summaryrefslogtreecommitdiffstats
path: root/hw/riscv/numa.c
blob: 7fe92d402f697651c1856a60fc3fd481b2d5692e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
 * QEMU RISC-V NUMA Helper
 *
 * Copyright (c) 2020 Western Digital Corporation or its affiliates.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/riscv/numa.h"
#include "sysemu/device_tree.h"

static bool numa_enabled(const MachineState *ms)
{
    return (ms->numa_state && ms->numa_state->num_nodes) ? true : false;
}

int riscv_socket_count(const MachineState *ms)
{
    return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1;
}

int riscv_socket_first_hartid(const MachineState *ms, int socket_id)
{
    int i, first_hartid = ms->smp.cpus;

    if (!numa_enabled(ms)) {
        return (!socket_id) ? 0 : -1;
    }

    for (i = 0; i < ms->smp.cpus; i++) {
        if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
            continue;
        }
        if (i < first_hartid) {
            first_hartid = i;
        }
    }

    return (first_hartid < ms->smp.cpus) ? first_hartid : -1;
}

int riscv_socket_last_hartid(const MachineState *ms, int socket_id)
{
    int i, last_hartid = -1;

    if (!numa_enabled(ms)) {
        return (!socket_id) ? ms->smp.cpus - 1 : -1;
    }

    for (i = 0; i < ms->smp.cpus; i++) {
        if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
            continue;
        }
        if (i > last_hartid) {
            last_hartid = i;
        }
    }

    return (last_hartid < ms->smp.cpus) ? last_hartid : -1;
}

int riscv_socket_hart_count(const MachineState *ms, int socket_id)
{
    int first_hartid, last_hartid;

    if (!numa_enabled(ms)) {
        return (!socket_id) ? ms->smp.cpus : -1;
    }

    first_hartid = riscv_socket_first_hartid(ms, socket_id);
    if (first_hartid < 0) {
        return -1;
    }

    last_hartid = riscv_socket_last_hartid(ms, socket_id);
    if (last_hartid < 0) {
        return -1;
    }

    if (first_hartid > last_hartid) {
        return -1;
    }

    return last_hartid - first_hartid + 1;
}

bool riscv_socket_check_hartids(const MachineState *ms, int socket_id)
{
    int i, first_hartid, last_hartid;

    if (!numa_enabled(ms)) {
        return (!socket_id) ? true : false;
    }

    first_hartid = riscv_socket_first_hartid(ms, socket_id);
    if (first_hartid < 0) {
        return false;
    }

    last_hartid = riscv_socket_last_hartid(ms, socket_id);
    if (last_hartid < 0) {
        return false;
    }

    for (i = first_hartid; i <= last_hartid; i++) {
        if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
            return false;
        }
    }

    return true;
}

uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id)
{
    int i;
    uint64_t mem_offset = 0;

    if (!numa_enabled(ms)) {
        return 0;
    }

    for (i = 0; i < ms->numa_state->num_nodes; i++) {
        if (i == socket_id) {
            break;
        }
        mem_offset += ms->numa_state->nodes[i].node_mem;
    }

    return (i == socket_id) ? mem_offset : 0;
}

uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id)
{
    if (!numa_enabled(ms)) {
        return (!socket_id) ? ms->ram_size : 0;
    }

    return (socket_id < ms->numa_state->num_nodes) ?
            ms->numa_state->nodes[socket_id].node_mem : 0;
}

void riscv_socket_fdt_write_id(const MachineState *ms, void *fdt,
                               const char *node_name, int socket_id)
{
    if (numa_enabled(ms)) {
        qemu_fdt_setprop_cell(fdt, node_name, "numa-node-id", socket_id);
    }
}

void riscv_socket_fdt_write_distance_matrix(const MachineState *ms, void *fdt)
{
    int i, j, idx;
    uint32_t *dist_matrix, dist_matrix_size;

    if (numa_enabled(ms) && ms->numa_state->have_numa_distance) {
        dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms);
        dist_matrix_size *= (3 * sizeof(uint32_t));
        dist_matrix = g_malloc0(dist_matrix_size);

        for (i = 0; i < riscv_socket_count(ms); i++) {
            for (j = 0; j < riscv_socket_count(ms); j++) {
                idx = (i * riscv_socket_count(ms) + j) * 3;
                dist_matrix[idx + 0] = cpu_to_be32(i);
                dist_matrix[idx + 1] = cpu_to_be32(j);
                dist_matrix[idx + 2] =
                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
            }
        }

        qemu_fdt_add_subnode(fdt, "/distance-map");
        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
                                "numa-distance-map-v1");
        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
                         dist_matrix, dist_matrix_size);
        g_free(dist_matrix);
    }
}

CpuInstanceProperties
riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
    MachineClass *mc = MACHINE_GET_CLASS(ms);
    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);

    assert(cpu_index < possible_cpus->len);
    return possible_cpus->cpus[cpu_index].props;
}

int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx)
{
    int64_t nidx = 0;

    if (ms->numa_state->num_nodes) {
        nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes);
        if (ms->numa_state->num_nodes <= nidx) {
            nidx = ms->numa_state->num_nodes - 1;
        }
    }

    return nidx;
}

const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms)
{
    int n;
    unsigned int max_cpus = ms->smp.max_cpus;

    if (ms->possible_cpus) {
        assert(ms->possible_cpus->len == max_cpus);
        return ms->possible_cpus;
    }

    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                                  sizeof(CPUArchId) * max_cpus);
    ms->possible_cpus->len = max_cpus;
    for (n = 0; n < ms->possible_cpus->len; n++) {
        ms->possible_cpus->cpus[n].type = ms->cpu_type;
        ms->possible_cpus->cpus[n].arch_id = n;
        ms->possible_cpus->cpus[n].props.has_core_id = true;
        ms->possible_cpus->cpus[n].props.core_id = n;
    }

    return ms->possible_cpus;
}