARAMETER;
    }

    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
        return H_PARAMETER;
    }

    if (!spapr_cpu->vpa_addr) {
        return H_RESOURCE;
    }

    spapr_cpu->slb_shadow_addr = addr;
    spapr_cpu->slb_shadow_size = size;

    return H_SUCCESS;
}

static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
{
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);

    spapr_cpu->slb_shadow_addr = 0;
    spapr_cpu->slb_shadow_size = 0;
    return H_SUCCESS;
}

static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
{
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
    uint32_t size;

    if (addr == 0) {
        hcall_dprintf("Can't cope with DTL at logical 0\n");
        return H_HARDWARE;
    }

    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);

    if (size < 48) {
        return H_PARAMETER;
    }

    if (!spapr_cpu->vpa_addr) {
        return H_RESOURCE;
    }

    spapr_cpu->dtl_addr = addr;
    spapr_cpu->dtl_size = size;

    return H_SUCCESS;
}

static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
{
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);

    spapr_cpu->dtl_addr = 0;
    spapr_cpu->dtl_size = 0;

    return H_SUCCESS;
}

static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                   target_ulong opcode, target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong procno = args[1];
    target_ulong vpa = args[2];
    target_ulong ret = H_PARAMETER;
    PowerPCCPU *tcpu;

    tcpu = spapr_find_cpu(procno);
    if (!tcpu) {
        return H_PARAMETER;
    }

    switch (flags) {
    case FLAGS_REGISTER_VPA:
        ret = register_vpa(tcpu, vpa);
        break;

    case FLAGS_DEREGISTER_VPA:
        ret = deregister_vpa(tcpu, vpa);
        break;

    case FLAGS_REGISTER_SLBSHADOW:
        ret = register_slb_shadow(tcpu, vpa);
        break;

    case FLAGS_DEREGISTER_SLBSHADOW:
        ret = deregister_slb_shadow(tcpu, vpa);
        break;

    case FLAGS_REGISTER_DTL:
        ret = register_dtl(tcpu, vpa);
        break;

    case FLAGS_DEREGISTER_DTL:
        ret = deregister_dtl(tcpu, vpa);
        break;
    }

    return ret;
}

static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);

    env->msr |= (1ULL << MSR_EE);
    hreg_compute_hflags(env);

    if (spapr_cpu->prod) {
        spapr_cpu->prod = false;
        return H_SUCCESS;
    }

    if (!cpu_has_work(cs)) {
        cs->halted = 1;
        cs->exception_index = EXCP_HLT;
        cs->exit_request = 1;
    }

    return H_SUCCESS;
}

/*
 * Confer to self, aka join. Cede could use the same pattern as well, if
 * EXCP_HLT can be changed to ECXP_HALTED.
 */
static target_ulong h_confer_self(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);

    if (spapr_cpu->prod) {
        spapr_cpu->prod = false;
        return H_SUCCESS;
    }
    cs->halted = 1;
    cs->exception_index = EXCP_HALTED;
    cs->exit_request = 1;

    return H_SUCCESS;
}

static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    CPUPPCState *env = &cpu->env;
    CPUState *cs;
    bool last_unjoined = true;

    if (env->msr & (1ULL << MSR_EE)) {
        return H_BAD_MODE;
    }

    /*
     * Must not join the last CPU running. Interestingly, no such restriction
     * for H_CONFER-to-self, but that is probably not intended to be used
     * when H_JOIN is available.
     */
    CPU_FOREACH(cs) {
        PowerPCCPU *c = POWERPC_CPU(cs);
        CPUPPCState *e = &c->env;
        if (c == cpu) {
            continue;
        }

        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
            last_unjoined = false;
            break;
        }
    }
    if (last_unjoined) {
        return H_CONTINUE;
    }

    return h_confer_self(cpu);
}

static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    target_long target = args[0];
    uint32_t dispatch = args[1];
    CPUState *cs = CPU(cpu);
    SpaprCpuState *spapr_cpu;

    /*
     * -1 means confer to all other CPUs without dispatch counter check,
     *  otherwise it's a targeted confer.
     */
    if (target != -1) {
        PowerPCCPU *target_cpu = spapr_find_cpu(target);
        uint32_t target_dispatch;

        if (!target_cpu) {
            return H_PARAMETER;
        }

        /*
         * target == self is a special case, we wait until prodded, without
         * dispatch counter check.
         */
        if (cpu == target_cpu) {
            return h_confer_self(cpu);
        }

        spapr_cpu = spapr_cpu_state(target_cpu);
        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
            return H_SUCCESS;
        }

        target_dispatch = ldl_be_phys(cs->as,
                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
        if (target_dispatch != dispatch) {
            return H_SUCCESS;
        }

        /*
         * The targeted confer does not do anything special beyond yielding
         * the current vCPU, but even this should be better than nothing.
         * At least for single-threaded tcg, it gives the target a chance to
         * run before we run again. Multi-threaded tcg does not really do
         * anything with EXCP_YIELD yet.
         */
    }

    cs->exception_index = EXCP_YIELD;
    cs->exit_request = 1;
    cpu_loop_exit(cs);

    return H_SUCCESS;
}

static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    target_long target = args[0];
    PowerPCCPU *tcpu;
    CPUState *cs;
    SpaprCpuState *spapr_cpu;

    tcpu = spapr_find_cpu(target);
    cs = CPU(tcpu);
    if (!cs) {
        return H_PARAMETER;
    }

    spapr_cpu = spapr_cpu_state(tcpu);
    spapr_cpu->prod = true;
    cs->halted = 0;
    qemu_cpu_kick(cs);

    return H_SUCCESS;
}

static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
                           target_ulong opcode, target_ulong *args)
{
    target_ulong rtas_r3 = args[0];
    uint32_t token = rtas_ld(rtas_r3, 0);
    uint32_t nargs = rtas_ld(rtas_r3, 1);
    uint32_t nret = rtas_ld(rtas_r3, 2);

    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
                           nret, rtas_r3 + 12 + 4*nargs);
}

static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                   target_ulong opcode, target_ulong *args)
{
    CPUState *cs = CPU(cpu);
    target_ulong size = args[0];
    target_ulong addr = args[1];

    switch (size) {
    case 1:
        args[0] = ldub_phys(cs->as, addr);
        return H_SUCCESS;
    case 2:
        args[0] = lduw_phys(cs->as, addr);
        return H_SUCCESS;
    case 4:
        args[0] = ldl_phys(cs->as, addr);
        return H_SUCCESS;
    case 8:
        args[0] = ldq_phys(cs->as, addr);
        return H_SUCCESS;
    }
    return H_PARAMETER;
}

static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                    target_ulong opcode, target_ulong *args)
{
    CPUState *cs = CPU(cpu);

    target_ulong size = args[0];
    target_ulong addr = args[1];
    target_ulong val  = args[2];

    switch (size) {
    case 1:
        stb_phys(cs->as, addr, val);
        return H_SUCCESS;
    case 2:
        stw_phys(cs->as, addr, val);
        return H_SUCCESS;
    case 4:
        stl_phys(cs->as, addr, val);
        return H_SUCCESS;
    case 8:
        stq_phys(cs->as, addr, val);
        return H_SUCCESS;
    }
    return H_PARAMETER;
}

static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                    target_ulong opcode, target_ulong *args)
{
    CPUState *cs = CPU(cpu);

    target_ulong dst   = args[0]; /* Destination address */
    target_ulong src   = args[1]; /* Source address */
    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
    target_ulong count = args[3]; /* Element count */
    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
    uint64_t tmp;
    unsigned int mask = (1 << esize) - 1;
    int step = 1 << esize;

    if (count > 0x80000000) {
        return H_PARAMETER;
    }

    if ((dst & mask) || (src & mask) || (op > 1)) {
        return H_PARAMETER;
    }

    if (dst >= src && dst < (src + (count << esize))) {
            dst = dst + ((count - 1) << esize);
            src = src + ((count - 1) << esize);
            step = -step;
    }

    while (count--) {
        switch (esize) {
        case 0:
            tmp = ldub_phys(cs->as, src);
            break;
        case 1:
            tmp = lduw_phys(cs->as, src);
            break;
        case 2:
            tmp = ldl_phys(cs->as, src);
            break;
        case 3:
            tmp = ldq_phys(cs->as, src);
            break;
        default:
            return H_PARAMETER;
        }
        if (op == 1) {
            tmp = ~tmp;
        }
        switch (esize) {
        case 0:
            stb_phys(cs->as, dst, tmp);
            break;
        case 1:
            stw_phys(cs->as, dst, tmp);
            break;
        case 2:
            stl_phys(cs->as, dst, tmp);
            break;
        case 3:
            stq_phys(cs->as, dst, tmp);
            break;
        }
        dst = dst + step;
        src = src + step;
    }

    return H_SUCCESS;
}

static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                   target_ulong opcode, target_ulong *args)
{
    /* Nothing to do on emulation, KVM will trap this in the kernel */
    return H_SUCCESS;
}

static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                   target_ulong opcode, target_ulong *args)
{
    /* Nothing to do on emulation, KVM will trap this in the kernel */
    return H_SUCCESS;
}

static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
                                           target_ulong mflags,
                                           target_ulong value1,
                                           target_ulong value2)
{
    if (value1) {
        return H_P3;
    }
    if (value2) {
        return H_P4;
    }

    switch (mflags) {
    case H_SET_MODE_ENDIAN_BIG:
        spapr_set_all_lpcrs(0, LPCR_ILE);
        spapr_pci_switch_vga(true);
        return H_SUCCESS;

    case H_SET_MODE_ENDIAN_LITTLE:
        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
        spapr_pci_switch_vga(false);
        return H_SUCCESS;
    }

    return H_UNSUPPORTED_FLAG;
}

static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
                                                        target_ulong mflags,
                                                        target_ulong value1,
                                                        target_ulong value2)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);

    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
        return H_P2;
    }
    if (value1) {
        return H_P3;
    }
    if (value2) {
        return H_P4;
    }

    if (mflags == AIL_RESERVED) {
        return H_UNSUPPORTED_FLAG;
    }

    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);

    return H_SUCCESS;
}

static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
                               target_ulong opcode, target_ulong *args)
{
    target_ulong resource = args[1];
    target_ulong ret = H_P2;

    switch (resource) {
    case H_SET_MODE_RESOURCE_LE:
        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
        break;
    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
                                                  args[2], args[3]);
        break;
    }

    return ret;
}

static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
                  opcode, " (H_CLEAN_SLB)");
    return H_FUNCTION;
}

static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                     target_ulong opcode, target_ulong *args)
{
    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
                  opcode, " (H_INVALIDATE_PID)");
    return H_FUNCTION;
}

static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
                                       uint64_t patbe_old, uint64_t patbe_new)
{
    /*
     * We have 4 Options:
     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
     * HASH->RADIX                                  : Free HPT
     * RADIX->HASH                                  : Allocate HPT
     * NOTHING->HASH                                : Allocate HPT
     * Note: NOTHING implies the case where we said the guest could choose
     *       later and so assumed radix and now it's called H_REG_PROC_TBL
     */

    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
        /* We assume RADIX, so this catches all the "Do Nothing" cases */
    } else if (!(patbe_old & PATE1_GR)) {
        /* HASH->RADIX : Free HPT */
        spapr_free_hpt(spapr);
    } else if (!(patbe_new & PATE1_GR)) {
        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
        spapr_setup_hpt_and_vrma(spapr);
    }
    return;
}

#define FLAGS_MASK              0x01FULL
#define FLAG_MODIFY             0x10
#define FLAG_REGISTER           0x08
#define FLAG_RADIX              0x04
#define FLAG_HASH_PROC_TBL      0x02
#define FLAG_GTSE               0x01

static target_ulong h_register_process_table(PowerPCCPU *cpu,
                                             SpaprMachineState *spapr,
                                             target_ulong opcode,
                                             target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong proc_tbl = args[1];
    target_ulong page_size = args[2];
    target_ulong table_size = args[3];
    target_ulong update_lpcr = 0;
    uint64_t cproc;

    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
        return H_PARAMETER;
    }
    if (flags & FLAG_MODIFY) {
        if (flags & FLAG_REGISTER) {
            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
                if (proc_tbl & 0xfff || proc_tbl >> 60) {
                    return H_P2;
                } else if (page_size) {
                    return H_P3;
                } else if (table_size > 24) {
                    return H_P4;
                }
                cproc = PATE1_GR | proc_tbl | table_size;
            } else { /* Register new HPT process table */
                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
                    /* TODO - Not Supported */
                    /* Technically caused by flag bits => H_PARAMETER */
                    return H_PARAMETER;
                } else { /* Hash with SLB */
                    if (proc_tbl >> 38) {
                        return H_P2;
                    } else if (page_size & ~0x7) {
                        return H_P3;
                    } else if (table_size > 24) {
                        return H_P4;
                    }
                }
                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
            }

        } else { /* Deregister current process table */
            /*
             * Set to benign value: (current GR) | 0. This allows
             * deregistration in KVM to succeed even if the radix bit
             * in flags doesn't match the radix bit in the old PATE.
             */
            cproc = spapr->patb_entry & PATE1_GR;
        }
    } else { /* Maintain current registration */
        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
            /* Technically caused by flag bits => H_PARAMETER */
            return H_PARAMETER; /* Existing Process Table Mismatch */
        }
        cproc = spapr->patb_entry;
    }

    /* Check if we need to setup OR free the hpt */
    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);

    spapr->patb_entry = cproc; /* Save new process table */

    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
        update_lpcr |= (LPCR_UPRT | LPCR_HR);
    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
        update_lpcr |= LPCR_UPRT;
    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
        update_lpcr |= LPCR_GTSE;

    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);

    if (kvm_enabled()) {
        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
                                       flags & FLAG_GTSE, cproc);
    }
    return H_SUCCESS;
}

#define H_SIGNAL_SYS_RESET_ALL         -1
#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2

static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
                                       SpaprMachineState *spapr,
                                       target_ulong opcode, target_ulong *args)
{
    target_long target = args[0];
    CPUState *cs;

    if (target < 0) {
        /* Broadcast */
        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
            return H_PARAMETER;
        }

        CPU_FOREACH(cs) {
            PowerPCCPU *c = POWERPC_CPU(cs);

            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
                if (c == cpu) {
                    continue;
                }
            }
            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
        }
        return H_SUCCESS;

    } else {
        /* Unicast */
        cs = CPU(spapr_find_cpu(target));
        if (cs) {
            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
            return H_SUCCESS;
        }
        return H_PARAMETER;
    }
}

static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
                              target_ulong *addr, bool *raw_mode_supported,
                              Error **errp)
{
    bool explicit_match = false; /* Matched the CPU's real PVR */
    uint32_t max_compat = spapr->max_compat_pvr;
    uint32_t best_compat = 0;
    int i;

    /*
     * We scan the supplied table of PVRs looking for two things
     *   1. Is our real CPU PVR in the list?
     *   2. What's the "best" listed logical PVR
     */
    for (i = 0; i < 512; ++i) {
        uint32_t pvr, pvr_mask;

        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
        *addr += 8;

        if (~pvr_mask & pvr) {
            break; /* Terminator record */
        }

        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
            explicit_match = true;
        } else {
            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
                best_compat = pvr;
            }
        }
    }

    if ((best_compat == 0) && (!explicit_match || max_compat)) {
        /* We couldn't find a suitable compatibility mode, and either
         * the guest doesn't support "raw" mode for this CPU, or raw
         * mode is disabled because a maximum compat mode is set */
        error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
        return 0;
    }

    *raw_mode_supported = explicit_match;

    /* Parsing finished */
    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);

    return best_compat;
}

static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
                                                  SpaprMachineState *spapr,
                                                  target_ulong opcode,
                                                  target_ulong *args)
{
    /* Working address in data buffer */
    target_ulong addr = ppc64_phys_to_real(args[0]);
    target_ulong ov_table;
    uint32_t cas_pvr;
    SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
    bool guest_radix;
    Error *local_err = NULL;
    bool raw_mode_supported = false;
    bool guest_xive;

    cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
    if (local_err) {
        error_report_err(local_err);
        return H_HARDWARE;
    }

    /* Update CPUs */
    if (cpu->compat_pvr != cas_pvr) {
        ppc_set_compat_all(cas_pvr, &local_err);
        if (local_err) {
            /* We fail to set compat mode (likely because running with KVM PR),
             * but maybe we can fallback to raw mode if the guest supports it.
             */
            if (!raw_mode_supported) {
                error_report_err(local_err);
                return H_HARDWARE;
            }
            error_free(local_err);
            local_err = NULL;
        }
    }

    /* For the future use: here @ov_table points to the first option vector */
    ov_table = addr;

    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
        error_report("guest requested hash and radix MMU, which is invalid.");
        exit(EXIT_FAILURE);
    }
    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
        error_report("guest requested an invalid interrupt mode");
        exit(EXIT_FAILURE);
    }

    /* The radix/hash bit in byte 24 requires special handling: */
    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
    spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);

    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);

    /*
     * HPT resizing is a bit of a special case, because when enabled
     * we assume an HPT guest will support it until it says it
     * doesn't, instead of assuming it won't support it until it says
     * it does.  Strictly speaking that approach could break for
     * guests which don't make a CAS call, but those are so old we
     * don't care about them.  Without that assumption we'd have to
     * make at least a temporary allocation of an HPT sized for max
     * memory, which could be impossibly difficult under KVM HV if
     * maxram is large.
     */
    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);

        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
            error_report(
                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
            exit(1);
        }

        if (spapr->htab_shift < maxshift) {
            /* Guest doesn't know about HPT resizing, so we
             * pre-emptively resize for the maximum permitted RAM.  At
             * the point this is called, nothing should have been
             * entered into the existing HPT */
            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
            push_sregs_to_kvm_pr(spapr);
        }
    }

    /* NOTE: there are actually a number of ov5 bits where input from the
     * guest is always zero, and the platform/QEMU enables them independently
     * of guest input. To model these properly we'd want some sort of mask,
     * but since they only currently apply to memory migration as defined
     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
     * to worry about this for now.
     */
    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);

    /* also clear the radix/hash bit from the current ov5_cas bits to
     * be in sync with the newly ov5 bits. Else the radix bit will be
     * seen as being removed and this will generate a reset loop
     */
    spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);

    /* full range of negotiated ov5 capabilities */
    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
    spapr_ovec_cleanup(ov5_guest);
    /* capabilities that have been added since CAS-generated guest reset.
     * if capabilities have since been removed, generate another reset
     */
    ov5_updates = spapr_ovec_new();
    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
                                        ov5_cas_old, spapr->ov5_cas);
    spapr_ovec_cleanup(ov5_cas_old);
    /* Now that processing is finished, set the radix/hash bit for the
     * guest if it requested a valid mode; otherwise terminate the boot. */
    if (guest_radix) {
        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
            error_report("Guest requested unavailable MMU mode (radix).");
            exit(EXIT_FAILURE);
        }
        spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
    } else {
        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
            && !kvmppc_has_cap_mmu_hash_v3()) {
            error_report("Guest requested unavailable MMU mode (hash).");
            exit(EXIT_FAILURE);
        }
    }
    spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
                                                          OV1_PPC_3_00);
    spapr_ovec_cleanup(ov1_guest);
    if (!spapr->cas_reboot) {
        /* If spapr_machine_reset() did not set up a HPT but one is necessary
         * (because the guest isn't going to use radix) then set it up here. */
        if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
            /* legacy hash or new hash: */
            spapr_setup_hpt_and_vrma(spapr);
        }
        spapr->cas_reboot =
            (spapr_h_cas_compose_response(spapr, args[1], args[2],
                                          ov5_updates) != 0);
    }

    /*
     * Ensure the guest asks for an interrupt mode we support; otherwise
     * terminate the boot.
     */
    if (guest_xive) {
        if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) {
            error_report(
"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
            exit(EXIT_FAILURE);
        }
    } else {
        if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) {
            error_report(
"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
            exit(EXIT_FAILURE);
        }
    }

    /*
     * Generate a machine reset when we have an update of the
     * interrupt mode. Only required when the machine supports both
     * modes.
     */
    if (!spapr->cas_reboot) {
        spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
            && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
    }

    spapr_ovec_cleanup(ov5_updates);

    if (spapr->cas_reboot) {
        qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET);
    }

    return H_SUCCESS;
}

static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
                                              SpaprMachineState *spapr,
                                              target_ulong opcode,
                                              target_ulong *args)
{
    target_ulong flags = args[0];
    target_ulong procno = args[1];
    PowerPCCPU *tcpu;
    int idx;

    /* only support procno from H_REGISTER_VPA */
    if (flags != 0x1) {
        return H_FUNCTION;
    }

    tcpu = spapr_find_cpu(procno);
    if (tcpu == NULL) {
        return H_P2;
    }

    /* sequence is the same as in the "ibm,associativity" property */

    idx = 0;
#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
                             ((uint64_t)(b) & 0xffffffff))
    args[idx++] = ASSOCIATIVITY(0, 0);
    args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
    args[idx++] = ASSOCIATIVITY(procno, -1);
    for ( ; idx < 6; idx++) {
        args[idx] = -1;
    }
#undef ASSOCIATIVITY

    return H_SUCCESS;
}

static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
                                              SpaprMachineState *spapr,
                                              target_ulong opcode,
                                              target_ulong *args)
{
    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
                               ~H_CPU_CHAR_THR_RECONF_TRIG;
    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
                                                     SPAPR_CAP_CCF_ASSIST);

    switch (safe_cache) {
    case SPAPR_CAP_WORKAROUND:
        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
        break;
    case SPAPR_CAP_FIXED:
        break;
    default: /* broken */
        assert(safe_cache == SPAPR_CAP_BROKEN);
        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
        break;
    }

    switch (safe_bounds_check) {
    case SPAPR_CAP_WORKAROUND:
        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
        break;
    case SPAPR_CAP_FIXED:
        break;
    default: /* broken */
        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
        break;
    }

    switch (safe_indirect_branch) {
    case SPAPR_CAP_FIXED_NA:
        break;
    case SPAPR_CAP_FIXED_CCD:
        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
        break;
    case SPAPR_CAP_FIXED_IBS:
        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
        break;
    case SPAPR_CAP_WORKAROUND:
        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
        if (count_cache_flush_assist) {
            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
        }
        break;
    default: /* broken */
        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
        break;
    }

    args[0] = characteristics;
    args[1] = behaviour;
    return H_SUCCESS;
}

static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    target_ulong dt = ppc64_phys_to_real(args[0]);
    struct fdt_header hdr = { 0 };
    unsigned cb;
    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
    void *fdt;

    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
    cb = fdt32_to_cpu(hdr.totalsize);

    if (!smc->update_dt_enabled) {
        return H_SUCCESS;
    }

    /* Check that the fdt did not grow out of proportion */
    if (cb > spapr->fdt_initial_size * 2) {
        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
                                          fdt32_to_cpu(hdr.magic));
        return H_PARAMETER;
    }

    fdt = g_malloc0(cb);
    cpu_physical_memory_read(dt, fdt, cb);

    /* Check the fdt consistency */
    if (fdt_check_full(fdt, cb)) {
        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
                                           fdt32_to_cpu(hdr.magic));
        return H_PARAMETER;
    }

    g_free(spapr->fdt_blob);
    spapr->fdt_size = cb;
    spapr->fdt_blob = fdt;
    trace_spapr_update_dt(cb);

    return H_SUCCESS;
}

static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];

void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
{
    spapr_hcall_fn *slot;

    if (opcode <= MAX_HCALL_OPCODE) {
        assert((opcode & 0x3) == 0);

        slot = &papr_hypercall_table[opcode / 4];
    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
        assert((opcode & 0x3) == 0);

        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
    } else {
        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));

        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
    }

    assert(!(*slot));
    *slot = fn;
}

target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
                             target_ulong *args)
{
    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());

    if ((opcode <= MAX_HCALL_OPCODE)
        && ((opcode & 0x3) == 0)) {
        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];

        if (fn) {
            return fn(cpu, spapr, opcode, args);
        }
    } else if ((opcode >= SVM_HCALL_BASE) &&
               (opcode <= SVM_HCALL_MAX)) {
        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];

        if (fn) {
            return fn(cpu, spapr, opcode, args);
        }
    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
               (opcode <= KVMPPC_HCALL_MAX)) {
        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];

        if (fn) {
            return fn(cpu, spapr, opcode, args);
        }
    }

    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
                  opcode);
    return H_FUNCTION;
}

static void hypercall_register_types(void)
{
    /* hcall-pft */
    spapr_register_hypercall(H_ENTER, h_enter);
    spapr_register_hypercall(H_REMOVE, h_remove);
    spapr_register_hypercall(H_PROTECT, h_protect);
    spapr_register_hypercall(H_READ, h_read);

    /* hcall-bulk */
    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);

    /* hcall-hpt-resize */
    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);

    /* hcall-splpar */
    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
    spapr_register_hypercall(H_CEDE, h_cede);
    spapr_register_hypercall(H_CONFER, h_confer);
    spapr_register_hypercall(H_PROD, h_prod);

    /* hcall-join */
    spapr_register_hypercall(H_JOIN, h_join);

    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);

    /* processor register resource access h-calls */
    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
    spapr_register_hypercall(H_SET_MODE, h_set_mode);

    /* In Memory Table MMU h-calls */
    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);

    /* hcall-get-cpu-characteristics */
    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
                             h_get_cpu_characteristics);

    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
     * here between the "CI" and the "CACHE" variants, they will use whatever
     * mapping attributes qemu is using. When using KVM, the kernel will
     * enforce the attributes more strongly
     */
    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);

    /* qemu/KVM-PPC specific hcalls */
    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);

    /* ibm,client-architecture-support support */
    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);

    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);

    /* Virtual Processor Home Node */
    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
                             h_home_node_associativity);
}

type_init(hypercall_register_types)