1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>
#include "hw/pci_internals.h"
static const uint32_t bars[] = {
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5
/*, PCI_ROM_ADDRESS*/
};
static PCIDevice *find_dev(sPAPREnvironment *spapr,
uint64_t buid, uint32_t config_addr)
{
DeviceState *qdev;
int devfn = (config_addr >> 8) & 0xFF;
sPAPRPHBState *phb;
QLIST_FOREACH(phb, &spapr->phbs, list) {
if (phb->buid != buid) {
continue;
}
QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
PCIDevice *dev = (PCIDevice *)qdev;
if (dev->devfn == devfn) {
return dev;
}
}
}
return NULL;
}
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
return ((arg >> 20) & 0xf00) | (arg & 0xff);
}
static uint32_t rtas_read_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
uint32_t limit, uint32_t len)
{
if ((addr + len) <= limit) {
return pci_host_config_read_common(pci_dev, addr, limit, len);
} else {
return ~0x0;
}
}
static void rtas_write_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
uint32_t limit, uint32_t val,
uint32_t len)
{
if ((addr + len) <= limit) {
pci_host_config_write_common(pci_dev, addr, limit, val, len);
}
}
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
size = rtas_ld(args, 3);
addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, val);
}
static void rtas_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
size = rtas_ld(args, 1);
addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, val);
}
static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
rtas_st(rets, 0, 0);
}
static void rtas_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
rtas_st(rets, 0, 0);
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (now it
* is 16). At the moment irq_num == device_id (number of the
* slot?)
* FIXME: we should swizzle in fn and irq_num
*/
return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI;
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
}
static int spapr_phb_init(SysBusDevice *s)
{
sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
int i;
/* Initialize the LSI table */
for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) {
qemu_irq qirq;
uint32_t num;
qirq = spapr_allocate_irq(0, &num);
if (!qirq) {
return -1;
}
phb->lsi_table[i].dt_irq = num;
phb->lsi_table[i].qirq = qirq;
}
return 0;
}
static int spapr_main_pci_host_init(PCIDevice *d)
{
return 0;
}
static void spapr_main_pci_host_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = spapr_main_pci_host_init;
}
static TypeInfo spapr_main_pci_host_info = {
.name = "spapr-pci-host-bridge-pci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(PCIDevice),
.class_init = spapr_main_pci_host_class_init,
};
static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
sdc->init = spapr_phb_init;
}
static TypeInfo spapr_phb_info = {
.name = "spapr-pci-host-bridge",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(sPAPRPHBState),
.class_init = spapr_phb_class_init,
};
static void spapr_register_types(void)
{
type_register_static(&spapr_phb_info);
type_register_static(&spapr_main_pci_host_info);
}
type_init(spapr_register_types)
static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
}
assert(0);
}
static void spapr_io_write(void *opaque, target_phys_addr_t addr,
uint64_t data, unsigned size)
{
switch (size) {
case 1:
cpu_outb(addr, data);
return;
case 2:
cpu_outw(addr, data);
return;
case 4:
cpu_outl(addr, data);
return;
}
assert(0);
}
static MemoryRegionOps spapr_io_ops = {
.endianness = DEVICE_LITTLE_ENDIAN,
.read = spapr_io_read,
.write = spapr_io_write
};
void spapr_create_phb(sPAPREnvironment *spapr,
const char *busname, uint64_t buid,
uint64_t mem_win_addr, uint64_t mem_win_size,
uint64_t io_win_addr)
{
DeviceState *dev;
SysBusDevice *s;
sPAPRPHBState *phb;
PCIBus *bus;
char namebuf[strlen(busname)+11];
dev = qdev_create(NULL, "spapr-pci-host-bridge");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
phb = FROM_SYSBUS(sPAPRPHBState, s);
phb->mem_win_addr = mem_win_addr;
sprintf(namebuf, "%s-mem", busname);
memory_region_init(&phb->memspace, namebuf, INT64_MAX);
sprintf(namebuf, "%s-memwindow", busname);
memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, mem_win_size);
memory_region_add_subregion(get_system_memory(), mem_win_addr,
&phb->memwindow);
phb->io_win_addr = io_win_addr;
/* On ppc, we only have MMIO no specific IO space from the CPU
* perspective. In theory we ought to be able to embed the PCI IO
* memory region direction in the system memory space. However,
* if any of the IO BAR subregions use the old_portio mechanism,
* that won't be processed properly unless accessed from the
* system io address space. This hack to bounce things via
* system_io works around the problem until all the users of
* old_portion are updated */
sprintf(namebuf, "%s-io", busname);
memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
/* FIXME: fix to support multiple PHBs */
memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
sprintf(namebuf, "%s-iowindow", busname);
memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
namebuf, SPAPR_PCI_IO_WIN_SIZE);
memory_region_add_subregion(get_system_memory(), io_win_addr,
&phb->iowindow);
phb->host_state.bus = bus = pci_register_bus(&phb->busdev.qdev, busname,
pci_spapr_set_irq,
pci_spapr_map_irq,
phb,
&phb->memspace, &phb->iospace,
PCI_DEVFN(0, 0),
SPAPR_PCI_NUM_LSI);
spapr_rtas_register("read-pci-config", rtas_read_pci_config);
spapr_rtas_register("write-pci-config", rtas_write_pci_config);
spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
/* pci_bus_set_mem_base(bus, mem_va_start - SPAPR_PCI_MEM_BAR_START); */
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
int spapr_populate_pci_devices(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
PCIBus *bus = phb->host_state.bus;
int bus_off, i;
char nodename[256];
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} __attribute__((packed)) ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(memory_region_size(&phb->memwindow)),
},
};
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0};
uint32_t interrupt_map[bus->nirq][7];
/* Start populating the FDT */
sprintf(nodename, "pci@%" PRIx64, phb->buid);
bus_off = fdt_add_subnode(fdt, 0, nodename);
if (bus_off < 0) {
return bus_off;
}
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
return ret; \
} \
} while (0)
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
/* Build the interrupt-map, this must matches what is done
* in pci_spapr_map_irq
*/
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
for (i = 0; i < 7; i++) {
uint32_t *irqmap = interrupt_map[i];
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = 0;
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[i % SPAPR_PCI_NUM_LSI].dt_irq);
irqmap[6] = cpu_to_be32(0x8);
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
7 * sizeof(interrupt_map[0])));
return 0;
}
|