summaryrefslogtreecommitdiffstats
path: root/hw/timer/sse-timer.c
blob: e92e83747d2a088198442e75e4a62613ce9b2920 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*
 * Arm SSE Subsystem System Timer
 *
 * Copyright (c) 2020 Linaro Limited
 * Written by Peter Maydell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

/*
 * This is a model of the "System timer" which is documented in
 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
 * https://developer.arm.com/documentation/101370/latest/
 *
 * The timer is based around a simple 64-bit incrementing counter
 * (readable from CNTPCT_HI/LO). The timer fires when
 *  Counter - CompareValue >= 0.
 * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
 * CNTP_TVAL is an alternative view of the CompareValue defined by
 *  TimerValue = CompareValue[31:0] - Counter[31:0]
 * which can be both read and written.
 * This part is similar to the generic timer in an Arm A-class CPU.
 *
 * The timer also has a separate auto-increment timer. When this
 * timer is enabled, then the AutoIncrValue is set to:
 *  AutoIncrValue = Reload + Counter
 * and this timer fires when
 *  Counter - AutoIncrValue >= 0
 * at which point, an interrupt is generated and the new AutoIncrValue
 * is calculated.
 * When the auto-increment timer is enabled, interrupt generation
 * via the compare/timervalue registers is disabled.
 */
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/timer/sse-timer.h"
#include "hw/timer/sse-counter.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "hw/registerfields.h"
#include "hw/clock.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"

REG32(CNTPCT_LO, 0x0)
REG32(CNTPCT_HI, 0x4)
REG32(CNTFRQ, 0x10)
REG32(CNTP_CVAL_LO, 0x20)
REG32(CNTP_CVAL_HI, 0x24)
REG32(CNTP_TVAL, 0x28)
REG32(CNTP_CTL, 0x2c)
    FIELD(CNTP_CTL, ENABLE, 0, 1)
    FIELD(CNTP_CTL, IMASK, 1, 1)
    FIELD(CNTP_CTL, ISTATUS, 2, 1)
REG32(CNTP_AIVAL_LO, 0x40)
REG32(CNTP_AIVAL_HI, 0x44)
REG32(CNTP_AIVAL_RELOAD, 0x48)
REG32(CNTP_AIVAL_CTL, 0x4c)
    FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
    FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
REG32(CNTP_CFG, 0x50)
    FIELD(CNTP_CFG, AIVAL, 0, 4)
#define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)

/* PID/CID values */
static const int timer_id[] = {
    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
    0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};

static bool sse_is_autoinc(SSETimer *s)
{
    return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
}

static bool sse_enabled(SSETimer *s)
{
    return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
}

static uint64_t sse_cntpct(SSETimer *s)
{
    /* Return the CNTPCT value for the current time */
    return sse_counter_for_timestamp(s->counter,
                                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}

static bool sse_timer_status(SSETimer *s)
{
    /*
     * Return true if timer condition is met. This is used for both
     * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
     * assert our IRQ.
     * The documentation is unclear about the behaviour of ISTATUS when
     * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
     * (ie whether the autoincrement timer is asserting the interrupt).
     */
    if (!sse_enabled(s)) {
        return false;
    }

    if (sse_is_autoinc(s)) {
        return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
    } else {
        return sse_cntpct(s) >= s->cntp_cval;
    }
}

static void sse_update_irq(SSETimer *s)
{
    bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
                     sse_timer_status(s));

    qemu_set_irq(s->irq, irqstate);
}

static void sse_set_timer(SSETimer *s, uint64_t nexttick)
{
    /* Set the timer to expire at nexttick */
    uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);

    if (expiry <= INT64_MAX) {
        timer_mod_ns(&s->timer, expiry);
    } else {
        /*
         * nexttick is so far in the future that it would overflow the
         * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
         * expiry times are absolute, not relative, we are never going
         * to be able to set the timer to this value, so we must just
         * assume that guest execution can never run so long that it
         * reaches the theoretical point when the timer fires.
         * This is also the code path for "counter is not running",
         * which is signalled by expiry == UINT64_MAX.
         */
        timer_del(&s->timer);
    }
}

static void sse_recalc_timer(SSETimer *s)
{
    /* Recalculate the normal timer */
    uint64_t count, nexttick;

    if (sse_is_autoinc(s)) {
        return;
    }

    if (!sse_enabled(s)) {
        timer_del(&s->timer);
        return;
    }

    count = sse_cntpct(s);

    if (count >= s->cntp_cval) {
        /*
         * Timer condition already met. In theory we have a transition when
         * the count rolls back over to 0, but that is so far in the future
         * that it is not representable as a timer_mod() expiry, so in
         * fact sse_set_timer() will always just delete the timer.
         */
        nexttick = UINT64_MAX;
    } else {
        /* Next transition is when count hits cval */
        nexttick = s->cntp_cval;
    }
    sse_set_timer(s, nexttick);
    sse_update_irq(s);
}

static void sse_autoinc(SSETimer *s)
{
    /* Auto-increment the AIVAL, and set the timer accordingly */
    s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
    sse_set_timer(s, s->cntp_aival);
}

static void sse_timer_cb(void *opaque)
{
    SSETimer *s = SSE_TIMER(opaque);

    if (sse_is_autoinc(s)) {
        uint64_t count = sse_cntpct(s);

        if (count >= s->cntp_aival) {
            /* Timer condition met, set CLR and do another autoinc */
            s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
            s->cntp_aival = count + s->cntp_aival_reload;
        }
        sse_set_timer(s, s->cntp_aival);
        sse_update_irq(s);
    } else {
        sse_recalc_timer(s);
    }
}

static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
{
    SSETimer *s = SSE_TIMER(opaque);
    uint64_t r;

    switch (offset) {
    case A_CNTPCT_LO:
        r = extract64(sse_cntpct(s), 0, 32);
        break;
    case A_CNTPCT_HI:
        r = extract64(sse_cntpct(s), 32, 32);
        break;
    case A_CNTFRQ:
        r = s->cntfrq;
        break;
    case A_CNTP_CVAL_LO:
        r = extract64(s->cntp_cval, 0, 32);
        break;
    case A_CNTP_CVAL_HI:
        r = extract64(s->cntp_cval, 32, 32);
        break;
    case A_CNTP_TVAL:
        r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
        break;
    case A_CNTP_CTL:
        r = s->cntp_ctl;
        if (sse_timer_status(s)) {
            r |= R_CNTP_CTL_ISTATUS_MASK;
        }
        break;
    case A_CNTP_AIVAL_LO:
        r = extract64(s->cntp_aival, 0, 32);
        break;
    case A_CNTP_AIVAL_HI:
        r = extract64(s->cntp_aival, 32, 32);
        break;
    case A_CNTP_AIVAL_RELOAD:
        r = s->cntp_aival_reload;
        break;
    case A_CNTP_AIVAL_CTL:
        /*
         * All the bits of AIVAL_CTL are documented as WO, but this is probably
         * a documentation error. We implement them as readable.
         */
        r = s->cntp_aival_ctl;
        break;
    case A_CNTP_CFG:
        r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
        break;
    case A_PID4 ... A_CID3:
        r = timer_id[(offset - A_PID4) / 4];
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Timer read: bad offset 0x%x",
                      (unsigned) offset);
        r = 0;
        break;
    }

    trace_sse_timer_read(offset, r, size);
    return r;
}

static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
                            unsigned size)
{
    SSETimer *s = SSE_TIMER(opaque);

    trace_sse_timer_write(offset, value, size);

    switch (offset) {
    case A_CNTFRQ:
        s->cntfrq = value;
        break;
    case A_CNTP_CVAL_LO:
        s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
        sse_recalc_timer(s);
        break;
    case A_CNTP_CVAL_HI:
        s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
        sse_recalc_timer(s);
        break;
    case A_CNTP_TVAL:
        s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
        sse_recalc_timer(s);
        break;
    case A_CNTP_CTL:
    {
        uint32_t old_ctl = s->cntp_ctl;
        value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
        s->cntp_ctl = value;
        if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
            if (sse_enabled(s)) {
                if (sse_is_autoinc(s)) {
                    sse_autoinc(s);
                } else {
                    sse_recalc_timer(s);
                }
            }
        }
        sse_update_irq(s);
        break;
    }
    case A_CNTP_AIVAL_RELOAD:
        s->cntp_aival_reload = value;
        break;
    case A_CNTP_AIVAL_CTL:
    {
        uint32_t old_ctl = s->cntp_aival_ctl;

        /* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */
        s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
        s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
        if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
            s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
        }
        if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
            /* Auto-increment toggled on/off */
            if (sse_enabled(s)) {
                if (sse_is_autoinc(s)) {
                    sse_autoinc(s);
                } else {
                    sse_recalc_timer(s);
                }
            }
        }
        sse_update_irq(s);
        break;
    }
    case A_CNTPCT_LO:
    case A_CNTPCT_HI:
    case A_CNTP_CFG:
    case A_CNTP_AIVAL_LO:
    case A_CNTP_AIVAL_HI:
    case A_PID4 ... A_CID3:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Timer write: write to RO offset 0x%x\n",
                      (unsigned)offset);
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Timer write: bad offset 0x%x\n",
                      (unsigned)offset);
        break;
    }
}

static const MemoryRegionOps sse_timer_ops = {
    .read = sse_timer_read,
    .write = sse_timer_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
};

static void sse_timer_reset(DeviceState *dev)
{
    SSETimer *s = SSE_TIMER(dev);

    trace_sse_timer_reset();

    timer_del(&s->timer);
    s->cntfrq = 0;
    s->cntp_ctl = 0;
    s->cntp_cval = 0;
    s->cntp_aival = 0;
    s->cntp_aival_ctl = 0;
    s->cntp_aival_reload = 0;
}

static void sse_timer_counter_callback(Notifier *notifier, void *data)
{
    SSETimer *s = container_of(notifier, SSETimer, counter_notifier);

    /* System counter told us we need to recalculate */
    if (sse_enabled(s)) {
        if (sse_is_autoinc(s)) {
            sse_set_timer(s, s->cntp_aival);
        } else {
            sse_recalc_timer(s);
        }
    }
}

static void sse_timer_init(Object *obj)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    SSETimer *s = SSE_TIMER(obj);

    memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
                          s, "sse-timer", 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
    sysbus_init_irq(sbd, &s->irq);
}

static void sse_timer_realize(DeviceState *dev, Error **errp)
{
    SSETimer *s = SSE_TIMER(dev);

    if (!s->counter) {
        error_setg(errp, "counter property was not set");
        return;
    }

    s->counter_notifier.notify = sse_timer_counter_callback;
    sse_counter_register_consumer(s->counter, &s->counter_notifier);

    timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
}

static const VMStateDescription sse_timer_vmstate = {
    .name = "sse-timer",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_TIMER(timer, SSETimer),
        VMSTATE_UINT32(cntfrq, SSETimer),
        VMSTATE_UINT32(cntp_ctl, SSETimer),
        VMSTATE_UINT64(cntp_cval, SSETimer),
        VMSTATE_UINT64(cntp_aival, SSETimer),
        VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
        VMSTATE_UINT32(cntp_aival_reload, SSETimer),
        VMSTATE_END_OF_LIST()
    }
};

static Property sse_timer_properties[] = {
    DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
    DEFINE_PROP_END_OF_LIST(),
};

static void sse_timer_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = sse_timer_realize;
    dc->vmsd = &sse_timer_vmstate;
    dc->reset = sse_timer_reset;
    device_class_set_props(dc, sse_timer_properties);
}

static const TypeInfo sse_timer_info = {
    .name = TYPE_SSE_TIMER,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SSETimer),
    .instance_init = sse_timer_init,
    .class_init = sse_timer_class_init,
};

static void sse_timer_register_types(void)
{
    type_register_static(&sse_timer_info);
}

type_init(sse_timer_register_types);