1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
|
/* Decimal number arithmetic module for the decNumber C Library.
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* ------------------------------------------------------------------ */
/* Decimal Number arithmetic module */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for General Decimal Arithmetic */
/* as defined in the specification which may be found on the */
/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
/* the full ('extended') arithmetic and the simpler ('subset') */
/* arithmetic. */
/* */
/* Usage notes: */
/* */
/* 1. This code is ANSI C89 except: */
/* */
/* If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
/* uint64_t types may be used. To avoid these, set DECUSE64=0 */
/* and DECDPUN<=4 (see documentation). */
/* */
/* 2. The decNumber format which this library uses is optimized for */
/* efficient processing of relatively short numbers; in particular */
/* it allows the use of fixed sized structures and minimizes copy */
/* and move operations. It does, however, support arbitrary */
/* precision (up to 999,999,999 digits) and arbitrary exponent */
/* range (Emax in the range 0 through 999,999,999 and Emin in the */
/* range -999,999,999 through 0). Mathematical functions (for */
/* example decNumberExp) as identified below are restricted more */
/* tightly: digits, emax, and -emin in the context must be <= */
/* DEC_MAX_MATH (999999), and their operand(s) must be within */
/* these bounds. */
/* */
/* 3. Logical functions are further restricted; their operands must */
/* be finite, positive, have an exponent of zero, and all digits */
/* must be either 0 or 1. The result will only contain digits */
/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
/* */
/* 4. Operands to operator functions are never modified unless they */
/* are also specified to be the result number (which is always */
/* permitted). Other than that case, operands must not overlap. */
/* */
/* 5. Error handling: the type of the error is ORed into the status */
/* flags in the current context (decContext structure). The */
/* SIGFPE signal is then raised if the corresponding trap-enabler */
/* flag in the decContext is set (is 1). */
/* */
/* It is the responsibility of the caller to clear the status */
/* flags as required. */
/* */
/* The result of any routine which returns a number will always */
/* be a valid number (which may be a special value, such as an */
/* Infinity or NaN). */
/* */
/* 6. The decNumber format is not an exchangeable concrete */
/* representation as it comprises fields which may be machine- */
/* dependent (packed or unpacked, or special length, for example). */
/* Canonical conversions to and from strings are provided; other */
/* conversions are available in separate modules. */
/* */
/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
/* to 1 for extended operand checking (including NULL operands). */
/* Results are undefined if a badly-formed structure (or a NULL */
/* pointer to a structure) is provided, though with DECCHECK */
/* enabled the operator routines are protected against exceptions. */
/* (Except if the result pointer is NULL, which is unrecoverable.) */
/* */
/* However, the routines will never cause exceptions if they are */
/* given well-formed operands, even if the value of the operands */
/* is inappropriate for the operation and DECCHECK is not set. */
/* (Except for SIGFPE, as and where documented.) */
/* */
/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
/* ------------------------------------------------------------------ */
/* Implementation notes for maintenance of this module: */
/* */
/* 1. Storage leak protection: Routines which use malloc are not */
/* permitted to use return for fastpath or error exits (i.e., */
/* they follow strict structured programming conventions). */
/* Instead they have a do{}while(0); construct surrounding the */
/* code which is protected -- break may be used to exit this. */
/* Other routines can safely use the return statement inline. */
/* */
/* Storage leak accounting can be enabled using DECALLOC. */
/* */
/* 2. All loops use the for(;;) construct. Any do construct does */
/* not loop; it is for allocation protection as just described. */
/* */
/* 3. Setting status in the context must always be the very last */
/* action in a routine, as non-0 status may raise a trap and hence */
/* the call to set status may not return (if the handler uses long */
/* jump). Therefore all cleanup must be done first. In general, */
/* to achieve this status is accumulated and is only applied just */
/* before return by calling decContextSetStatus (via decStatus). */
/* */
/* Routines which allocate storage cannot, in general, use the */
/* 'top level' routines which could cause a non-returning */
/* transfer of control. The decXxxxOp routines are safe (do not */
/* call decStatus even if traps are set in the context) and should */
/* be used instead (they are also a little faster). */
/* */
/* 4. Exponent checking is minimized by allowing the exponent to */
/* grow outside its limits during calculations, provided that */
/* the decFinalize function is called later. Multiplication and */
/* division, and intermediate calculations in exponentiation, */
/* require more careful checks because of the risk of 31-bit */
/* overflow (the most negative valid exponent is -1999999997, for */
/* a 999999999-digit number with adjusted exponent of -999999999). */
/* */
/* 5. Rounding is deferred until finalization of results, with any */
/* 'off to the right' data being represented as a single digit */
/* residue (in the range -1 through 9). This avoids any double- */
/* rounding when more than one shortening takes place (for */
/* example, when a result is subnormal). */
/* */
/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
/* during many operations, so whole Units are handled and exact */
/* accounting of digits is not needed. The correct digits value */
/* is found by decGetDigits, which accounts for leading zeros. */
/* This must be called before any rounding if the number of digits */
/* is not known exactly. */
/* */
/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
/* numbers up to four digits, using appropriate constants. This */
/* is not useful for longer numbers because overflow of 32 bits */
/* would lead to 4 multiplies, which is almost as expensive as */
/* a divide (unless a floating-point or 64-bit multiply is */
/* assumed to be available). */
/* */
/* 8. Unusual abbreviations that may be used in the commentary: */
/* lhs -- left hand side (operand, of an operation) */
/* lsd -- least significant digit (of coefficient) */
/* lsu -- least significant Unit (of coefficient) */
/* msd -- most significant digit (of coefficient) */
/* msi -- most significant item (in an array) */
/* msu -- most significant Unit (of coefficient) */
/* rhs -- right hand side (operand, of an operation) */
/* +ve -- positive */
/* -ve -- negative */
/* ** -- raise to the power */
/* ------------------------------------------------------------------ */
#include <stdlib.h> /* for malloc, free, etc. */
#include <stdio.h> /* for printf [if needed] */
#include <string.h> /* for strcpy */
#include <ctype.h> /* for lower */
#include "libdecnumber/dconfig.h"
#include "libdecnumber/decNumber.h"
#include "libdecnumber/decNumberLocal.h"
/* Constants */
/* Public lookup table used by the D2U macro */
const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
#define DECVERB 1 /* set to 1 for verbose DECCHECK */
#define powers DECPOWERS /* old internal name */
/* Local constants */
#define DIVIDE 0x80 /* Divide operators */
#define REMAINDER 0x40 /* .. */
#define DIVIDEINT 0x20 /* .. */
#define REMNEAR 0x10 /* .. */
#define COMPARE 0x01 /* Compare operators */
#define COMPMAX 0x02 /* .. */
#define COMPMIN 0x03 /* .. */
#define COMPTOTAL 0x04 /* .. */
#define COMPNAN 0x05 /* .. [NaN processing] */
#define COMPSIG 0x06 /* .. [signaling COMPARE] */
#define COMPMAXMAG 0x07 /* .. */
#define COMPMINMAG 0x08 /* .. */
#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
/* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
#define BIGEVEN (Int)0x80000002
#define BIGODD (Int)0x80000003
static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */
/* Granularity-dependent code */
#if DECDPUN<=4
#define eInt Int /* extended integer */
#define ueInt uInt /* unsigned extended integer */
/* Constant multipliers for divide-by-power-of five using reciprocal */
/* multiply, after removing powers of 2 by shifting, and final shift */
/* of 17 [we only need up to **4] */
static const uInt multies[]={131073, 26215, 5243, 1049, 210};
/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#else
/* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
#if !DECUSE64
#error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
#endif
#define eInt Long /* extended integer */
#define ueInt uLong /* unsigned extended integer */
#endif
/* Local routines */
static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
decContext *, uByte, uInt *);
static Flag decBiStr(const char *, const char *, const char *);
static uInt decCheckMath(const decNumber *, decContext *, uInt *);
static void decApplyRound(decNumber *, decContext *, Int, uInt *);
static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
static decNumber * decCompareOp(decNumber *, const decNumber *,
const decNumber *, decContext *,
Flag, uInt *);
static void decCopyFit(decNumber *, const decNumber *, decContext *,
Int *, uInt *);
static decNumber * decDecap(decNumber *, Int);
static decNumber * decDivideOp(decNumber *, const decNumber *,
const decNumber *, decContext *, Flag, uInt *);
static decNumber * decExpOp(decNumber *, const decNumber *,
decContext *, uInt *);
static void decFinalize(decNumber *, decContext *, Int *, uInt *);
static Int decGetDigits(Unit *, Int);
static Int decGetInt(const decNumber *);
static decNumber * decLnOp(decNumber *, const decNumber *,
decContext *, uInt *);
static decNumber * decMultiplyOp(decNumber *, const decNumber *,
const decNumber *, decContext *,
uInt *);
static decNumber * decNaNs(decNumber *, const decNumber *,
const decNumber *, decContext *, uInt *);
static decNumber * decQuantizeOp(decNumber *, const decNumber *,
const decNumber *, decContext *, Flag,
uInt *);
static void decReverse(Unit *, Unit *);
static void decSetCoeff(decNumber *, decContext *, const Unit *,
Int, Int *, uInt *);
static void decSetMaxValue(decNumber *, decContext *);
static void decSetOverflow(decNumber *, decContext *, uInt *);
static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
static Int decShiftToLeast(Unit *, Int, Int);
static Int decShiftToMost(Unit *, Int, Int);
static void decStatus(decNumber *, uInt, decContext *);
static void decToString(const decNumber *, char[], Flag);
static decNumber * decTrim(decNumber *, decContext *, Flag, Int *);
static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
Unit *, Int);
static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
#if !DECSUBSET
/* decFinish == decFinalize when no subset arithmetic needed */
#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
#else
static void decFinish(decNumber *, decContext *, Int *, uInt *);
static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
#endif
/* Local macros */
/* masked special-values bits */
#define SPECIALARG (rhs->bits & DECSPECIAL)
#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
/* Diagnostic macros, etc. */
#if DECALLOC
/* Handle malloc/free accounting. If enabled, our accountable routines */
/* are used; otherwise the code just goes straight to the system malloc */
/* and free routines. */
#define malloc(a) decMalloc(a)
#define free(a) decFree(a)
#define DECFENCE 0x5a /* corruption detector */
/* 'Our' malloc and free: */
static void *decMalloc(size_t);
static void decFree(void *);
uInt decAllocBytes=0; /* count of bytes allocated */
/* Note that DECALLOC code only checks for storage buffer overflow. */
/* To check for memory leaks, the decAllocBytes variable must be */
/* checked to be 0 at appropriate times (e.g., after the test */
/* harness completes a set of tests). This checking may be unreliable */
/* if the testing is done in a multi-thread environment. */
#endif
#if DECCHECK
/* Optional checking routines. Enabling these means that decNumber */
/* and decContext operands to operator routines are checked for */
/* correctness. This roughly doubles the execution time of the */
/* fastest routines (and adds 600+ bytes), so should not normally be */
/* used in 'production'. */
/* decCheckInexact is used to check that inexact results have a full */
/* complement of digits (where appropriate -- this is not the case */
/* for Quantize, for example) */
#define DECUNRESU ((decNumber *)(void *)0xffffffff)
#define DECUNUSED ((const decNumber *)(void *)0xffffffff)
#define DECUNCONT ((decContext *)(void *)(0xffffffff))
static Flag decCheckOperands(decNumber *, const decNumber *,
const decNumber *, decContext *);
static Flag decCheckNumber(const decNumber *);
static void decCheckInexact(const decNumber *, decContext *);
#endif
#if DECTRACE || DECCHECK
/* Optional trace/debugging routines (may or may not be used) */
void decNumberShow(const decNumber *); /* displays the components of a number */
static void decDumpAr(char, const Unit *, Int);
#endif
/* ================================================================== */
/* Conversions */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* from-int32 -- conversion from Int or uInt */
/* */
/* dn is the decNumber to receive the integer */
/* in or uin is the integer to be converted */
/* returns dn */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decNumberFromInt32(decNumber *dn, Int in) {
uInt unsig;
if (in>=0) unsig=in;
else { /* negative (possibly BADINT) */
if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
else unsig=-in; /* invert */
}
/* in is now positive */
decNumberFromUInt32(dn, unsig);
if (in<0) dn->bits=DECNEG; /* sign needed */
return dn;
} /* decNumberFromInt32 */
decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
Unit *up; /* work pointer */
decNumberZero(dn); /* clean */
if (uin==0) return dn; /* [or decGetDigits bad call] */
for (up=dn->lsu; uin>0; up++) {
*up=(Unit)(uin%(DECDPUNMAX+1));
uin=uin/(DECDPUNMAX+1);
}
dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
return dn;
} /* decNumberFromUInt32 */
/* ------------------------------------------------------------------ */
/* to-int32 -- conversion to Int or uInt */
/* */
/* dn is the decNumber to convert */
/* set is the context for reporting errors */
/* returns the converted decNumber, or 0 if Invalid is set */
/* */
/* Invalid is set if the decNumber does not have exponent==0 or if */
/* it is a NaN, Infinite, or out-of-range. */
/* ------------------------------------------------------------------ */
Int decNumberToInt32(const decNumber *dn, decContext *set) {
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
#endif
/* special or too many digits, or bad exponent */
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
else { /* is a finite integer with 10 or fewer digits */
Int d; /* work */
const Unit *up; /* .. */
uInt hi=0, lo; /* .. */
up=dn->lsu; /* -> lsu */
lo=*up; /* get 1 to 9 digits */
#if DECDPUN>1 /* split to higher */
hi=lo/10;
lo=lo%10;
#endif
up++;
/* collect remaining Units, if any, into hi */
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
/* now low has the lsd, hi the remainder */
if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
/* most-negative is a reprieve */
if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
/* bad -- drop through */
}
else { /* in-range always */
Int i=X10(hi)+lo;
if (dn->bits&DECNEG) return -i;
return i;
}
} /* integer */
decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
return 0;
} /* decNumberToInt32 */
uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
#endif
/* special or too many digits, or bad exponent, or negative (<0) */
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
|| (dn->bits&DECNEG && !ISZERO(dn))); /* bad */
else { /* is a finite integer with 10 or fewer digits */
Int d; /* work */
const Unit *up; /* .. */
uInt hi=0, lo; /* .. */
up=dn->lsu; /* -> lsu */
lo=*up; /* get 1 to 9 digits */
#if DECDPUN>1 /* split to higher */
hi=lo/10;
lo=lo%10;
#endif
up++;
/* collect remaining Units, if any, into hi */
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
/* now low has the lsd, hi the remainder */
if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
else return X10(hi)+lo;
} /* integer */
decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
return 0;
} /* decNumberToUInt32 */
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decNumberToString(dn, string); */
/* decNumberToEngString(dn, string); */
/* */
/* dn is the decNumber to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least dn->digits+14 characters long */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char * decNumberToString(const decNumber *dn, char *string){
decToString(dn, string, 0);
return string;
} /* DecNumberToString */
char * decNumberToEngString(const decNumber *dn, char *string){
decToString(dn, string, 1);
return string;
} /* DecNumberToEngString */
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decNumberFromString -- convert string to decNumber */
/* dn -- the number structure to fill */
/* chars[] -- the string to convert ('\0' terminated) */
/* set -- the context used for processing any error, */
/* determining the maximum precision available */
/* (set.digits), determining the maximum and minimum */
/* exponent (set.emax and set.emin), determining if */
/* extended values are allowed, and checking the */
/* rounding mode if overflow occurs or rounding is */
/* needed. */
/* */
/* The length of the coefficient and the size of the exponent are */
/* checked by this routine, so the correct error (Underflow or */
/* Overflow) can be reported or rounding applied, as necessary. */
/* */
/* If bad syntax is detected, the result will be a quiet NaN. */
/* ------------------------------------------------------------------ */
decNumber * decNumberFromString(decNumber *dn, const char chars[],
decContext *set) {
Int exponent=0; /* working exponent [assume 0] */
uByte bits=0; /* working flags [assume +ve] */
Unit *res; /* where result will be built */
Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
/* [+9 allows for ln() constants] */
Unit *allocres=NULL; /* -> allocated result, iff allocated */
Int d=0; /* count of digits found in decimal part */
const char *dotchar=NULL; /* where dot was found */
const char *cfirst=chars; /* -> first character of decimal part */
const char *last=NULL; /* -> last digit of decimal part */
const char *c; /* work */
Unit *up; /* .. */
#if DECDPUN>1
Int cut, out; /* .. */
#endif
Int residue; /* rounding residue */
uInt status=0; /* error code */
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
return decNumberZero(dn);
#endif
do { /* status & malloc protection */
for (c=chars;; c++) { /* -> input character */
if (*c>='0' && *c<='9') { /* test for Arabic digit */
last=c;
d++; /* count of real digits */
continue; /* still in decimal part */
}
if (*c=='.' && dotchar==NULL) { /* first '.' */
dotchar=c; /* record offset into decimal part */
if (c==cfirst) cfirst++; /* first digit must follow */
continue;}
if (c==chars) { /* first in string... */
if (*c=='-') { /* valid - sign */
cfirst++;
bits=DECNEG;
continue;}
if (*c=='+') { /* valid + sign */
cfirst++;
continue;}
}
/* *c is not a digit, or a valid +, -, or '.' */
break;
} /* c */
if (last==NULL) { /* no digits yet */
status=DEC_Conversion_syntax;/* assume the worst */
if (*c=='\0') break; /* and no more to come... */
#if DECSUBSET
/* if subset then infinities and NaNs are not allowed */
if (!set->extended) break; /* hopeless */
#endif
/* Infinities and NaNs are possible, here */
if (dotchar!=NULL) break; /* .. unless had a dot */
decNumberZero(dn); /* be optimistic */
if (decBiStr(c, "infinity", "INFINITY")
|| decBiStr(c, "inf", "INF")) {
dn->bits=bits | DECINF;
status=0; /* is OK */
break; /* all done */
}
/* a NaN expected */
/* 2003.09.10 NaNs are now permitted to have a sign */
dn->bits=bits | DECNAN; /* assume simple NaN */
if (*c=='s' || *c=='S') { /* looks like an sNaN */
c++;
dn->bits=bits | DECSNAN;
}
if (*c!='n' && *c!='N') break; /* check caseless "NaN" */
c++;
if (*c!='a' && *c!='A') break; /* .. */
c++;
if (*c!='n' && *c!='N') break; /* .. */
c++;
/* now either nothing, or nnnn payload, expected */
/* -> start of integer and skip leading 0s [including plain 0] */
for (cfirst=c; *cfirst=='0';) cfirst++;
if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */
status=0; /* it's good */
break; /* .. */
}
/* something other than 0s; setup last and d as usual [no dots] */
for (c=cfirst;; c++, d++) {
if (*c<'0' || *c>'9') break; /* test for Arabic digit */
last=c;
}
if (*c!='\0') break; /* not all digits */
if (d>set->digits-1) {
/* [NB: payload in a decNumber can be full length unless */
/* clamped, in which case can only be digits-1] */
if (set->clamp) break;
if (d>set->digits) break;
} /* too many digits? */
/* good; drop through to convert the integer to coefficient */
status=0; /* syntax is OK */
bits=dn->bits; /* for copy-back */
} /* last==NULL */
else if (*c!='\0') { /* more to process... */
/* had some digits; exponent is only valid sequence now */
Flag nege; /* 1=negative exponent */
const char *firstexp; /* -> first significant exponent digit */
status=DEC_Conversion_syntax;/* assume the worst */
if (*c!='e' && *c!='E') break;
/* Found 'e' or 'E' -- now process explicit exponent */
/* 1998.07.11: sign no longer required */
nege=0;
c++; /* to (possible) sign */
if (*c=='-') {nege=1; c++;}
else if (*c=='+') c++;
if (*c=='\0') break;
for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */
firstexp=c; /* save exponent digit place */
for (; ;c++) {
if (*c<'0' || *c>'9') break; /* not a digit */
exponent=X10(exponent)+(Int)*c-(Int)'0';
} /* c */
/* if not now on a '\0', *c must not be a digit */
if (*c!='\0') break;
/* (this next test must be after the syntax checks) */
/* if it was too long the exponent may have wrapped, so check */
/* carefully and set it to a certain overflow if wrap possible */
if (c>=firstexp+9+1) {
if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
/* [up to 1999999999 is OK, for example 1E-1000000998] */
}
if (nege) exponent=-exponent; /* was negative */
status=0; /* is OK */
} /* stuff after digits */
/* Here when whole string has been inspected; syntax is good */
/* cfirst->first digit (never dot), last->last digit (ditto) */
/* strip leading zeros/dot [leave final 0 if all 0's] */
if (*cfirst=='0') { /* [cfirst has stepped over .] */
for (c=cfirst; c<last; c++, cfirst++) {
if (*c=='.') continue; /* ignore dots */
if (*c!='0') break; /* non-zero found */
d--; /* 0 stripped */
} /* c */
#if DECSUBSET
/* make a rapid exit for easy zeros if !extended */
if (*cfirst=='0' && !set->extended) {
decNumberZero(dn); /* clean result */
break; /* [could be return] */
}
#endif
} /* at least one leading 0 */
/* Handle decimal point... */
if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */
exponent-=(last-dotchar); /* adjust exponent */
/* [we can now ignore the .] */
/* OK, the digits string is good. Assemble in the decNumber, or in */
/* a temporary units array if rounding is needed */
if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */
else { /* rounding needed */
Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
res=resbuff; /* assume use local buffer */
if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
allocres=(Unit *)malloc(needbytes);
if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
res=allocres;
}
}
/* res now -> number lsu, buffer, or allocated storage for Unit array */
/* Place the coefficient into the selected Unit array */
/* [this is often 70% of the cost of this function when DECDPUN>1] */
#if DECDPUN>1
out=0; /* accumulator */
up=res+D2U(d)-1; /* -> msu */
cut=d-(up-res)*DECDPUN; /* digits in top unit */
for (c=cfirst;; c++) { /* along the digits */
if (*c=='.') continue; /* ignore '.' [don't decrement cut] */
out=X10(out)+(Int)*c-(Int)'0';
if (c==last) break; /* done [never get to trailing '.'] */
cut--;
if (cut>0) continue; /* more for this unit */
*up=(Unit)out; /* write unit */
up--; /* prepare for unit below.. */
cut=DECDPUN; /* .. */
out=0; /* .. */
} /* c */
*up=(Unit)out; /* write lsu */
#else
/* DECDPUN==1 */
up=res; /* -> lsu */
for (c=last; c>=cfirst; c--) { /* over each character, from least */
if (*c=='.') continue; /* ignore . [don't step up] */
*up=(Unit)((Int)*c-(Int)'0');
up++;
} /* c */
#endif
dn->bits=bits;
dn->exponent=exponent;
dn->digits=d;
/* if not in number (too long) shorten into the number */
if (d>set->digits) {
residue=0;
decSetCoeff(dn, set, res, d, &residue, &status);
/* always check for overflow or subnormal and round as needed */
decFinalize(dn, set, &residue, &status);
}
else { /* no rounding, but may still have overflow or subnormal */
/* [these tests are just for performance; finalize repeats them] */
if ((dn->exponent-1<set->emin-dn->digits)
|| (dn->exponent-1>set->emax-set->digits)) {
residue=0;
decFinalize(dn, set, &residue, &status);
}
}
/* decNumberShow(dn); */
} while(0); /* [for break] */
if (allocres!=NULL) free(allocres); /* drop any storage used */
if (status!=0) decStatus(dn, status, set);
return dn;
} /* decNumberFromString */
/* ================================================================== */
/* Operators */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decNumberAbs -- absolute value operator */
/* */
/* This computes C = abs(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* See also decNumberCopyAbs for a quiet bitwise version of this. */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This has the same effect as decNumberPlus unless A is negative, */
/* in which case it has the same effect as decNumberMinus. */
/* ------------------------------------------------------------------ */
decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dzero; /* for 0 */
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
decNumberZero(&dzero); /* set 0 */
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberAbs */
/* ------------------------------------------------------------------ */
/* decNumberAdd -- add two Numbers */
/* */
/* This computes C = A + B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This just calls the routine shared with Subtract */
decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decAddOp(res, lhs, rhs, set, 0, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberAdd */
/* ------------------------------------------------------------------ */
/* decNumberAnd -- AND two Numbers, digitwise */
/* */
/* This computes C = A & B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X&X) */
/* lhs is A */
/* rhs is B */
/* set is the context (used for result length and error report) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Logical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* ------------------------------------------------------------------ */
decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
const Unit *ua, *ub; /* -> operands */
const Unit *msua, *msub; /* -> operand msus */
Unit *uc, *msuc; /* -> result and its msu */
Int msudigs; /* digits in res msu */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
/* operands are valid */
ua=lhs->lsu; /* bottom-up */
ub=rhs->lsu; /* .. */
uc=res->lsu; /* .. */
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
Unit a, b; /* extract units */
if (ua>msua) a=0;
else a=*ua;
if (ub>msub) b=0;
else b=*ub;
*uc=0; /* can now write back */
if (a|b) { /* maybe 1 bits to examine */
Int i, j;
*uc=0; /* can now write back */
/* This loop could be unrolled and/or use BIN2BCD tables */
for (i=0; i<DECDPUN; i++) {
if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */
j=a%10;
a=a/10;
j|=b%10;
b=b/10;
if (j>1) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
} /* each digit */
} /* both OK */
} /* each unit */
/* [here uc-1 is the msu of the result] */
res->digits=decGetDigits(res->lsu, uc-res->lsu);
res->exponent=0; /* integer */
res->bits=0; /* sign=0 */
return res; /* [no status to set] */
} /* decNumberAnd */
/* ------------------------------------------------------------------ */
/* decNumberCompare -- compare two Numbers */
/* */
/* This computes C = A ? B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for one digit (or NaN). */
/* ------------------------------------------------------------------ */
decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPARE, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberCompare */
/* ------------------------------------------------------------------ */
/* decNumberCompareSignal -- compare, signalling on all NaNs */
/* */
/* This computes C = A ? B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for one digit (or NaN). */
/* ------------------------------------------------------------------ */
decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberCompareSignal */
/* ------------------------------------------------------------------ */
/* decNumberCompareTotal -- compare two Numbers, using total ordering */
/* */
/* This computes C = A ? B, under total ordering */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for one digit; the result will always be one of */
/* -1, 0, or 1. */
/* ------------------------------------------------------------------ */
decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberCompareTotal */
/* ------------------------------------------------------------------ */
/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
/* */
/* This computes C = |A| ? |B|, under total ordering */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for one digit; the result will always be one of */
/* -1, 0, or 1. */
/* ------------------------------------------------------------------ */
decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
uInt needbytes; /* for space calculations */
decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber bufb[D2N(DECBUFFER+1)];
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
decNumber *a, *b; /* temporary pointers */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
/* if either is negative, take a copy and absolute */
if (decNumberIsNegative(lhs)) { /* lhs<0 */
a=bufa;
needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
if (needbytes>sizeof(bufa)) { /* need malloc space */
allocbufa=(decNumber *)malloc(needbytes);
if (allocbufa==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
a=allocbufa; /* use the allocated space */
}
decNumberCopy(a, lhs); /* copy content */
a->bits&=~DECNEG; /* .. and clear the sign */
lhs=a; /* use copy from here on */
}
if (decNumberIsNegative(rhs)) { /* rhs<0 */
b=bufb;
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
if (needbytes>sizeof(bufb)) { /* need malloc space */
allocbufb=(decNumber *)malloc(needbytes);
if (allocbufb==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
b=allocbufb; /* use the allocated space */
}
decNumberCopy(b, rhs); /* copy content */
b->bits&=~DECNEG; /* .. and clear the sign */
rhs=b; /* use copy from here on */
}
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
} while(0); /* end protected */
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
if (allocbufb!=NULL) free(allocbufb); /* .. */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberCompareTotalMag */
/* ------------------------------------------------------------------ */
/* decNumberDivide -- divide one number by another */
/* */
/* This computes C = A / B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberDivide */
/* ------------------------------------------------------------------ */
/* decNumberDivideInteger -- divide and return integer quotient */
/* */
/* This computes C = A # B, where # is the integer divide operator */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberDivideInteger */
/* ------------------------------------------------------------------ */
/* decNumberExp -- exponentiation */
/* */
/* This computes C = exp(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* */
/* Mathematical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* */
/* Finite results will always be full precision and Inexact, except */
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
/* */
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* ------------------------------------------------------------------ */
/* This is a wrapper for decExpOp which can handle the slightly wider */
/* (double) range needed by Ln (which has to be able to calculate */
/* exp(-a) where a can be the tiniest number (Ntiny). */
/* ------------------------------------------------------------------ */
decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
decContext *set) {
uInt status=0; /* accumulator */
#if DECSUBSET
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
#endif
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* Check restrictions; these restrictions ensure that if h=8 (see */
/* decExpOp) then the result will either overflow or underflow to 0. */
/* Other math functions restrict the input range, too, for inverses. */
/* If not violated then carry out the operation. */
if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
#if DECSUBSET
if (!set->extended) {
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
decExpOp(res, rhs, set, &status);
} while(0); /* end protected */
#if DECSUBSET
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
#endif
/* apply significant status */
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberExp */
/* ------------------------------------------------------------------ */
/* decNumberFMA -- fused multiply add */
/* */
/* This computes D = (A * B) + C with only one rounding */
/* */
/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
/* lhs is A */
/* rhs is B */
/* fhs is C [far hand side] */
/* set is the context */
/* */
/* Mathematical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
const decNumber *rhs, const decNumber *fhs,
decContext *set) {
uInt status=0; /* accumulator */
decContext dcmul; /* context for the multiplication */
uInt needbytes; /* for space calculations */
decNumber bufa[D2N(DECBUFFER*2+1)];
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber *acc; /* accumulator pointer */
decNumber dzero; /* work */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) { /* [undefined if subset] */
status|=DEC_Invalid_operation;
break;}
#endif
/* Check math restrictions [these ensure no overflow or underflow] */
if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
|| (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
|| (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
/* set up context for multiply */
dcmul=*set;
dcmul.digits=lhs->digits+rhs->digits; /* just enough */
/* [The above may be an over-estimate for subset arithmetic, but that's OK] */
dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */
dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */
/* set up decNumber space to receive the result of the multiply */
acc=bufa; /* may fit */
needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
if (needbytes>sizeof(bufa)) { /* need malloc space */
allocbufa=(decNumber *)malloc(needbytes);
if (allocbufa==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
acc=allocbufa; /* use the allocated space */
}
/* multiply with extended range and necessary precision */
/*printf("emin=%ld\n", dcmul.emin); */
decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
/* Only Invalid operation (from sNaN or Inf * 0) is possible in */
/* status; if either is seen than ignore fhs (in case it is */
/* another sNaN) and set acc to NaN unless we had an sNaN */
/* [decMultiplyOp leaves that to caller] */
/* Note sNaN has to go through addOp to shorten payload if */
/* necessary */
if ((status&DEC_Invalid_operation)!=0) {
if (!(status&DEC_sNaN)) { /* but be true invalid */
decNumberZero(res); /* acc not yet set */
res->bits=DECNAN;
break;
}
decNumberZero(&dzero); /* make 0 (any non-NaN would do) */
fhs=&dzero; /* use that */
}
#if DECCHECK
else { /* multiply was OK */
if (status!=0) printf("Status=%08lx after FMA multiply\n", status);
}
#endif
/* add the third operand and result -> res, and all is done */
decAddOp(res, acc, fhs, set, 0, &status);
} while(0); /* end protected */
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberFMA */
/* ------------------------------------------------------------------ */
/* decNumberInvert -- invert a Number, digitwise */
/* */
/* This computes C = ~A */
/* */
/* res is C, the result. C may be A (e.g., X=~X) */
/* rhs is A */
/* set is the context (used for result length and error report) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Logical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* ------------------------------------------------------------------ */
decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
decContext *set) {
const Unit *ua, *msua; /* -> operand and its msu */
Unit *uc, *msuc; /* -> result and its msu */
Int msudigs; /* digits in res msu */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
/* operand is valid */
ua=rhs->lsu; /* bottom-up */
uc=res->lsu; /* .. */
msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
for (; uc<=msuc; ua++, uc++) { /* Unit loop */
Unit a; /* extract unit */
Int i, j; /* work */
if (ua>msua) a=0;
else a=*ua;
*uc=0; /* can now write back */
/* always need to examine all bits in rhs */
/* This loop could be unrolled and/or use BIN2BCD tables */
for (i=0; i<DECDPUN; i++) {
if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */
j=a%10;
a=a/10;
if (j>1) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
} /* each digit */
} /* each unit */
/* [here uc-1 is the msu of the result] */
res->digits=decGetDigits(res->lsu, uc-res->lsu);
res->exponent=0; /* integer */
res->bits=0; /* sign=0 */
return res; /* [no status to set] */
} /* decNumberInvert */
/* ------------------------------------------------------------------ */
/* decNumberLn -- natural logarithm */
/* */
/* This computes C = ln(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* */
/* Notable cases: */
/* A<0 -> Invalid */
/* A=0 -> -Infinity (Exact) */
/* A=+Infinity -> +Infinity (Exact) */
/* A=1 exactly -> 0 (Exact) */
/* */
/* Mathematical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* */
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* ------------------------------------------------------------------ */
/* This is a wrapper for decLnOp which can handle the slightly wider */
/* (+11) range needed by Ln, Log10, etc. (which may have to be able */
/* to calculate at p+e+2). */
/* ------------------------------------------------------------------ */
decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
decContext *set) {
uInt status=0; /* accumulator */
#if DECSUBSET
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
#endif
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* Check restrictions; this is a math function; if not violated */
/* then carry out the operation. */
if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
#if DECSUBSET
if (!set->extended) {
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
/* special check in subset for rhs=0 */
if (ISZERO(rhs)) { /* +/- zeros -> error */
status|=DEC_Invalid_operation;
break;}
} /* extended=0 */
#endif
decLnOp(res, rhs, set, &status);
} while(0); /* end protected */
#if DECSUBSET
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
#endif
/* apply significant status */
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberLn */
/* ------------------------------------------------------------------ */
/* decNumberLogB - get adjusted exponent, by 754r rules */
/* */
/* This computes C = adjustedexponent(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context, used only for digits and status */
/* */
/* C must have space for 10 digits (A might have 10**9 digits and */
/* an exponent of +999999999, or one digit and an exponent of */
/* -1999999999). */
/* */
/* This returns the adjusted exponent of A after (in theory) padding */
/* with zeros on the right to set->digits digits while keeping the */
/* same value. The exponent is not limited by emin/emax. */
/* */
/* Notable cases: */
/* A<0 -> Use |A| */
/* A=0 -> -Infinity (Division by zero) */
/* A=Infinite -> +Infinity (Exact) */
/* A=1 exactly -> 0 (Exact) */
/* NaNs are propagated as usual */
/* ------------------------------------------------------------------ */
decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
decContext *set) {
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* NaNs as usual; Infinities return +Infinity; 0->oops */
if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
else if (decNumberIsZero(rhs)) {
decNumberZero(res); /* prepare for Infinity */
res->bits=DECNEG|DECINF; /* -Infinity */
status|=DEC_Division_by_zero; /* as per 754r */
}
else { /* finite non-zero */
Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
decNumberFromInt32(res, ae); /* lay it out */
}
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberLogB */
/* ------------------------------------------------------------------ */
/* decNumberLog10 -- logarithm in base 10 */
/* */
/* This computes C = log10(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* */
/* Notable cases: */
/* A<0 -> Invalid */
/* A=0 -> -Infinity (Exact) */
/* A=+Infinity -> +Infinity (Exact) */
/* A=10**n (if n is an integer) -> n (Exact) */
/* */
/* Mathematical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* */
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* ------------------------------------------------------------------ */
/* This calculates ln(A)/ln(10) using appropriate precision. For */
/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
/* requested digits and t is the number of digits in the exponent */
/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
/* fastpath in decLnOp. The final division is done to the requested */
/* precision. */
/* ------------------------------------------------------------------ */
decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
decContext *set) {
uInt status=0, ignore=0; /* status accumulators */
uInt needbytes; /* for space calculations */
Int p; /* working precision */
Int t; /* digits in exponent of A */
/* buffers for a and b working decimals */
/* (adjustment calculator, same size) */
decNumber bufa[D2N(DECBUFFER+2)];
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber *a=bufa; /* temporary a */
decNumber bufb[D2N(DECBUFFER+2)];
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
decNumber *b=bufb; /* temporary b */
decNumber bufw[D2N(10)]; /* working 2-10 digit number */
decNumber *w=bufw; /* .. */
#if DECSUBSET
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
#endif
decContext aset; /* working context */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* Check restrictions; this is a math function; if not violated */
/* then carry out the operation. */
if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
#if DECSUBSET
if (!set->extended) {
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
/* special check in subset for rhs=0 */
if (ISZERO(rhs)) { /* +/- zeros -> error */
status|=DEC_Invalid_operation;
break;}
} /* extended=0 */
#endif
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
/* handle exact powers of 10; only check if +ve finite */
if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
Int residue=0; /* (no residue) */
uInt copystat=0; /* clean status */
/* round to a single digit... */
aset.digits=1;
decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */
/* if exact and the digit is 1, rhs is a power of 10 */
if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
/* the exponent, conveniently, is the power of 10; making */
/* this the result needs a little care as it might not fit, */
/* so first convert it into the working number, and then move */
/* to res */
decNumberFromInt32(w, w->exponent);
residue=0;
decCopyFit(res, w, set, &residue, &status); /* copy & round */
decFinish(res, set, &residue, &status); /* cleanup/set flags */
break;
} /* not a power of 10 */
} /* not a candidate for exact */
/* simplify the information-content calculation to use 'total */
/* number of digits in a, including exponent' as compared to the */
/* requested digits, as increasing this will only rarely cost an */
/* iteration in ln(a) anyway */
t=6; /* it can never be >6 */
/* allocate space when needed... */
p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
if (needbytes>sizeof(bufa)) { /* need malloc space */
allocbufa=(decNumber *)malloc(needbytes);
if (allocbufa==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
a=allocbufa; /* use the allocated space */
}
aset.digits=p; /* as calculated */
aset.emax=DEC_MAX_MATH; /* usual bounds */
aset.emin=-DEC_MAX_MATH; /* .. */
aset.clamp=0; /* and no concrete format */
decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */
/* skip the division if the result so far is infinite, NaN, or */
/* zero, or there was an error; note NaN from sNaN needs copy */
if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
if (a->bits&DECSPECIAL || ISZERO(a)) {
decNumberCopy(res, a); /* [will fit] */
break;}
/* for ln(10) an extra 3 digits of precision are needed */
p=set->digits+3;
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
if (needbytes>sizeof(bufb)) { /* need malloc space */
allocbufb=(decNumber *)malloc(needbytes);
if (allocbufb==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
b=allocbufb; /* use the allocated space */
}
decNumberZero(w); /* set up 10... */
#if DECDPUN==1
w->lsu[1]=1; w->lsu[0]=0; /* .. */
#else
w->lsu[0]=10; /* .. */
#endif
w->digits=2; /* .. */
aset.digits=p;
decLnOp(b, w, &aset, &ignore); /* b=ln(10) */
aset.digits=set->digits; /* for final divide */
decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
} while(0); /* [for break] */
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
if (allocbufb!=NULL) free(allocbufb); /* .. */
#if DECSUBSET
if (allocrhs !=NULL) free(allocrhs); /* .. */
#endif
/* apply significant status */
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberLog10 */
/* ------------------------------------------------------------------ */
/* decNumberMax -- compare two Numbers and return the maximum */
/* */
/* This computes C = A ? B, returning the maximum by 754R rules */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMax */
/* ------------------------------------------------------------------ */
/* decNumberMaxMag -- compare and return the maximum by magnitude */
/* */
/* This computes C = A ? B, returning the maximum by 754R rules */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMaxMag */
/* ------------------------------------------------------------------ */
/* decNumberMin -- compare two Numbers and return the minimum */
/* */
/* This computes C = A ? B, returning the minimum by 754R rules */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMin */
/* ------------------------------------------------------------------ */
/* decNumberMinMag -- compare and return the minimum by magnitude */
/* */
/* This computes C = A ? B, returning the minimum by 754R rules */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMinMag */
/* ------------------------------------------------------------------ */
/* decNumberMinus -- prefix minus operator */
/* */
/* This computes C = 0 - A */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* See also decNumberCopyNegate for a quiet bitwise version of this. */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* Simply use AddOp for the subtract, which will do the necessary. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dzero;
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
decNumberZero(&dzero); /* make 0 */
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
decAddOp(res, &dzero, rhs, set, DECNEG, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMinus */
/* ------------------------------------------------------------------ */
/* decNumberNextMinus -- next towards -Infinity */
/* */
/* This computes C = A - infinitesimal, rounded towards -Infinity */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* This is a generalization of 754r NextDown. */
/* ------------------------------------------------------------------ */
decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dtiny; /* constant */
decContext workset=*set; /* work */
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* +Infinity is the special case */
if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
decSetMaxValue(res, set); /* is +ve */
/* there is no status to set */
return res;
}
decNumberZero(&dtiny); /* start with 0 */
dtiny.lsu[0]=1; /* make number that is .. */
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
workset.round=DEC_ROUND_FLOOR;
decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberNextMinus */
/* ------------------------------------------------------------------ */
/* decNumberNextPlus -- next towards +Infinity */
/* */
/* This computes C = A + infinitesimal, rounded towards +Infinity */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* This is a generalization of 754r NextUp. */
/* ------------------------------------------------------------------ */
decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dtiny; /* constant */
decContext workset=*set; /* work */
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* -Infinity is the special case */
if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
decSetMaxValue(res, set);
res->bits=DECNEG; /* negative */
/* there is no status to set */
return res;
}
decNumberZero(&dtiny); /* start with 0 */
dtiny.lsu[0]=1; /* make number that is .. */
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
workset.round=DEC_ROUND_CEILING;
decAddOp(res, rhs, &dtiny, &workset, 0, &status);
status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberNextPlus */
/* ------------------------------------------------------------------ */
/* decNumberNextToward -- next towards rhs */
/* */
/* This computes C = A +/- infinitesimal, rounded towards */
/* +/-Infinity in the direction of B, as per 754r nextafter rules */
/* */
/* res is C, the result. C may be A or B. */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* This is a generalization of 754r NextAfter. */
/* ------------------------------------------------------------------ */
decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
decNumber dtiny; /* constant */
decContext workset=*set; /* work */
Int result; /* .. */
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
decNaNs(res, lhs, rhs, set, &status);
}
else { /* Is numeric, so no chance of sNaN Invalid, etc. */
result=decCompare(lhs, rhs, 0); /* sign matters */
if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
else { /* valid compare */
if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */
else { /* differ: need NextPlus or NextMinus */
uByte sub; /* add or subtract */
if (result<0) { /* lhs<rhs, do nextplus */
/* -Infinity is the special case */
if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
decSetMaxValue(res, set);
res->bits=DECNEG; /* negative */
return res; /* there is no status to set */
}
workset.round=DEC_ROUND_CEILING;
sub=0; /* add, please */
} /* plus */
else { /* lhs>rhs, do nextminus */
/* +Infinity is the special case */
if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
decSetMaxValue(res, set);
return res; /* there is no status to set */
}
workset.round=DEC_ROUND_FLOOR;
sub=DECNEG; /* subtract, please */
} /* minus */
decNumberZero(&dtiny); /* start with 0 */
dtiny.lsu[0]=1; /* make number that is .. */
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
/* turn off exceptions if the result is a normal number */
/* (including Nmin), otherwise let all status through */
if (decNumberIsNormal(res, set)) status=0;
} /* unequal */
} /* compare OK */
} /* numeric */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberNextToward */
/* ------------------------------------------------------------------ */
/* decNumberOr -- OR two Numbers, digitwise */
/* */
/* This computes C = A | B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X|X) */
/* lhs is A */
/* rhs is B */
/* set is the context (used for result length and error report) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Logical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* ------------------------------------------------------------------ */
decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
const Unit *ua, *ub; /* -> operands */
const Unit *msua, *msub; /* -> operand msus */
Unit *uc, *msuc; /* -> result and its msu */
Int msudigs; /* digits in res msu */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
/* operands are valid */
ua=lhs->lsu; /* bottom-up */
ub=rhs->lsu; /* .. */
uc=res->lsu; /* .. */
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
Unit a, b; /* extract units */
if (ua>msua) a=0;
else a=*ua;
if (ub>msub) b=0;
else b=*ub;
*uc=0; /* can now write back */
if (a|b) { /* maybe 1 bits to examine */
Int i, j;
/* This loop could be unrolled and/or use BIN2BCD tables */
for (i=0; i<DECDPUN; i++) {
if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */
j=a%10;
a=a/10;
j|=b%10;
b=b/10;
if (j>1) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
} /* each digit */
} /* non-zero */
} /* each unit */
/* [here uc-1 is the msu of the result] */
res->digits=decGetDigits(res->lsu, uc-res->lsu);
res->exponent=0; /* integer */
res->bits=0; /* sign=0 */
return res; /* [no status to set] */
} /* decNumberOr */
/* ------------------------------------------------------------------ */
/* decNumberPlus -- prefix plus operator */
/* */
/* This computes C = 0 + A */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* See also decNumberCopy for a quiet bitwise version of this. */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This simply uses AddOp; Add will take fast path after preparing A. */
/* Performance is a concern here, as this routine is often used to */
/* check operands and apply rounding and overflow/underflow testing. */
/* ------------------------------------------------------------------ */
decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dzero;
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
decNumberZero(&dzero); /* make 0 */
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
decAddOp(res, &dzero, rhs, set, 0, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberPlus */
/* ------------------------------------------------------------------ */
/* decNumberMultiply -- multiply two Numbers */
/* */
/* This computes C = A x B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decMultiplyOp(res, lhs, rhs, set, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberMultiply */
/* ------------------------------------------------------------------ */
/* decNumberPower -- raise a number to a power */
/* */
/* This computes C = A ** B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Mathematical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* */
/* However, if 1999999997<=B<=999999999 and B is an integer then the */
/* restrictions on A and the context are relaxed to the usual bounds, */
/* for compatibility with the earlier (integer power only) version */
/* of this function. */
/* */
/* When B is an integer, the result may be exact, even if rounded. */
/* */
/* The final result is rounded according to the context; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* ------------------------------------------------------------------ */
decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
#if DECSUBSET
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs=NULL; /* .., rhs */
#endif
decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */
decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */
Int reqdigits=set->digits; /* requested DIGITS */
Int n; /* rhs in binary */
Flag rhsint=0; /* 1 if rhs is an integer */
Flag useint=0; /* 1 if can use integer calculation */
Flag isoddint=0; /* 1 if rhs is an integer and odd */
Int i; /* work */
#if DECSUBSET
Int dropped; /* .. */
#endif
uInt needbytes; /* buffer size needed */
Flag seenbit; /* seen a bit while powering */
Int residue=0; /* rounding residue */
uInt status=0; /* accumulators */
uByte bits=0; /* result sign if errors */
decContext aset; /* working context */
decNumber dnOne; /* work value 1... */
/* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
decNumber dacbuff[D2N(DECBUFFER+9)];
decNumber *dac=dacbuff; /* -> result accumulator */
/* same again for possible 1/lhs calculation */
decNumber invbuff[D2N(DECBUFFER+9)];
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) { /* reduce operands and set status, as needed */
if (lhs->digits>reqdigits) {
alloclhs=decRoundOperand(lhs, set, &status);
if (alloclhs==NULL) break;
lhs=alloclhs;
}
if (rhs->digits>reqdigits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* handle NaNs and rhs Infinity (lhs infinity is harder) */
if (SPECIALARGS) {
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
decNaNs(res, lhs, rhs, set, &status);
break;}
if (decNumberIsInfinite(rhs)) { /* rhs Infinity */
Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */
if (decNumberIsNegative(lhs) /* lhs<0 */
&& !decNumberIsZero(lhs)) /* .. */
status|=DEC_Invalid_operation;
else { /* lhs >=0 */
decNumberZero(&dnOne); /* set up 1 */
dnOne.lsu[0]=1;
decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
decNumberZero(res); /* prepare for 0/1/Infinity */
if (decNumberIsNegative(dac)) { /* lhs<1 */
if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
}
else if (dac->lsu[0]==0) { /* lhs=1 */
/* 1**Infinity is inexact, so return fully-padded 1.0000 */
Int shift=set->digits-1;
*res->lsu=1; /* was 0, make int 1 */
res->digits=decShiftToMost(res->lsu, 1, shift);
res->exponent=-shift; /* make 1.0000... */
status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
}
else { /* lhs>1 */
if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
}
} /* lhs>=0 */
break;}
/* [lhs infinity drops through] */
} /* specials */
/* Original rhs may be an integer that fits and is in range */
n=decGetInt(rhs);
if (n!=BADINT) { /* it is an integer */
rhsint=1; /* record the fact for 1**n */
isoddint=(Flag)n&1; /* [works even if big] */
if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */
useint=1; /* looks good */
}
if (decNumberIsNegative(lhs) /* -x .. */
&& isoddint) bits=DECNEG; /* .. to an odd power */
/* handle LHS infinity */
if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */
uByte rbits=rhs->bits; /* save */
decNumberZero(res); /* prepare */
if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */
else {
/* -Inf**nonint -> error */
if (!rhsint && decNumberIsNegative(lhs)) {
status|=DEC_Invalid_operation; /* -Inf**nonint is error */
break;}
if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
/* [otherwise will be 0 or -0] */
res->bits=bits;
}
break;}
/* similarly handle LHS zero */
if (decNumberIsZero(lhs)) {
if (n==0) { /* 0**0 => Error */
#if DECSUBSET
if (!set->extended) { /* [unless subset] */
decNumberZero(res);
*res->lsu=1; /* return 1 */
break;}
#endif
status|=DEC_Invalid_operation;
}
else { /* 0**x */
uByte rbits=rhs->bits; /* save */
if (rbits & DECNEG) { /* was a 0**(-n) */
#if DECSUBSET
if (!set->extended) { /* [bad if subset] */
status|=DEC_Invalid_operation;
break;}
#endif
bits|=DECINF;
}
decNumberZero(res); /* prepare */
/* [otherwise will be 0 or -0] */
res->bits=bits;
}
break;}
/* here both lhs and rhs are finite; rhs==0 is handled in the */
/* integer path. Next handle the non-integer cases */
if (!useint) { /* non-integral rhs */
/* any -ve lhs is bad, as is either operand or context out of */
/* bounds */
if (decNumberIsNegative(lhs)) {
status|=DEC_Invalid_operation;
break;}
if (decCheckMath(lhs, set, &status)
|| decCheckMath(rhs, set, &status)) break; /* variable status */
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
aset.emax=DEC_MAX_MATH; /* usual bounds */
aset.emin=-DEC_MAX_MATH; /* .. */
aset.clamp=0; /* and no concrete format */
/* calculate the result using exp(ln(lhs)*rhs), which can */
/* all be done into the accumulator, dac. The precision needed */
/* is enough to contain the full information in the lhs (which */
/* is the total digits, including exponent), or the requested */
/* precision, if larger, + 4; 6 is used for the exponent */
/* maximum length, and this is also used when it is shorter */
/* than the requested digits as it greatly reduces the >0.5 ulp */
/* cases at little cost (because Ln doubles digits each */
/* iteration so a few extra digits rarely causes an extra */
/* iteration) */
aset.digits=MAXI(lhs->digits, set->digits)+6+4;
} /* non-integer rhs */
else { /* rhs is in-range integer */
if (n==0) { /* x**0 = 1 */
/* (0**0 was handled above) */
decNumberZero(res); /* result=1 */
*res->lsu=1; /* .. */
break;}
/* rhs is a non-zero integer */
if (n<0) n=-n; /* use abs(n) */
aset=*set; /* clone the context */
aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */
/* calculate the working DIGITS */
aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
#if DECSUBSET
if (!set->extended) aset.digits--; /* use classic precision */
#endif
/* it's an error if this is more than can be handled */
if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
} /* integer path */
/* aset.digits is the count of digits for the accumulator needed */
/* if accumulator is too long for local storage, then allocate */
needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
/* [needbytes also used below if 1/lhs needed] */
if (needbytes>sizeof(dacbuff)) {
allocdac=(decNumber *)malloc(needbytes);
if (allocdac==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
dac=allocdac; /* use the allocated space */
}
/* here, aset is set up and accumulator is ready for use */
if (!useint) { /* non-integral rhs */
/* x ** y; special-case x=1 here as it will otherwise always */
/* reduce to integer 1; decLnOp has a fastpath which detects */
/* the case of x=1 */
decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */
/* [no error possible, as lhs 0 already handled] */
if (ISZERO(dac)) { /* x==1, 1.0, etc. */
/* need to return fully-padded 1.0000 etc., but rhsint->1 */
*dac->lsu=1; /* was 0, make int 1 */
if (!rhsint) { /* add padding */
Int shift=set->digits-1;
dac->digits=decShiftToMost(dac->lsu, 1, shift);
dac->exponent=-shift; /* make 1.0000... */
status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
}
}
else {
decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */
decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */
}
/* and drop through for final rounding */
} /* non-integer rhs */
else { /* carry on with integer */
decNumberZero(dac); /* acc=1 */
*dac->lsu=1; /* .. */
/* if a negative power the constant 1 is needed, and if not subset */
/* invert the lhs now rather than inverting the result later */
if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
decNumber *inv=invbuff; /* asssume use fixed buffer */
decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */
#if DECSUBSET
if (set->extended) { /* need to calculate 1/lhs */
#endif
/* divide lhs into 1, putting result in dac [dac=1/dac] */
decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
/* now locate or allocate space for the inverted lhs */
if (needbytes>sizeof(invbuff)) {
allocinv=(decNumber *)malloc(needbytes);
if (allocinv==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
inv=allocinv; /* use the allocated space */
}
/* [inv now points to big-enough buffer or allocated storage] */
decNumberCopy(inv, dac); /* copy the 1/lhs */
decNumberCopy(dac, &dnOne); /* restore acc=1 */
lhs=inv; /* .. and go forward with new lhs */
#if DECSUBSET
}
#endif
}
/* Raise-to-the-power loop... */
seenbit=0; /* set once a 1-bit is encountered */
for (i=1;;i++){ /* for each bit [top bit ignored] */
/* abandon if had overflow or terminal underflow */
if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
if (status&DEC_Overflow || ISZERO(dac)) break;
}
/* [the following two lines revealed an optimizer bug in a C++ */
/* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
n=n<<1; /* move next bit to testable position */
if (n<0) { /* top bit is set */
seenbit=1; /* OK, significant bit seen */
decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
}
if (i==31) break; /* that was the last bit */
if (!seenbit) continue; /* no need to square 1 */
decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
} /*i*/ /* 32 bits */
/* complete internal overflow or underflow processing */
if (status & (DEC_Overflow|DEC_Underflow)) {
#if DECSUBSET
/* If subset, and power was negative, reverse the kind of -erflow */
/* [1/x not yet done] */
if (!set->extended && decNumberIsNegative(rhs)) {
if (status & DEC_Overflow)
status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
else { /* trickier -- Underflow may or may not be set */
status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
status|=DEC_Overflow;
}
}
#endif
dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
/* round subnormals [to set.digits rather than aset.digits] */
/* or set overflow result similarly as required */
decFinalize(dac, set, &residue, &status);
decNumberCopy(res, dac); /* copy to result (is now OK length) */
break;
}
#if DECSUBSET
if (!set->extended && /* subset math */
decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
/* so divide result into 1 [dac=1/dac] */
decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
}
#endif
} /* rhs integer path */
/* reduce result to the requested length and copy to result */
decCopyFit(res, dac, set, &residue, &status);
decFinish(res, set, &residue, &status); /* final cleanup */
#if DECSUBSET
if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */
#endif
} while(0); /* end protected */
if (allocdac!=NULL) free(allocdac); /* drop any storage used */
if (allocinv!=NULL) free(allocinv); /* .. */
#if DECSUBSET
if (alloclhs!=NULL) free(alloclhs); /* .. */
if (allocrhs!=NULL) free(allocrhs); /* .. */
#endif
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberPower */
/* ------------------------------------------------------------------ */
/* decNumberQuantize -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has exponent of B. The numerical value of C will equal A, */
/* except for the effects of any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the number with exponent to match */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be equal to that of B. */
/* ------------------------------------------------------------------ */
decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decQuantizeOp(res, lhs, rhs, set, 1, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberQuantize */
/* ------------------------------------------------------------------ */
/* decNumberReduce -- remove trailing zeros */
/* */
/* This computes C = 0 + A, and normalizes the result */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* Previously known as Normalize */
decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
decContext *set) {
return decNumberReduce(res, rhs, set);
} /* decNumberNormalize */
decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
decContext *set) {
#if DECSUBSET
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
#endif
uInt status=0; /* as usual */
Int residue=0; /* as usual */
Int dropped; /* work */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* Infinities copy through; NaNs need usual treatment */
if (decNumberIsNaN(rhs)) {
decNaNs(res, rhs, NULL, set, &status);
break;
}
/* reduce result to the requested length and copy to result */
decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
decFinish(res, set, &residue, &status); /* cleanup/set flags */
decTrim(res, set, 1, &dropped); /* normalize in place */
} while(0); /* end protected */
#if DECSUBSET
if (allocrhs !=NULL) free(allocrhs); /* .. */
#endif
if (status!=0) decStatus(res, status, set);/* then report status */
return res;
} /* decNumberReduce */
/* ------------------------------------------------------------------ */
/* decNumberRescale -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has the value B. The numerical value of C will equal A, */
/* except for the effects of any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the requested exponent */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be equal to B. */
/* ------------------------------------------------------------------ */
decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decQuantizeOp(res, lhs, rhs, set, 0, &status);
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberRescale */
/* ------------------------------------------------------------------ */
/* decNumberRemainder -- divide and return remainder */
/* */
/* This computes C = A % B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberRemainder */
/* ------------------------------------------------------------------ */
/* decNumberRemainderNear -- divide and return remainder from nearest */
/* */
/* This computes C = A % B, where % is the IEEE remainder operator */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberRemainderNear */
/* ------------------------------------------------------------------ */
/* decNumberRotate -- rotate the coefficient of a Number left/right */
/* */
/* This computes C = A rot B (in base ten and rotating set->digits */
/* digits). */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
/* lhs is A */
/* rhs is B, the number of digits to rotate (-ve to right) */
/* set is the context */
/* */
/* The digits of the coefficient of A are rotated to the left (if B */
/* is positive) or to the right (if B is negative) without adjusting */
/* the exponent or the sign of A. If lhs->digits is less than */
/* set->digits the coefficient is padded with zeros on the left */
/* before the rotate. Any leading zeros in the result are removed */
/* as usual. */
/* */
/* B must be an integer (q=0) and in the range -set->digits through */
/* +set->digits. */
/* C must have space for set->digits digits. */
/* NaNs are propagated as usual. Infinities are unaffected (but */
/* B must be valid). No status is set unless B is invalid or an */
/* operand is an sNaN. */
/* ------------------------------------------------------------------ */
decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
Int rotate; /* rhs as an Int */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
/* NaNs propagate as normal */
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
decNaNs(res, lhs, rhs, set, &status);
/* rhs must be an integer */
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
status=DEC_Invalid_operation;
else { /* both numeric, rhs is an integer */
rotate=decGetInt(rhs); /* [cannot fail] */
if (rotate==BADINT /* something bad .. */
|| rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */
|| abs(rotate)>set->digits) /* .. or out of range */
status=DEC_Invalid_operation;
else { /* rhs is OK */
decNumberCopy(res, lhs);
/* convert -ve rotate to equivalent positive rotation */
if (rotate<0) rotate=set->digits+rotate;
if (rotate!=0 && rotate!=set->digits /* zero or full rotation */
&& !decNumberIsInfinite(res)) { /* lhs was infinite */
/* left-rotate to do; 0 < rotate < set->digits */
uInt units, shift; /* work */
uInt msudigits; /* digits in result msu */
Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */
Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */
res->digits=set->digits; /* now full-length */
msudigits=MSUDIGITS(res->digits); /* actual digits in msu */
/* rotation here is done in-place, in three steps */
/* 1. shift all to least up to one unit to unit-align final */
/* lsd [any digits shifted out are rotated to the left, */
/* abutted to the original msd (which may require split)] */
/* */
/* [if there are no whole units left to rotate, the */
/* rotation is now complete] */
/* */
/* 2. shift to least, from below the split point only, so that */
/* the final msd is in the right place in its Unit [any */
/* digits shifted out will fit exactly in the current msu, */
/* left aligned, no split required] */
/* */
/* 3. rotate all the units by reversing left part, right */
/* part, and then whole */
/* */
/* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
/* */
/* start: 00a bcd efg hij klm npq */
/* */
/* 1a 000 0ab cde fgh|ijk lmn [pq saved] */
/* 1b 00p qab cde fgh|ijk lmn */
/* */
/* 2a 00p qab cde fgh|00i jkl [mn saved] */
/* 2b mnp qab cde fgh|00i jkl */
/* */
/* 3a fgh cde qab mnp|00i jkl */
/* 3b fgh cde qab mnp|jkl 00i */
/* 3c 00i jkl mnp qab cde fgh */
/* Step 1: amount to shift is the partial right-rotate count */
rotate=set->digits-rotate; /* make it right-rotate */
units=rotate/DECDPUN; /* whole units to rotate */
shift=rotate%DECDPUN; /* left-over digits count */
if (shift>0) { /* not an exact number of units */
uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
decShiftToLeast(res->lsu, D2U(res->digits), shift);
if (shift>msudigits) { /* msumax-1 needs >0 digits */
uInt rem=save%powers[shift-msudigits];/* split save */
*msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
*(msumax-1)=*(msumax-1)
+(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
}
else { /* all fits in msumax */
*msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
}
} /* digits shift needed */
/* If whole units to rotate... */
if (units>0) { /* some to do */
/* Step 2: the units to touch are the whole ones in rotate, */
/* if any, and the shift is DECDPUN-msudigits (which may be */
/* 0, again) */
shift=DECDPUN-msudigits;
if (shift>0) { /* not an exact number of units */
uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
decShiftToLeast(res->lsu, units, shift);
*msumax=*msumax+(Unit)(save*powers[msudigits]);
} /* partial shift needed */
/* Step 3: rotate the units array using triple reverse */
/* (reversing is easy and fast) */
decReverse(res->lsu+units, msumax); /* left part */
decReverse(res->lsu, res->lsu+units-1); /* right part */
decReverse(res->lsu, msumax); /* whole */
} /* whole units to rotate */
/* the rotation may have left an undetermined number of zeros */
/* on the left, so true length needs to be calculated */
res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
} /* rotate needed */
} /* rhs OK */
} /* numerics */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberRotate */
/* ------------------------------------------------------------------ */
/* decNumberSameQuantum -- test for equal exponents */
/* */
/* res is the result number, which will contain either 0 or 1 */
/* lhs is a number to test */
/* rhs is the second (usually a pattern) */
/* */
/* No errors are possible and no context is needed. */
/* ------------------------------------------------------------------ */
decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
const decNumber *rhs) {
Unit ret=0; /* return value */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
#endif
if (SPECIALARGS) {
if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
/* [anything else with a special gives 0] */
}
else if (lhs->exponent==rhs->exponent) ret=1;
decNumberZero(res); /* OK to overwrite an operand now */
*res->lsu=ret;
return res;
} /* decNumberSameQuantum */
/* ------------------------------------------------------------------ */
/* decNumberScaleB -- multiply by a power of 10 */
/* */
/* This computes C = A x 10**B where B is an integer (q=0) with */
/* maximum magnitude 2*(emax+digits) */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the requested power of ten to use */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* */
/* The result may underflow or overflow. */
/* ------------------------------------------------------------------ */
decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
Int reqexp; /* requested exponent change [B] */
uInt status=0; /* accumulator */
Int residue; /* work */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
/* Handle special values except lhs infinite */
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
decNaNs(res, lhs, rhs, set, &status);
/* rhs must be an integer */
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
status=DEC_Invalid_operation;
else {
/* lhs is a number; rhs is a finite with q==0 */
reqexp=decGetInt(rhs); /* [cannot fail] */
if (reqexp==BADINT /* something bad .. */
|| reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */
|| abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
status=DEC_Invalid_operation;
else { /* rhs is OK */
decNumberCopy(res, lhs); /* all done if infinite lhs */
if (!decNumberIsInfinite(res)) { /* prepare to scale */
res->exponent+=reqexp; /* adjust the exponent */
residue=0;
decFinalize(res, set, &residue, &status); /* .. and check */
} /* finite LHS */
} /* rhs OK */
} /* rhs finite */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberScaleB */
/* ------------------------------------------------------------------ */
/* decNumberShift -- shift the coefficient of a Number left or right */
/* */
/* This computes C = A << B or C = A >> -B (in base ten). */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
/* lhs is A */
/* rhs is B, the number of digits to shift (-ve to right) */
/* set is the context */
/* */
/* The digits of the coefficient of A are shifted to the left (if B */
/* is positive) or to the right (if B is negative) without adjusting */
/* the exponent or the sign of A. */
/* */
/* B must be an integer (q=0) and in the range -set->digits through */
/* +set->digits. */
/* C must have space for set->digits digits. */
/* NaNs are propagated as usual. Infinities are unaffected (but */
/* B must be valid). No status is set unless B is invalid or an */
/* operand is an sNaN. */
/* ------------------------------------------------------------------ */
decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
Int shift; /* rhs as an Int */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
/* NaNs propagate as normal */
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
decNaNs(res, lhs, rhs, set, &status);
/* rhs must be an integer */
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
status=DEC_Invalid_operation;
else { /* both numeric, rhs is an integer */
shift=decGetInt(rhs); /* [cannot fail] */
if (shift==BADINT /* something bad .. */
|| shift==BIGODD || shift==BIGEVEN /* .. very big .. */
|| abs(shift)>set->digits) /* .. or out of range */
status=DEC_Invalid_operation;
else { /* rhs is OK */
decNumberCopy(res, lhs);
if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
if (shift>0) { /* to left */
if (shift==set->digits) { /* removing all */
*res->lsu=0; /* so place 0 */
res->digits=1; /* .. */
}
else { /* */
/* first remove leading digits if necessary */
if (res->digits+shift>set->digits) {
decDecap(res, res->digits+shift-set->digits);
/* that updated res->digits; may have gone to 1 (for a */
/* single digit or for zero */
}
if (res->digits>1 || *res->lsu) /* if non-zero.. */
res->digits=decShiftToMost(res->lsu, res->digits, shift);
} /* partial left */
} /* left */
else { /* to right */
if (-shift>=res->digits) { /* discarding all */
*res->lsu=0; /* so place 0 */
res->digits=1; /* .. */
}
else {
decShiftToLeast(res->lsu, D2U(res->digits), -shift);
res->digits-=(-shift);
}
} /* to right */
} /* non-0 non-Inf shift */
} /* rhs OK */
} /* numerics */
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberShift */
/* ------------------------------------------------------------------ */
/* decNumberSquareRoot -- square root operator */
/* */
/* This computes C = squareroot(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This uses the following varying-precision algorithm in: */
/* */
/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
/* pp229-237, ACM, September 1985. */
/* */
/* The square-root is calculated using Newton's method, after which */
/* a check is made to ensure the result is correctly rounded. */
/* */
/* % [Reformatted original Numerical Turing source code follows.] */
/* function sqrt(x : real) : real */
/* % sqrt(x) returns the properly rounded approximation to the square */
/* % root of x, in the precision of the calling environment, or it */
/* % fails if x < 0. */
/* % t e hull and a abrham, august, 1984 */
/* if x <= 0 then */
/* if x < 0 then */
/* assert false */
/* else */
/* result 0 */
/* end if */
/* end if */
/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
/* var e := getexp(x) % exponent part of x */
/* var approx : real */
/* if e mod 2 = 0 then */
/* approx := .259 + .819 * f % approx to root of f */
/* else */
/* f := f/l0 % adjustments */
/* e := e + 1 % for odd */
/* approx := .0819 + 2.59 * f % exponent */
/* end if */
/* */
/* var p:= 3 */
/* const maxp := currentprecision + 2 */
/* loop */
/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
/* precision p */
/* approx := .5 * (approx + f/approx) */
/* exit when p = maxp */
/* end loop */
/* */
/* % approx is now within 1 ulp of the properly rounded square root */
/* % of f; to ensure proper rounding, compare squares of (approx - */
/* % l/2 ulp) and (approx + l/2 ulp) with f. */
/* p := currentprecision */
/* begin */
/* precision p + 2 */
/* const approxsubhalf := approx - setexp(.5, -p) */
/* if mulru(approxsubhalf, approxsubhalf) > f then */
/* approx := approx - setexp(.l, -p + 1) */
/* else */
/* const approxaddhalf := approx + setexp(.5, -p) */
/* if mulrd(approxaddhalf, approxaddhalf) < f then */
/* approx := approx + setexp(.l, -p + 1) */
/* end if */
/* end if */
/* end */
/* result setexp(approx, e div 2) % fix exponent */
/* end sqrt */
/* ------------------------------------------------------------------ */
decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
decContext *set) {
decContext workset, approxset; /* work contexts */
decNumber dzero; /* used for constant zero */
Int maxp; /* largest working precision */
Int workp; /* working precision */
Int residue=0; /* rounding residue */
uInt status=0, ignore=0; /* status accumulators */
uInt rstatus; /* .. */
Int exp; /* working exponent */
Int ideal; /* ideal (preferred) exponent */
Int needbytes; /* work */
Int dropped; /* .. */
#if DECSUBSET
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
#endif
/* buffer for f [needs +1 in case DECBUFFER 0] */
decNumber buff[D2N(DECBUFFER+1)];
/* buffer for a [needs +2 to match likely maxp] */
decNumber bufa[D2N(DECBUFFER+2)];
/* buffer for temporary, b [must be same size as a] */
decNumber bufb[D2N(DECBUFFER+2)];
decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
decNumber *f=buff; /* reduced fraction */
decNumber *a=bufa; /* approximation to result */
decNumber *b=bufb; /* intermediate result */
/* buffer for temporary variable, up to 3 digits */
decNumber buft[D2N(3)];
decNumber *t=buft; /* up-to-3-digit constant or work */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operand and set lostDigits status, as needed */
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, &status);
if (allocrhs==NULL) break;
/* [Note: 'f' allocation below could reuse this buffer if */
/* used, but as this is rare they are kept separate for clarity.] */
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* handle infinities and NaNs */
if (SPECIALARG) {
if (decNumberIsInfinite(rhs)) { /* an infinity */
if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
else decNumberCopy(res, rhs); /* +Infinity */
}
else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
break;
}
/* calculate the ideal (preferred) exponent [floor(exp/2)] */
/* [We would like to write: ideal=rhs->exponent>>1, but this */
/* generates a compiler warning. Generated code is the same.] */
ideal=(rhs->exponent&~1)/2; /* target */
/* handle zeros */
if (ISZERO(rhs)) {
decNumberCopy(res, rhs); /* could be 0 or -0 */
res->exponent=ideal; /* use the ideal [safe] */
/* use decFinish to clamp any out-of-range exponent, etc. */
decFinish(res, set, &residue, &status);
break;
}
/* any other -x is an oops */
if (decNumberIsNegative(rhs)) {
status|=DEC_Invalid_operation;
break;
}
/* space is needed for three working variables */
/* f -- the same precision as the RHS, reduced to 0.01->0.99... */
/* a -- Hull's approximation -- precision, when assigned, is */
/* currentprecision+1 or the input argument precision, */
/* whichever is larger (+2 for use as temporary) */
/* b -- intermediate temporary result (same size as a) */
/* if any is too long for local storage, then allocate */
workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */
maxp=workp+2; /* largest working precision */
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
if (needbytes>(Int)sizeof(buff)) {
allocbuff=(decNumber *)malloc(needbytes);
if (allocbuff==NULL) { /* hopeless -- abandon */
status|=DEC_Insufficient_storage;
break;}
f=allocbuff; /* use the allocated space */
}
/* a and b both need to be able to hold a maxp-length number */
needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */
allocbufa=(decNumber *)malloc(needbytes);
allocbufb=(decNumber *)malloc(needbytes);
if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */
status|=DEC_Insufficient_storage;
break;}
a=allocbufa; /* use the allocated spaces */
b=allocbufb; /* .. */
}
/* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
decNumberCopy(f, rhs);
exp=f->exponent+f->digits; /* adjusted to Hull rules */
f->exponent=-(f->digits); /* to range */
/* set up working context */
decContextDefault(&workset, DEC_INIT_DECIMAL64);
/* [Until further notice, no error is possible and status bits */
/* (Rounded, etc.) should be ignored, not accumulated.] */
/* Calculate initial approximation, and allow for odd exponent */
workset.digits=workp; /* p for initial calculation */
t->bits=0; t->digits=3;
a->bits=0; a->digits=3;
if ((exp & 1)==0) { /* even exponent */
/* Set t=0.259, a=0.819 */
t->exponent=-3;
a->exponent=-3;
#if DECDPUN>=3
t->lsu[0]=259;
a->lsu[0]=819;
#elif DECDPUN==2
t->lsu[0]=59; t->lsu[1]=2;
a->lsu[0]=19; a->lsu[1]=8;
#else
t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
#endif
}
else { /* odd exponent */
/* Set t=0.0819, a=2.59 */
f->exponent--; /* f=f/10 */
exp++; /* e=e+1 */
t->exponent=-4;
a->exponent=-2;
#if DECDPUN>=3
t->lsu[0]=819;
a->lsu[0]=259;
#elif DECDPUN==2
t->lsu[0]=19; t->lsu[1]=8;
a->lsu[0]=59; a->lsu[1]=2;
#else
t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
#endif
}
decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */
decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */
/* [a is now the initial approximation for sqrt(f), calculated with */
/* currentprecision, which is also a's precision.] */
/* the main calculation loop */
decNumberZero(&dzero); /* make 0 */
decNumberZero(t); /* set t = 0.5 */
t->lsu[0]=5; /* .. */
t->exponent=-1; /* .. */
workset.digits=3; /* initial p */
for (;;) {
/* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
workset.digits=workset.digits*2-2;
if (workset.digits>maxp) workset.digits=maxp;
/* a = 0.5 * (a + f/a) */
/* [calculated at p then rounded to currentprecision] */
decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */
decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */
if (a->digits==maxp) break; /* have required digits */
} /* loop */
/* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
/* now reduce to length, etc.; this needs to be done with a */
/* having the correct exponent so as to handle subnormals */
/* correctly */
approxset=*set; /* get emin, emax, etc. */
approxset.round=DEC_ROUND_HALF_EVEN;
a->exponent+=exp/2; /* set correct exponent */
rstatus=0; /* clear status */
residue=0; /* .. and accumulator */
decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */
decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */
/* Overflow was possible if the input exponent was out-of-range, */
/* in which case quit */
if (rstatus&DEC_Overflow) {
status=rstatus; /* use the status as-is */
decNumberCopy(res, a); /* copy to result */
break;
}
/* Preserve status except Inexact/Rounded */
status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
/* Carry out the Hull correction */
a->exponent-=exp/2; /* back to 0.1->1 */
/* a is now at final precision and within 1 ulp of the properly */
/* rounded square root of f; to ensure proper rounding, compare */
/* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
/* Here workset.digits=maxp and t=0.5, and a->digits determines */
/* the ulp */
workset.digits--; /* maxp-1 is OK now */
t->exponent=-a->digits-1; /* make 0.5 ulp */
decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
workset.round=DEC_ROUND_UP;
decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */
decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */
/* this is the more common adjustment, though both are rare */
t->exponent++; /* make 1.0 ulp */
t->lsu[0]=1; /* .. */
decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
/* assign to approx [round to length] */
approxset.emin-=exp/2; /* adjust to match a */
approxset.emax-=exp/2;
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
}
else {
decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
workset.round=DEC_ROUND_DOWN;
decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */
if (decNumberIsNegative(b)) { /* b < f */
t->exponent++; /* make 1.0 ulp */
t->lsu[0]=1; /* .. */
decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
/* assign to approx [round to length] */
approxset.emin-=exp/2; /* adjust to match a */
approxset.emax-=exp/2;
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
}
}
/* [no errors are possible in the above, and rounding/inexact during */
/* estimation are irrelevant, so status was not accumulated] */
/* Here, 0.1 <= a < 1 (still), so adjust back */
a->exponent+=exp/2; /* set correct exponent */
/* count droppable zeros [after any subnormal rounding] by */
/* trimming a copy */
decNumberCopy(b, a);
decTrim(b, set, 1, &dropped); /* [drops trailing zeros] */
/* Set Inexact and Rounded. The answer can only be exact if */
/* it is short enough so that squaring it could fit in workp digits, */
/* and it cannot have trailing zeros due to clamping, so these are */
/* the only (relatively rare) conditions a careful check is needed */
if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */
status|=DEC_Inexact|DEC_Rounded;
}
else { /* could be exact/unrounded */
uInt mstatus=0; /* local status */
decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
if (mstatus&DEC_Overflow) { /* result just won't fit */
status|=DEC_Inexact|DEC_Rounded;
}
else { /* plausible */
decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
else { /* is Exact */
/* here, dropped is the count of trailing zeros in 'a' */
/* use closest exponent to ideal... */
Int todrop=ideal-a->exponent; /* most that can be dropped */
if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
else { /* unrounded */
if (dropped<todrop) { /* clamp to those available */
todrop=dropped;
status|=DEC_Clamped;
}
if (todrop>0) { /* have some to drop */
decShiftToLeast(a->lsu, D2U(a->digits), todrop);
a->exponent+=todrop; /* maintain numerical value */
a->digits-=todrop; /* new length */
}
}
}
}
}
/* double-check Underflow, as perhaps the result could not have */
/* been subnormal (initial argument too big), or it is now Exact */
if (status&DEC_Underflow) {
Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
/* check if truly subnormal */
#if DECEXTFLAG /* DEC_Subnormal too */
if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
#else
if (ae>=set->emin*2) status&=~DEC_Underflow;
#endif
/* check if truly inexact */
if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
}
decNumberCopy(res, a); /* a is now the result */
} while(0); /* end protected */
if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */
if (allocbufa!=NULL) free(allocbufa); /* .. */
if (allocbufb!=NULL) free(allocbufb); /* .. */
#if DECSUBSET
if (allocrhs !=NULL) free(allocrhs); /* .. */
#endif
if (status!=0) decStatus(res, status, set);/* then report status */
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberSquareRoot */
/* ------------------------------------------------------------------ */
/* decNumberSubtract -- subtract two Numbers */
/* */
/* This computes C = A - B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* */
/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
uInt status=0; /* accumulator */
decAddOp(res, lhs, rhs, set, DECNEG, &status);
if (status!=0) decStatus(res, status, set);
#if DECCHECK
decCheckInexact(res, set);
#endif
return res;
} /* decNumberSubtract */
/* ------------------------------------------------------------------ */
/* decNumberToIntegralExact -- round-to-integral-value with InExact */
/* decNumberToIntegralValue -- round-to-integral-value */
/* */
/* res is the result */
/* rhs is input number */
/* set is the context */
/* */
/* res must have space for any value of rhs. */
/* */
/* This implements the IEEE special operators and therefore treats */
/* special values as valid. For finite numbers it returns */
/* rescale(rhs, 0) if rhs->exponent is <0. */
/* Otherwise the result is rhs (so no error is possible, except for */
/* sNaN). */
/* */
/* The context is used for rounding mode and status after sNaN, but */
/* the digits setting is ignored. The Exact version will signal */
/* Inexact if the result differs numerically from rhs; the other */
/* never signals Inexact. */
/* ------------------------------------------------------------------ */
decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
decContext *set) {
decNumber dn;
decContext workset; /* working context */
uInt status=0; /* accumulator */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
/* handle infinities and NaNs */
if (SPECIALARG) {
if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */
else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
}
else { /* finite */
/* have a finite number; no error possible (res must be big enough) */
if (rhs->exponent>=0) return decNumberCopy(res, rhs);
/* that was easy, but if negative exponent there is work to do... */
workset=*set; /* clone rounding, etc. */
workset.digits=rhs->digits; /* no length rounding */
workset.traps=0; /* no traps */
decNumberZero(&dn); /* make a number with exponent 0 */
decNumberQuantize(res, rhs, &dn, &workset);
status|=workset.status;
}
if (status!=0) decStatus(res, status, set);
return res;
} /* decNumberToIntegralExact */
decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
decContext *set) {
decContext workset=*set; /* working context */
workset.traps=0; /* no traps */
decNumberToIntegralExact(res, rhs, &workset);
/* this never affects set, except for sNaNs; NaN will have been set */
/* or propagated already, so no need to call decStatus */
set->status|=workset.status&DEC_Invalid_operation;
return res;
} /* decNumberToIntegralValue */
/* ------------------------------------------------------------------ */
/* decNumberXor -- XOR two Numbers, digitwise */
/* */
/* This computes C = A ^ B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X^X) */
/* lhs is A */
/* rhs is B */
/* set is the context (used for result length and error report) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Logical function restrictions apply (see above); a NaN is */
/* returned with Invalid_operation if a restriction is violated. */
/* ------------------------------------------------------------------ */
decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
const Unit *ua, *ub; /* -> operands */
const Unit *msua, *msub; /* -> operand msus */
Unit *uc, *msuc; /* -> result and its msu */
Int msudigs; /* digits in res msu */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
/* operands are valid */
ua=lhs->lsu; /* bottom-up */
ub=rhs->lsu; /* .. */
uc=res->lsu; /* .. */
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
Unit a, b; /* extract units */
if (ua>msua) a=0;
else a=*ua;
if (ub>msub) b=0;
else b=*ub;
*uc=0; /* can now write back */
if (a|b) { /* maybe 1 bits to examine */
Int i, j;
/* This loop could be unrolled and/or use BIN2BCD tables */
for (i=0; i<DECDPUN; i++) {
if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */
j=a%10;
a=a/10;
j|=b%10;
b=b/10;
if (j>1) {
decStatus(res, DEC_Invalid_operation, set);
return res;
}
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
} /* each digit */
} /* non-zero */
} /* each unit */
/* [here uc-1 is the msu of the result] */
res->digits=decGetDigits(res->lsu, uc-res->lsu);
res->exponent=0; /* integer */
res->bits=0; /* sign=0 */
return res; /* [no status to set] */
} /* decNumberXor */
/* ================================================================== */
/* Utility routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decNumberClass -- return the decClass of a decNumber */
/* dn -- the decNumber to test */
/* set -- the context to use for Emin */
/* returns the decClass enum */
/* ------------------------------------------------------------------ */
enum decClass decNumberClass(const decNumber *dn, decContext *set) {
if (decNumberIsSpecial(dn)) {
if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
/* must be an infinity */
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
return DEC_CLASS_POS_INF;
}
/* is finite */
if (decNumberIsNormal(dn, set)) { /* most common */
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
return DEC_CLASS_POS_NORMAL;
}
/* is subnormal or zero */
if (decNumberIsZero(dn)) { /* most common */
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
return DEC_CLASS_POS_ZERO;
}
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
return DEC_CLASS_POS_SUBNORMAL;
} /* decNumberClass */
/* ------------------------------------------------------------------ */
/* decNumberClassToString -- convert decClass to a string */
/* */
/* eclass is a valid decClass */
/* returns a constant string describing the class (max 13+1 chars) */
/* ------------------------------------------------------------------ */
const char *decNumberClassToString(enum decClass eclass) {
if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
return DEC_ClassString_UN; /* Unknown */
} /* decNumberClassToString */
/* ------------------------------------------------------------------ */
/* decNumberCopy -- copy a number */
/* */
/* dest is the target decNumber */
/* src is the source decNumber */
/* returns dest */
/* */
/* (dest==src is allowed and is a no-op) */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
#if DECCHECK
if (src==NULL) return decNumberZero(dest);
#endif
if (dest==src) return dest; /* no copy required */
/* Use explicit assignments here as structure assignment could copy */
/* more than just the lsu (for small DECDPUN). This would not affect */
/* the value of the results, but could disturb test harness spill */
/* checking. */
dest->bits=src->bits;
dest->exponent=src->exponent;
dest->digits=src->digits;
dest->lsu[0]=src->lsu[0];
if (src->digits>DECDPUN) { /* more Units to come */
const Unit *smsup, *s; /* work */
Unit *d; /* .. */
/* memcpy for the remaining Units would be safe as they cannot */
/* overlap. However, this explicit loop is faster in short cases. */
d=dest->lsu+1; /* -> first destination */
smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */
for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
}
return dest;
} /* decNumberCopy */
/* ------------------------------------------------------------------ */
/* decNumberCopyAbs -- quiet absolute value operator */
/* */
/* This sets C = abs(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* */
/* C must have space for set->digits digits. */
/* No exception or error can occur; this is a quiet bitwise operation.*/
/* See also decNumberAbs for a checking version of this. */
/* ------------------------------------------------------------------ */
decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
#endif
decNumberCopy(res, rhs);
res->bits&=~DECNEG; /* turn off sign */
return res;
} /* decNumberCopyAbs */
/* ------------------------------------------------------------------ */
/* decNumberCopyNegate -- quiet negate value operator */
/* */
/* This sets C = negate(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* */
/* C must have space for set->digits digits. */
/* No exception or error can occur; this is a quiet bitwise operation.*/
/* See also decNumberMinus for a checking version of this. */
/* ------------------------------------------------------------------ */
decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
#endif
decNumberCopy(res, rhs);
res->bits^=DECNEG; /* invert the sign */
return res;
} /* decNumberCopyNegate */
/* ------------------------------------------------------------------ */
/* decNumberCopySign -- quiet copy and set sign operator */
/* */
/* This sets C = A with the sign of B */
/* */
/* res is C, the result. C may be A */
/* lhs is A */
/* rhs is B */
/* */
/* C must have space for set->digits digits. */
/* No exception or error can occur; this is a quiet bitwise operation.*/
/* ------------------------------------------------------------------ */
decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
const decNumber *rhs) {
uByte sign; /* rhs sign */
#if DECCHECK
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
#endif
sign=rhs->bits & DECNEG; /* save sign bit */
decNumberCopy(res, lhs);
res->bits&=~DECNEG; /* clear the sign */
res->bits|=sign; /* set from rhs */
return res;
} /* decNumberCopySign */
/* ------------------------------------------------------------------ */
/* decNumberGetBCD -- get the coefficient in BCD8 */
/* dn is the source decNumber */
/* bcd is the uInt array that will receive dn->digits BCD bytes, */
/* most-significant at offset 0 */
/* returns bcd */
/* */
/* bcd must have at least dn->digits bytes. No error is possible; if */
/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
/* ------------------------------------------------------------------ */
uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) {
uByte *ub=bcd+dn->digits-1; /* -> lsd */
const Unit *up=dn->lsu; /* Unit pointer, -> lsu */
#if DECDPUN==1 /* trivial simple copy */
for (; ub>=bcd; ub--, up++) *ub=*up;
#else /* chopping needed */
uInt u=*up; /* work */
uInt cut=DECDPUN; /* downcounter through unit */
for (; ub>=bcd; ub--) {
*ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */
u=u/10;
cut--;
if (cut>0) continue; /* more in this unit */
up++;
u=*up;
cut=DECDPUN;
}
#endif
return bcd;
} /* decNumberGetBCD */
/* ------------------------------------------------------------------ */
/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
/* dn is the target decNumber */
/* bcd is the uInt array that will source n BCD bytes, most- */
/* significant at offset 0 */
/* n is the number of digits in the source BCD array (bcd) */
/* returns dn */
/* */
/* dn must have space for at least n digits. No error is possible; */
/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
/* and bcd[0] zero. */
/* ------------------------------------------------------------------ */
decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */
const uByte *ub=bcd; /* -> source msd */
#if DECDPUN==1 /* trivial simple copy */
for (; ub<bcd+n; ub++, up--) *up=*ub;
#else /* some assembly needed */
/* calculate how many digits in msu, and hence first cut */
Int cut=MSUDIGITS(n); /* [faster than remainder] */
for (;up>=dn->lsu; up--) { /* each Unit from msu */
*up=0; /* will take <=DECDPUN digits */
for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
cut=DECDPUN; /* next Unit has all digits */
}
#endif
dn->digits=n; /* set digit count */
return dn;
} /* decNumberSetBCD */
/* ------------------------------------------------------------------ */
/* decNumberIsNormal -- test normality of a decNumber */
/* dn is the decNumber to test */
/* set is the context to use for Emin */
/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
/* ------------------------------------------------------------------ */
Int decNumberIsNormal(const decNumber *dn, decContext *set) {
Int ae; /* adjusted exponent */
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
#endif
if (decNumberIsSpecial(dn)) return 0; /* not finite */
if (decNumberIsZero(dn)) return 0; /* not non-zero */
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
if (ae<set->emin) return 0; /* is subnormal */
return 1;
} /* decNumberIsNormal */
/* ------------------------------------------------------------------ */
/* decNumberIsSubnormal -- test subnormality of a decNumber */
/* dn is the decNumber to test */
/* set is the context to use for Emin */
/* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
/* ------------------------------------------------------------------ */
Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
Int ae; /* adjusted exponent */
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
#endif
if (decNumberIsSpecial(dn)) return 0; /* not finite */
if (decNumberIsZero(dn)) return 0; /* not non-zero */
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
if (ae<set->emin) return 1; /* is subnormal */
return 0;
} /* decNumberIsSubnormal */
/* ------------------------------------------------------------------ */
/* decNumberTrim -- remove insignificant zeros */
/* */
/* dn is the number to trim */
/* returns dn */
/* */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decNumberTrim(decNumber *dn) {
Int dropped; /* work */
decContext set; /* .. */
#if DECCHECK
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
#endif
decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */
return decTrim(dn, &set, 0, &dropped);
} /* decNumberTrim */
/* ------------------------------------------------------------------ */
/* decNumberVersion -- return the name and version of this module */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
const char * decNumberVersion(void) {
return DECVERSION;
} /* decNumberVersion */
/* ------------------------------------------------------------------ */
/* decNumberZero -- set a number to 0 */
/* */
/* dn is the number to set, with space for one digit */
/* returns dn */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
/* Memset is not used as it is much slower in some environments. */
decNumber * decNumberZero(decNumber *dn) {
#if DECCHECK
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
#endif
dn->bits=0;
dn->exponent=0;
dn->digits=1;
dn->lsu[0]=0;
return dn;
} /* decNumberZero */
/* ================================================================== */
/* Local routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* decToString -- lay out a number into a string */
/* */
/* dn is the number to lay out */
/* string is where to lay out the number */
/* eng is 1 if Engineering, 0 if Scientific */
/* */
/* string must be at least dn->digits+14 characters long */
/* No error is possible. */
/* */
/* Note that this routine can generate a -0 or 0.000. These are */
/* never generated in subset to-number or arithmetic, but can occur */
/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
/* ------------------------------------------------------------------ */
/* If DECCHECK is enabled the string "?" is returned if a number is */
/* invalid. */
static void decToString(const decNumber *dn, char *string, Flag eng) {
Int exp=dn->exponent; /* local copy */
Int e; /* E-part value */
Int pre; /* digits before the '.' */
Int cut; /* for counting digits in a Unit */
char *c=string; /* work [output pointer] */
const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
uInt u, pow; /* work */
#if DECCHECK
if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
strcpy(string, "?");
return;}
#endif
if (decNumberIsNegative(dn)) { /* Negatives get a minus */
*c='-';
c++;
}
if (dn->bits&DECSPECIAL) { /* Is a special value */
if (decNumberIsInfinite(dn)) {
strcpy(c, "Inf");
strcpy(c+3, "inity");
return;}
/* a NaN */
if (dn->bits&DECSNAN) { /* signalling NaN */
*c='s';
c++;
}
strcpy(c, "NaN");
c+=3; /* step past */
/* if not a clean non-zero coefficient, that's all there is in a */
/* NaN string */
if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
/* [drop through to add integer] */
}
/* calculate how many digits in msu, and hence first cut */
cut=MSUDIGITS(dn->digits); /* [faster than remainder] */
cut--; /* power of ten for digit */
if (exp==0) { /* simple integer [common fastpath] */
for (;up>=dn->lsu; up--) { /* each Unit from msu */
u=*up; /* contains DECDPUN digits to lay out */
for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
cut=DECDPUN-1; /* next Unit has all digits */
}
*c='\0'; /* terminate the string */
return;}
/* non-0 exponent -- assume plain form */
pre=dn->digits+exp; /* digits before '.' */
e=0; /* no E */
if ((exp>0) || (pre<-5)) { /* need exponential form */
e=exp+dn->digits-1; /* calculate E value */
pre=1; /* assume one digit before '.' */
if (eng && (e!=0)) { /* engineering: may need to adjust */
Int adj; /* adjustment */
/* The C remainder operator is undefined for negative numbers, so */
/* a positive remainder calculation must be used here */
if (e<0) {
adj=(-e)%3;
if (adj!=0) adj=3-adj;
}
else { /* e>0 */
adj=e%3;
}
e=e-adj;
/* if dealing with zero still produce an exponent which is a */
/* multiple of three, as expected, but there will only be the */
/* one zero before the E, still. Otherwise note the padding. */
if (!ISZERO(dn)) pre+=adj;
else { /* is zero */
if (adj!=0) { /* 0.00Esnn needed */
e=e+3;
pre=-(2-adj);
}
} /* zero */
} /* eng */
} /* need exponent */
/* lay out the digits of the coefficient, adding 0s and . as needed */
u=*up;
if (pre>0) { /* xxx.xxx or xx00 (engineering) form */
Int n=pre;
for (; pre>0; pre--, c++, cut--) {
if (cut<0) { /* need new Unit */
if (up==dn->lsu) break; /* out of input digits (pre>digits) */
up--;
cut=DECDPUN-1;
u=*up;
}
TODIGIT(u, cut, c, pow);
}
if (n<dn->digits) { /* more to come, after '.' */
*c='.'; c++;
for (;; c++, cut--) {
if (cut<0) { /* need new Unit */
if (up==dn->lsu) break; /* out of input digits */
up--;
cut=DECDPUN-1;
u=*up;
}
TODIGIT(u, cut, c, pow);
}
}
else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
}
else { /* 0.xxx or 0.000xxx form */
*c='0'; c++;
*c='.'; c++;
for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */
for (; ; c++, cut--) {
if (cut<0) { /* need new Unit */
if (up==dn->lsu) break; /* out of input digits */
up--;
cut=DECDPUN-1;
u=*up;
}
TODIGIT(u, cut, c, pow);
}
}
/* Finally add the E-part, if needed. It will never be 0, has a
base maximum and minimum of +999999999 through -999999999, but
could range down to -1999999998 for anormal numbers */
if (e!=0) {
Flag had=0; /* 1=had non-zero */
*c='E'; c++;
*c='+'; c++; /* assume positive */
u=e; /* .. */
if (e<0) {
*(c-1)='-'; /* oops, need - */
u=-e; /* uInt, please */
}
/* lay out the exponent [_itoa or equivalent is not ANSI C] */
for (cut=9; cut>=0; cut--) {
TODIGIT(u, cut, c, pow);
if (*c=='0' && !had) continue; /* skip leading zeros */
had=1; /* had non-0 */
c++; /* step for next */
} /* cut */
}
*c='\0'; /* terminate the string (all paths) */
return;
} /* decToString */
/* ------------------------------------------------------------------ */
/* decAddOp -- add/subtract operation */
/* */
/* This computes C = A + B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* negate is DECNEG if rhs should be negated, or 0 otherwise */
/* status accumulates status for the caller */
/* */
/* C must have space for set->digits digits. */
/* Inexact in status must be 0 for correct Exact zero sign in result */
/* ------------------------------------------------------------------ */
/* If possible, the coefficient is calculated directly into C. */
/* However, if: */
/* -- a digits+1 calculation is needed because the numbers are */
/* unaligned and span more than set->digits digits */
/* -- a carry to digits+1 digits looks possible */
/* -- C is the same as A or B, and the result would destructively */
/* overlap the A or B coefficient */
/* then the result must be calculated into a temporary buffer. In */
/* this case a local (stack) buffer is used if possible, and only if */
/* too long for that does malloc become the final resort. */
/* */
/* Misalignment is handled as follows: */
/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
/* BPad: Apply the padding by a combination of shifting (whole */
/* units) and multiplication (part units). */
/* */
/* Addition, especially x=x+1, is speed-critical. */
/* The static buffer is larger than might be expected to allow for */
/* calls from higher-level funtions (notable exp). */
/* ------------------------------------------------------------------ */
static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set,
uByte negate, uInt *status) {
#if DECSUBSET
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs=NULL; /* .., rhs */
#endif
Int rhsshift; /* working shift (in Units) */
Int maxdigits; /* longest logical length */
Int mult; /* multiplier */
Int residue; /* rounding accumulator */
uByte bits; /* result bits */
Flag diffsign; /* non-0 if arguments have different sign */
Unit *acc; /* accumulator for result */
Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
/* allocations when called from */
/* other operations, notable exp] */
Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
Int reqdigits=set->digits; /* local copy; requested DIGITS */
Int padding; /* work */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits>reqdigits) {
alloclhs=decRoundOperand(lhs, set, status);
if (alloclhs==NULL) break;
lhs=alloclhs;
}
if (rhs->digits>reqdigits) {
allocrhs=decRoundOperand(rhs, set, status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* note whether signs differ [used all paths] */
diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
/* handle infinities and NaNs */
if (SPECIALARGS) { /* a special bit set */
if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */
decNaNs(res, lhs, rhs, set, status);
else { /* one or two infinities */
if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
/* two infinities with different signs is invalid */
if (decNumberIsInfinite(rhs) && diffsign) {
*status|=DEC_Invalid_operation;
break;
}
bits=lhs->bits & DECNEG; /* get sign from LHS */
}
else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
bits|=DECINF;
decNumberZero(res);
res->bits=bits; /* set +/- infinity */
} /* an infinity */
break;
}
/* Quick exit for add 0s; return the non-0, modified as need be */
if (ISZERO(lhs)) {
Int adjust; /* work */
Int lexp=lhs->exponent; /* save in case LHS==RES */
bits=lhs->bits; /* .. */
residue=0; /* clear accumulator */
decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
res->bits^=negate; /* flip if rhs was negated */
#if DECSUBSET
if (set->extended) { /* exponents on zeros count */
#endif
/* exponent will be the lower of the two */
adjust=lexp-res->exponent; /* adjustment needed [if -ve] */
if (ISZERO(res)) { /* both 0: special IEEE 854 rules */
if (adjust<0) res->exponent=lexp; /* set exponent */
/* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
if (diffsign) {
if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
else res->bits=DECNEG; /* preserve 0 sign */
}
}
else { /* non-0 res */
if (adjust<0) { /* 0-padding needed */
if ((res->digits-adjust)>set->digits) {
adjust=res->digits-set->digits; /* to fit exactly */
*status|=DEC_Rounded; /* [but exact] */
}
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
res->exponent+=adjust; /* set the exponent. */
}
} /* non-0 res */
#if DECSUBSET
} /* extended */
#endif
decFinish(res, set, &residue, status); /* clean and finalize */
break;}
if (ISZERO(rhs)) { /* [lhs is non-zero] */
Int adjust; /* work */
Int rexp=rhs->exponent; /* save in case RHS==RES */
bits=rhs->bits; /* be clean */
residue=0; /* clear accumulator */
decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
#if DECSUBSET
if (set->extended) { /* exponents on zeros count */
#endif
/* exponent will be the lower of the two */
/* [0-0 case handled above] */
adjust=rexp-res->exponent; /* adjustment needed [if -ve] */
if (adjust<0) { /* 0-padding needed */
if ((res->digits-adjust)>set->digits) {
adjust=res->digits-set->digits; /* to fit exactly */
*status|=DEC_Rounded; /* [but exact] */
}
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
res->exponent+=adjust; /* set the exponent. */
}
#if DECSUBSET
} /* extended */
#endif
decFinish(res, set, &residue, status); /* clean and finalize */
break;}
/* [NB: both fastpath and mainpath code below assume these cases */
/* (notably 0-0) have already been handled] */
/* calculate the padding needed to align the operands */
padding=rhs->exponent-lhs->exponent;
/* Fastpath cases where the numbers are aligned and normal, the RHS */
/* is all in one unit, no operand rounding is needed, and no carry, */
/* lengthening, or borrow is needed */
if (padding==0
&& rhs->digits<=DECDPUN
&& rhs->exponent>=set->emin /* [some normals drop through] */
&& rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
&& rhs->digits<=reqdigits
&& lhs->digits<=reqdigits) {
Int partial=*lhs->lsu;
if (!diffsign) { /* adding */
partial+=*rhs->lsu;
if ((partial<=DECDPUNMAX) /* result fits in unit */
&& (lhs->digits>=DECDPUN || /* .. and no digits-count change */
partial<(Int)powers[lhs->digits])) { /* .. */
if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
*res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */
break;
}
/* else drop out for careful add */
}
else { /* signs differ */
partial-=*rhs->lsu;
if (partial>0) { /* no borrow needed, and non-0 result */
if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
*res->lsu=(Unit)partial;
/* this could have reduced digits [but result>0] */
res->digits=decGetDigits(res->lsu, D2U(res->digits));
break;
}
/* else drop out for careful subtract */
}
}
/* Now align (pad) the lhs or rhs so they can be added or */
/* subtracted, as necessary. If one number is much larger than */
/* the other (that is, if in plain form there is a least one */
/* digit between the lowest digit of one and the highest of the */
/* other) padding with up to DIGITS-1 trailing zeros may be */
/* needed; then apply rounding (as exotic rounding modes may be */
/* affected by the residue). */
rhsshift=0; /* rhs shift to left (padding) in Units */
bits=lhs->bits; /* assume sign is that of LHS */
mult=1; /* likely multiplier */
/* [if padding==0 the operands are aligned; no padding is needed] */
if (padding!=0) {
/* some padding needed; always pad the RHS, as any required */
/* padding can then be effected by a simple combination of */
/* shifts and a multiply */
Flag swapped=0;
if (padding<0) { /* LHS needs the padding */
const decNumber *t;
padding=-padding; /* will be +ve */
bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
t=lhs; lhs=rhs; rhs=t;
swapped=1;
}
/* If, after pad, rhs would be longer than lhs by digits+1 or */
/* more then lhs cannot affect the answer, except as a residue, */
/* so only need to pad up to a length of DIGITS+1. */
if (rhs->digits+padding > lhs->digits+reqdigits+1) {
/* The RHS is sufficient */
/* for residue use the relative sign indication... */
Int shift=reqdigits-rhs->digits; /* left shift needed */
residue=1; /* residue for rounding */
if (diffsign) residue=-residue; /* signs differ */
/* copy, shortening if necessary */
decCopyFit(res, rhs, set, &residue, status);
/* if it was already shorter, then need to pad with zeros */
if (shift>0) {
res->digits=decShiftToMost(res->lsu, res->digits, shift);
res->exponent-=shift; /* adjust the exponent. */
}
/* flip the result sign if unswapped and rhs was negated */
if (!swapped) res->bits^=negate;
decFinish(res, set, &residue, status); /* done */
break;}
/* LHS digits may affect result */
rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */
mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
} /* padding needed */
if (diffsign) mult=-mult; /* signs differ */
/* determine the longer operand */
maxdigits=rhs->digits+padding; /* virtual length of RHS */
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
/* Decide on the result buffer to use; if possible place directly */
/* into result. */
acc=res->lsu; /* assume add direct to result */
/* If destructive overlap, or the number is too long, or a carry or */
/* borrow to DIGITS+1 might be possible, a buffer must be used. */
/* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
if ((maxdigits>=reqdigits) /* is, or could be, too large */
|| (res==rhs && rhsshift>0)) { /* destructive overlap */
/* buffer needed, choose it; units for maxdigits digits will be */
/* needed, +1 Unit for carry or borrow */
Int need=D2U(maxdigits)+1;
acc=accbuff; /* assume use local buffer */
if (need*sizeof(Unit)>sizeof(accbuff)) {
/* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
allocacc=(Unit *)malloc(need*sizeof(Unit));
if (allocacc==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
acc=allocacc;
}
}
res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */
res->exponent=lhs->exponent; /* .. operands (even if aliased) */
#if DECTRACE
decDumpAr('A', lhs->lsu, D2U(lhs->digits));
decDumpAr('B', rhs->lsu, D2U(rhs->digits));
printf(" :h: %ld %ld\n", rhsshift, mult);
#endif
/* add [A+B*m] or subtract [A+B*(-m)] */
res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
rhs->lsu, D2U(rhs->digits),
rhsshift, acc, mult)
*DECDPUN; /* [units -> digits] */
if (res->digits<0) { /* borrowed... */
res->digits=-res->digits;
res->bits^=DECNEG; /* flip the sign */
}
#if DECTRACE
decDumpAr('+', acc, D2U(res->digits));
#endif
/* If a buffer was used the result must be copied back, possibly */
/* shortening. (If no buffer was used then the result must have */
/* fit, so can't need rounding and residue must be 0.) */
residue=0; /* clear accumulator */
if (acc!=res->lsu) {
#if DECSUBSET
if (set->extended) { /* round from first significant digit */
#endif
/* remove leading zeros that were added due to rounding up to */
/* integral Units -- before the test for rounding. */
if (res->digits>reqdigits)
res->digits=decGetDigits(acc, D2U(res->digits));
decSetCoeff(res, set, acc, res->digits, &residue, status);
#if DECSUBSET
}
else { /* subset arithmetic rounds from original significant digit */
/* May have an underestimate. This only occurs when both */
/* numbers fit in DECDPUN digits and are padding with a */
/* negative multiple (-10, -100...) and the top digit(s) become */
/* 0. (This only matters when using X3.274 rules where the */
/* leading zero could be included in the rounding.) */
if (res->digits<maxdigits) {
*(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
res->digits=maxdigits;
}
else {
/* remove leading zeros that added due to rounding up to */
/* integral Units (but only those in excess of the original */
/* maxdigits length, unless extended) before test for rounding. */
if (res->digits>reqdigits) {
res->digits=decGetDigits(acc, D2U(res->digits));
if (res->digits<maxdigits) res->digits=maxdigits;
}
}
decSetCoeff(res, set, acc, res->digits, &residue, status);
/* Now apply rounding if needed before removing leading zeros. */
/* This is safe because subnormals are not a possibility */
if (residue!=0) {
decApplyRound(res, set, residue, status);
residue=0; /* did what needed to be done */
}
} /* subset */
#endif
} /* used buffer */
/* strip leading zeros [these were left on in case of subset subtract] */
res->digits=decGetDigits(res->lsu, D2U(res->digits));
/* apply checks and rounding */
decFinish(res, set, &residue, status);
/* "When the sum of two operands with opposite signs is exactly */
/* zero, the sign of that sum shall be '+' in all rounding modes */
/* except round toward -Infinity, in which mode that sign shall be */
/* '-'." [Subset zeros also never have '-', set by decFinish.] */
if (ISZERO(res) && diffsign
#if DECSUBSET
&& set->extended
#endif
&& (*status&DEC_Inexact)==0) {
if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */
else res->bits&=~DECNEG; /* sign + */
}
} while(0); /* end protected */
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
#if DECSUBSET
if (allocrhs!=NULL) free(allocrhs); /* .. */
if (alloclhs!=NULL) free(alloclhs); /* .. */
#endif
return res;
} /* decAddOp */
/* ------------------------------------------------------------------ */
/* decDivideOp -- division operation */
/* */
/* This routine performs the calculations for all four division */
/* operators (divide, divideInteger, remainder, remainderNear). */
/* */
/* C=A op B */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
/* status is the usual accumulator */
/* */
/* C must have space for set->digits digits. */
/* */
/* ------------------------------------------------------------------ */
/* The underlying algorithm of this routine is the same as in the */
/* 1981 S/370 implementation, that is, non-restoring long division */
/* with bi-unit (rather than bi-digit) estimation for each unit */
/* multiplier. In this pseudocode overview, complications for the */
/* Remainder operators and division residues for exact rounding are */
/* omitted for clarity. */
/* */
/* Prepare operands and handle special values */
/* Test for x/0 and then 0/x */
/* Exp =Exp1 - Exp2 */
/* Exp =Exp +len(var1) -len(var2) */
/* Sign=Sign1 * Sign2 */
/* Pad accumulator (Var1) to double-length with 0's (pad1) */
/* Pad Var2 to same length as Var1 */
/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
/* have=0 */
/* Do until (have=digits+1 OR residue=0) */
/* if exp<0 then if integer divide/residue then leave */
/* this_unit=0 */
/* Do forever */
/* compare numbers */
/* if <0 then leave inner_loop */
/* if =0 then (* quick exit without subtract *) do */
/* this_unit=this_unit+1; output this_unit */
/* leave outer_loop; end */
/* Compare lengths of numbers (mantissae): */
/* If same then tops2=msu2pair -- {units 1&2 of var2} */
/* else tops2=msu2plus -- {0, unit 1 of var2} */
/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
/* mult=tops1/tops2 -- Good and safe guess at divisor */
/* if mult=0 then mult=1 */
/* this_unit=this_unit+mult */
/* subtract */
/* end inner_loop */
/* if have\=0 | this_unit\=0 then do */
/* output this_unit */
/* have=have+1; end */
/* var2=var2/10 */
/* exp=exp-1 */
/* end outer_loop */
/* exp=exp+1 -- set the proper exponent */
/* if have=0 then generate answer=0 */
/* Return (Result is defined by Var1) */
/* */
/* ------------------------------------------------------------------ */
/* Two working buffers are needed during the division; one (digits+ */
/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
/* long subtractions. These are acc and var1 respectively. */
/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
/* The static buffers may be larger than might be expected to allow */
/* for calls from higher-level funtions (notable exp). */
/* ------------------------------------------------------------------ */
static decNumber * decDivideOp(decNumber *res,
const decNumber *lhs, const decNumber *rhs,
decContext *set, Flag op, uInt *status) {
#if DECSUBSET
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs=NULL; /* .., rhs */
#endif
Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
Unit *acc=accbuff; /* -> accumulator array for result */
Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */
Unit *accnext; /* -> where next digit will go */
Int acclength; /* length of acc needed [Units] */
Int accunits; /* count of units accumulated */
Int accdigits; /* count of digits accumulated */
Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */
Unit *var1=varbuff; /* -> var1 array for long subtraction */
Unit *varalloc=NULL; /* -> allocated buffer, iff used */
Unit *msu1; /* -> msu of var1 */
const Unit *var2; /* -> var2 array */
const Unit *msu2; /* -> msu of var2 */
Int msu2plus; /* msu2 plus one [does not vary] */
eInt msu2pair; /* msu2 pair plus one [does not vary] */
Int var1units, var2units; /* actual lengths */
Int var2ulen; /* logical length (units) */
Int var1initpad=0; /* var1 initial padding (digits) */
Int maxdigits; /* longest LHS or required acc length */
Int mult; /* multiplier for subtraction */
Unit thisunit; /* current unit being accumulated */
Int residue; /* for rounding */
Int reqdigits=set->digits; /* requested DIGITS */
Int exponent; /* working exponent */
Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */
uByte bits; /* working sign */
Unit *target; /* work */
const Unit *source; /* .. */
uInt const *pow; /* .. */
Int shift, cut; /* .. */
#if DECSUBSET
Int dropped; /* work */
#endif
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits>reqdigits) {
alloclhs=decRoundOperand(lhs, set, status);
if (alloclhs==NULL) break;
lhs=alloclhs;
}
if (rhs->digits>reqdigits) {
allocrhs=decRoundOperand(rhs, set, status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */
/* handle infinities and NaNs */
if (SPECIALARGS) { /* a special bit set */
if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
decNaNs(res, lhs, rhs, set, status);
break;
}
/* one or two infinities */
if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */
if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
*status|=DEC_Invalid_operation;
break;
}
/* [Note that infinity/0 raises no exceptions] */
decNumberZero(res);
res->bits=bits|DECINF; /* set +/- infinity */
break;
}
else { /* RHS (divisor) is infinite */
residue=0;
if (op&(REMAINDER|REMNEAR)) {
/* result is [finished clone of] lhs */
decCopyFit(res, lhs, set, &residue, status);
}
else { /* a division */
decNumberZero(res);
res->bits=bits; /* set +/- zero */
/* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
/* is a 0 with infinitely negative exponent, clamped to minimum */
if (op&DIVIDE) {
res->exponent=set->emin-set->digits+1;
*status|=DEC_Clamped;
}
}
decFinish(res, set, &residue, status);
break;
}
}
/* handle 0 rhs (x/0) */
if (ISZERO(rhs)) { /* x/0 is always exceptional */
if (ISZERO(lhs)) {
decNumberZero(res); /* [after lhs test] */
*status|=DEC_Division_undefined;/* 0/0 will become NaN */
}
else {
decNumberZero(res);
if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
else {
*status|=DEC_Division_by_zero; /* x/0 */
res->bits=bits|DECINF; /* .. is +/- Infinity */
}
}
break;}
/* handle 0 lhs (0/x) */
if (ISZERO(lhs)) { /* 0/x [x!=0] */
#if DECSUBSET
if (!set->extended) decNumberZero(res);
else {
#endif
if (op&DIVIDE) {
residue=0;
exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
decNumberCopy(res, lhs); /* [zeros always fit] */
res->bits=bits; /* sign as computed */
res->exponent=exponent; /* exponent, too */
decFinalize(res, set, &residue, status); /* check exponent */
}
else if (op&DIVIDEINT) {
decNumberZero(res); /* integer 0 */
res->bits=bits; /* sign as computed */
}
else { /* a remainder */
exponent=rhs->exponent; /* [save in case overwrite] */
decNumberCopy(res, lhs); /* [zeros always fit] */
if (exponent<res->exponent) res->exponent=exponent; /* use lower */
}
#if DECSUBSET
}
#endif
break;}
/* Precalculate exponent. This starts off adjusted (and hence fits */
/* in 31 bits) and becomes the usual unadjusted exponent as the */
/* division proceeds. The order of evaluation is important, here, */
/* to avoid wrap. */
exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
/* If the working exponent is -ve, then some quick exits are */
/* possible because the quotient is known to be <1 */
/* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
if (exponent<0 && !(op==DIVIDE)) {
if (op&DIVIDEINT) {
decNumberZero(res); /* integer part is 0 */
#if DECSUBSET
if (set->extended)
#endif
res->bits=bits; /* set +/- zero */
break;}
/* fastpath remainders so long as the lhs has the smaller */
/* (or equal) exponent */
if (lhs->exponent<=rhs->exponent) {
if (op&REMAINDER || exponent<-1) {
/* It is REMAINDER or safe REMNEAR; result is [finished */
/* clone of] lhs (r = x - 0*y) */
residue=0;
decCopyFit(res, lhs, set, &residue, status);
decFinish(res, set, &residue, status);
break;
}
/* [unsafe REMNEAR drops through] */
}
} /* fastpaths */
/* Long (slow) division is needed; roll up the sleeves... */
/* The accumulator will hold the quotient of the division. */
/* If it needs to be too long for stack storage, then allocate. */
acclength=D2U(reqdigits+DECDPUN); /* in Units */
if (acclength*sizeof(Unit)>sizeof(accbuff)) {
/* printf("malloc dvacc %ld units\n", acclength); */
allocacc=(Unit *)malloc(acclength*sizeof(Unit));
if (allocacc==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
acc=allocacc; /* use the allocated space */
}
/* var1 is the padded LHS ready for subtractions. */
/* If it needs to be too long for stack storage, then allocate. */
/* The maximum units needed for var1 (long subtraction) is: */
/* Enough for */
/* (rhs->digits+reqdigits-1) -- to allow full slide to right */
/* or (lhs->digits) -- to allow for long lhs */
/* whichever is larger */
/* +1 -- for rounding of slide to right */
/* +1 -- for leading 0s */
/* +1 -- for pre-adjust if a remainder or DIVIDEINT */
/* [Note: unused units do not participate in decUnitAddSub data] */
maxdigits=rhs->digits+reqdigits-1;
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
var1units=D2U(maxdigits)+2;
/* allocate a guard unit above msu1 for REMAINDERNEAR */
if (!(op&DIVIDE)) var1units++;
if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
/* printf("malloc dvvar %ld units\n", var1units+1); */
varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
if (varalloc==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
var1=varalloc; /* use the allocated space */
}
/* Extend the lhs and rhs to full long subtraction length. The lhs */
/* is truly extended into the var1 buffer, with 0 padding, so a */
/* subtract in place is always possible. The rhs (var2) has */
/* virtual padding (implemented by decUnitAddSub). */
/* One guard unit was allocated above msu1 for rem=rem+rem in */
/* REMAINDERNEAR. */
msu1=var1+var1units-1; /* msu of var1 */
source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
for (; target>=var1; target--) *target=0;
/* rhs (var2) is left-aligned with var1 at the start */
var2ulen=var1units; /* rhs logical length (units) */
var2units=D2U(rhs->digits); /* rhs actual length (units) */
var2=rhs->lsu; /* -> rhs array */
msu2=var2+var2units-1; /* -> msu of var2 [never changes] */
/* now set up the variables which will be used for estimating the */
/* multiplication factor. If these variables are not exact, add */
/* 1 to make sure that the multiplier is never overestimated. */
msu2plus=*msu2; /* it's value .. */
if (var2units>1) msu2plus++; /* .. +1 if any more */
msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
if (var2units>1) { /* .. [else treat 2nd as 0] */
msu2pair+=*(msu2-1); /* .. */
if (var2units>2) msu2pair++; /* .. +1 if any more */
}
/* The calculation is working in units, which may have leading zeros, */
/* but the exponent was calculated on the assumption that they are */
/* both left-aligned. Adjust the exponent to compensate: add the */
/* number of leading zeros in var1 msu and subtract those in var2 msu. */
/* [This is actually done by counting the digits and negating, as */
/* lead1=DECDPUN-digits1, and similarly for lead2.] */
for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
/* Now, if doing an integer divide or remainder, ensure that */
/* the result will be Unit-aligned. To do this, shift the var1 */
/* accumulator towards least if need be. (It's much easier to */
/* do this now than to reassemble the residue afterwards, if */
/* doing a remainder.) Also ensure the exponent is not negative. */
if (!(op&DIVIDE)) {
Unit *u; /* work */
/* save the initial 'false' padding of var1, in digits */
var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
/* Determine the shift to do. */
if (exponent<0) cut=-exponent;
else cut=DECDPUN-exponent%DECDPUN;
decShiftToLeast(var1, var1units, cut);
exponent+=cut; /* maintain numerical value */
var1initpad-=cut; /* .. and reduce padding */
/* clean any most-significant units which were just emptied */
for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
} /* align */
else { /* is DIVIDE */
maxexponent=lhs->exponent-rhs->exponent; /* save */
/* optimization: if the first iteration will just produce 0, */
/* preadjust to skip it [valid for DIVIDE only] */
if (*msu1<*msu2) {
var2ulen--; /* shift down */
exponent-=DECDPUN; /* update the exponent */
}
}
/* ---- start the long-division loops ------------------------------ */
accunits=0; /* no units accumulated yet */
accdigits=0; /* .. or digits */
accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */
for (;;) { /* outer forever loop */
thisunit=0; /* current unit assumed 0 */
/* find the next unit */
for (;;) { /* inner forever loop */
/* strip leading zero units [from either pre-adjust or from */
/* subtract last time around]. Leave at least one unit. */
for (; *msu1==0 && msu1>var1; msu1--) var1units--;
if (var1units<var2ulen) break; /* var1 too low for subtract */
if (var1units==var2ulen) { /* unit-by-unit compare needed */
/* compare the two numbers, from msu */
const Unit *pv1, *pv2;
Unit v2; /* units to compare */
pv2=msu2; /* -> msu */
for (pv1=msu1; ; pv1--, pv2--) {
/* v1=*pv1 -- always OK */
v2=0; /* assume in padding */
if (pv2>=var2) v2=*pv2; /* in range */
if (*pv1!=v2) break; /* no longer the same */
if (pv1==var1) break; /* done; leave pv1 as is */
}
/* here when all inspected or a difference seen */
if (*pv1<v2) break; /* var1 too low to subtract */
if (*pv1==v2) { /* var1 == var2 */
/* reach here if var1 and var2 are identical; subtraction */
/* would increase digit by one, and the residue will be 0 so */
/* the calculation is done; leave the loop with residue=0. */
thisunit++; /* as though subtracted */
*var1=0; /* set var1 to 0 */
var1units=1; /* .. */
break; /* from inner */
} /* var1 == var2 */
/* *pv1>v2. Prepare for real subtraction; the lengths are equal */
/* Estimate the multiplier (there's always a msu1-1)... */
/* Bring in two units of var2 to provide a good estimate. */
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
} /* lengths the same */
else { /* var1units > var2ulen, so subtraction is safe */
/* The var2 msu is one unit towards the lsu of the var1 msu, */
/* so only one unit for var2 can be used. */
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
}
if (mult==0) mult=1; /* must always be at least 1 */
/* subtraction needed; var1 is > var2 */
thisunit=(Unit)(thisunit+mult); /* accumulate */
/* subtract var1-var2, into var1; only the overlap needs */
/* processing, as this is an in-place calculation */
shift=var2ulen-var2units;
#if DECTRACE
decDumpAr('1', &var1[shift], var1units-shift);
decDumpAr('2', var2, var2units);
printf("m=%ld\n", -mult);
#endif
decUnitAddSub(&var1[shift], var1units-shift,
var2, var2units, 0,
&var1[shift], -mult);
#if DECTRACE
decDumpAr('#', &var1[shift], var1units-shift);
#endif
/* var1 now probably has leading zeros; these are removed at the */
/* top of the inner loop. */
} /* inner loop */
/* The next unit has been calculated in full; unless it's a */
/* leading zero, add to acc */
if (accunits!=0 || thisunit!=0) { /* is first or non-zero */
*accnext=thisunit; /* store in accumulator */
/* account exactly for the new digits */
if (accunits==0) {
accdigits++; /* at least one */
for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
}
else accdigits+=DECDPUN;
accunits++; /* update count */
accnext--; /* ready for next */
if (accdigits>reqdigits) break; /* have enough digits */
}
/* if the residue is zero, the operation is done (unless divide */
/* or divideInteger and still not enough digits yet) */
if (*var1==0 && var1units==1) { /* residue is 0 */
if (op&(REMAINDER|REMNEAR)) break;
if ((op&DIVIDE) && (exponent<=maxexponent)) break;
/* [drop through if divideInteger] */
}
/* also done enough if calculating remainder or integer */
/* divide and just did the last ('units') unit */
if (exponent==0 && !(op&DIVIDE)) break;
/* to get here, var1 is less than var2, so divide var2 by the per- */
/* Unit power of ten and go for the next digit */
var2ulen--; /* shift down */
exponent-=DECDPUN; /* update the exponent */
} /* outer loop */
/* ---- division is complete --------------------------------------- */
/* here: acc has at least reqdigits+1 of good results (or fewer */
/* if early stop), starting at accnext+1 (its lsu) */
/* var1 has any residue at the stopping point */
/* accunits is the number of digits collected in acc */
if (accunits==0) { /* acc is 0 */
accunits=1; /* show have a unit .. */
accdigits=1; /* .. */
*accnext=0; /* .. whose value is 0 */
}
else accnext++; /* back to last placed */
/* accnext now -> lowest unit of result */
residue=0; /* assume no residue */
if (op&DIVIDE) {
/* record the presence of any residue, for rounding */
if (*var1!=0 || var1units>1) residue=1;
else { /* no residue */
/* Had an exact division; clean up spurious trailing 0s. */
/* There will be at most DECDPUN-1, from the final multiply, */
/* and then only if the result is non-0 (and even) and the */
/* exponent is 'loose'. */
#if DECDPUN>1
Unit lsu=*accnext;
if (!(lsu&0x01) && (lsu!=0)) {
/* count the trailing zeros */
Int drop=0;
for (;; drop++) { /* [will terminate because lsu!=0] */
if (exponent>=maxexponent) break; /* don't chop real 0s */
#if DECDPUN<=4
if ((lsu-QUOT10(lsu, drop+1)
*powers[drop+1])!=0) break; /* found non-0 digit */
#else
if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */
#endif
exponent++;
}
if (drop>0) {
accunits=decShiftToLeast(accnext, accunits, drop);
accdigits=decGetDigits(accnext, accunits);
accunits=D2U(accdigits);
/* [exponent was adjusted in the loop] */
}
} /* neither odd nor 0 */
#endif
} /* exact divide */
} /* divide */
else /* op!=DIVIDE */ {
/* check for coefficient overflow */
if (accdigits+exponent>reqdigits) {
*status|=DEC_Division_impossible;
break;
}
if (op & (REMAINDER|REMNEAR)) {
/* [Here, the exponent will be 0, because var1 was adjusted */
/* appropriately.] */
Int postshift; /* work */
Flag wasodd=0; /* integer was odd */
Unit *quotlsu; /* for save */
Int quotdigits; /* .. */
bits=lhs->bits; /* remainder sign is always as lhs */
/* Fastpath when residue is truly 0 is worthwhile [and */
/* simplifies the code below] */
if (*var1==0 && var1units==1) { /* residue is 0 */
Int exp=lhs->exponent; /* save min(exponents) */
if (rhs->exponent<exp) exp=rhs->exponent;
decNumberZero(res); /* 0 coefficient */
#if DECSUBSET
if (set->extended)
#endif
res->exponent=exp; /* .. with proper exponent */
res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
decFinish(res, set, &residue, status); /* might clamp */
break;
}
/* note if the quotient was odd */
if (*accnext & 0x01) wasodd=1; /* acc is odd */
quotlsu=accnext; /* save in case need to reinspect */
quotdigits=accdigits; /* .. */
/* treat the residue, in var1, as the value to return, via acc */
/* calculate the unused zero digits. This is the smaller of: */
/* var1 initial padding (saved above) */
/* var2 residual padding, which happens to be given by: */
postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
/* [the 'exponent' term accounts for the shifts during divide] */
if (var1initpad<postshift) postshift=var1initpad;
/* shift var1 the requested amount, and adjust its digits */
var1units=decShiftToLeast(var1, var1units, postshift);
accnext=var1;
accdigits=decGetDigits(var1, var1units);
accunits=D2U(accdigits);
exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */
if (rhs->exponent<exponent) exponent=rhs->exponent;
/* Now correct the result if doing remainderNear; if it */
/* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
/* the integer was odd then the result should be rem-rhs. */
if (op&REMNEAR) {
Int compare, tarunits; /* work */
Unit *up; /* .. */
/* calculate remainder*2 into the var1 buffer (which has */
/* 'headroom' of an extra unit and hence enough space) */
/* [a dedicated 'double' loop would be faster, here] */
tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
0, accnext, 1);
/* decDumpAr('r', accnext, tarunits); */
/* Here, accnext (var1) holds tarunits Units with twice the */
/* remainder's coefficient, which must now be compared to the */
/* RHS. The remainder's exponent may be smaller than the RHS's. */
compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
rhs->exponent-exponent);
if (compare==BADINT) { /* deep trouble */
*status|=DEC_Insufficient_storage;
break;}
/* now restore the remainder by dividing by two; the lsu */
/* is known to be even. */
for (up=accnext; up<accnext+tarunits; up++) {
Int half; /* half to add to lower unit */
half=*up & 0x01;
*up/=2; /* [shift] */
if (!half) continue;
*(up-1)+=(DECDPUNMAX+1)/2;
}
/* [accunits still describes the original remainder length] */
if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
Int exp, expunits, exprem; /* work */
/* This is effectively causing round-up of the quotient, */
/* so if it was the rare case where it was full and all */
/* nines, it would overflow and hence division-impossible */
/* should be raised */
Flag allnines=0; /* 1 if quotient all nines */
if (quotdigits==reqdigits) { /* could be borderline */
for (up=quotlsu; ; up++) {
if (quotdigits>DECDPUN) {
if (*up!=DECDPUNMAX) break;/* non-nines */
}
else { /* this is the last Unit */
if (*up==powers[quotdigits]-1) allnines=1;
break;
}
quotdigits-=DECDPUN; /* checked those digits */
} /* up */
} /* borderline check */
if (allnines) {
*status|=DEC_Division_impossible;
break;}
/* rem-rhs is needed; the sign will invert. Again, var1 */
/* can safely be used for the working Units array. */
exp=rhs->exponent-exponent; /* RHS padding needed */
/* Calculate units and remainder from exponent. */
expunits=exp/DECDPUN;
exprem=exp%DECDPUN;
/* subtract [A+B*(-m)]; the result will always be negative */
accunits=-decUnitAddSub(accnext, accunits,
rhs->lsu, D2U(rhs->digits),
expunits, accnext, -(Int)powers[exprem]);
accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
accunits=D2U(accdigits); /* and recalculate the units for copy */
/* [exponent is as for original remainder] */
bits^=DECNEG; /* flip the sign */
}
} /* REMNEAR */
} /* REMAINDER or REMNEAR */
} /* not DIVIDE */
/* Set exponent and bits */
res->exponent=exponent;
res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
/* Now the coefficient. */
decSetCoeff(res, set, accnext, accdigits, &residue, status);
decFinish(res, set, &residue, status); /* final cleanup */
#if DECSUBSET
/* If a divide then strip trailing zeros if subset [after round] */
if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped);
#endif
} while(0); /* end protected */
if (varalloc!=NULL) free(varalloc); /* drop any storage used */
if (allocacc!=NULL) free(allocacc); /* .. */
#if DECSUBSET
if (allocrhs!=NULL) free(allocrhs); /* .. */
if (alloclhs!=NULL) free(alloclhs); /* .. */
#endif
return res;
} /* decDivideOp */
/* ------------------------------------------------------------------ */
/* decMultiplyOp -- multiplication operation */
/* */
/* This routine performs the multiplication C=A x B. */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* status is the usual accumulator */
/* */
/* C must have space for set->digits digits. */
/* */
/* ------------------------------------------------------------------ */
/* 'Classic' multiplication is used rather than Karatsuba, as the */
/* latter would give only a minor improvement for the short numbers */
/* expected to be handled most (and uses much more memory). */
/* */
/* There are two major paths here: the general-purpose ('old code') */
/* path which handles all DECDPUN values, and a fastpath version */
/* which is used if 64-bit ints are available, DECDPUN<=4, and more */
/* than two calls to decUnitAddSub would be made. */
/* */
/* The fastpath version lumps units together into 8-digit or 9-digit */
/* chunks, and also uses a lazy carry strategy to minimise expensive */
/* 64-bit divisions. The chunks are then broken apart again into */
/* units for continuing processing. Despite this overhead, the */
/* fastpath can speed up some 16-digit operations by 10x (and much */
/* more for higher-precision calculations). */
/* */
/* A buffer always has to be used for the accumulator; in the */
/* fastpath, buffers are also always needed for the chunked copies of */
/* of the operand coefficients. */
/* Static buffers are larger than needed just for multiply, to allow */
/* for calls from other operations (notably exp). */
/* ------------------------------------------------------------------ */
#define FASTMUL (DECUSE64 && DECDPUN<5)
static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set,
uInt *status) {
Int accunits; /* Units of accumulator in use */
Int exponent; /* work */
Int residue=0; /* rounding residue */
uByte bits; /* result sign */
Unit *acc; /* -> accumulator Unit array */
Int needbytes; /* size calculator */
void *allocacc=NULL; /* -> allocated accumulator, iff allocated */
Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
/* *4 for calls from other operations) */
const Unit *mer, *mermsup; /* work */
Int madlength; /* Units in multiplicand */
Int shift; /* Units to shift multiplicand by */
#if FASTMUL
/* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
/* (DECDPUN is 2 or 4) then work in base 10**8 */
#if DECDPUN & 1 /* odd */
#define FASTBASE 1000000000 /* base */
#define FASTDIGS 9 /* digits in base */
#define FASTLAZY 18 /* carry resolution point [1->18] */
#else
#define FASTBASE 100000000
#define FASTDIGS 8
#define FASTLAZY 1844 /* carry resolution point [1->1844] */
#endif
/* three buffers are used, two for chunked copies of the operands */
/* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
/* lazy carry evaluation */
uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
uInt *zlhi=zlhibuff; /* -> lhs array */
uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */
uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
uInt *zrhi=zrhibuff; /* -> rhs array */
uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */
uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
/* [allocacc is shared for both paths, as only one will run] */
uLong *zacc=zaccbuff; /* -> accumulator array for exact result */
#if DECDPUN==1
Int zoff; /* accumulator offset */
#endif
uInt *lip, *rip; /* item pointers */
uInt *lmsi, *rmsi; /* most significant items */
Int ilhs, irhs, iacc; /* item counts in the arrays */
Int lazy; /* lazy carry counter */
uLong lcarry; /* uLong carry */
uInt carry; /* carry (NB not uLong) */
Int count; /* work */
const Unit *cup; /* .. */
Unit *up; /* .. */
uLong *lp; /* .. */
Int p; /* .. */
#endif
#if DECSUBSET
decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */
decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */
#endif
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
/* precalculate result sign */
bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
/* handle infinities and NaNs */
if (SPECIALARGS) { /* a special bit set */
if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
decNaNs(res, lhs, rhs, set, status);
return res;}
/* one or two infinities; Infinity * 0 is invalid */
if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
*status|=DEC_Invalid_operation;
return res;}
decNumberZero(res);
res->bits=bits|DECINF; /* infinity */
return res;}
/* For best speed, as in DMSRCN [the original Rexx numerics */
/* module], use the shorter number as the multiplier (rhs) and */
/* the longer as the multiplicand (lhs) to minimise the number of */
/* adds (partial products) */
if (lhs->digits<rhs->digits) { /* swap... */
const decNumber *hold=lhs;
lhs=rhs;
rhs=hold;
}
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits>set->digits) {
alloclhs=decRoundOperand(lhs, set, status);
if (alloclhs==NULL) break;
lhs=alloclhs;
}
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
#if FASTMUL /* fastpath can be used */
/* use the fast path if there are enough digits in the shorter */
/* operand to make the setup and takedown worthwhile */
#define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */
if (rhs->digits>NEEDTWO) { /* use fastpath... */
/* calculate the number of elements in each array */
ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
iacc=ilhs+irhs;
/* allocate buffers if required, as usual */
needbytes=ilhs*sizeof(uInt);
if (needbytes>(Int)sizeof(zlhibuff)) {
alloclhi=(uInt *)malloc(needbytes);
zlhi=alloclhi;}
needbytes=irhs*sizeof(uInt);
if (needbytes>(Int)sizeof(zrhibuff)) {
allocrhi=(uInt *)malloc(needbytes);
zrhi=allocrhi;}
/* Allocating the accumulator space needs a special case when */
/* DECDPUN=1 because when converting the accumulator to Units */
/* after the multiplication each 8-byte item becomes 9 1-byte */
/* units. Therefore iacc extra bytes are needed at the front */
/* (rounded up to a multiple of 8 bytes), and the uLong */
/* accumulator starts offset the appropriate number of units */
/* to the right to avoid overwrite during the unchunking. */
needbytes=iacc*sizeof(uLong);
#if DECDPUN==1
zoff=(iacc+7)/8; /* items to offset by */
needbytes+=zoff*8;
#endif
if (needbytes>(Int)sizeof(zaccbuff)) {
allocacc=(uLong *)malloc(needbytes);
zacc=(uLong *)allocacc;}
if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
*status|=DEC_Insufficient_storage;
break;}
acc=(Unit *)zacc; /* -> target Unit array */
#if DECDPUN==1
zacc+=zoff; /* start uLong accumulator to right */
#endif
/* assemble the chunked copies of the left and right sides */
for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
for (p=0, *lip=0; p<FASTDIGS && count>0;
p+=DECDPUN, cup++, count-=DECDPUN)
*lip+=*cup*powers[p];
lmsi=lip-1; /* save -> msi */
for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
for (p=0, *rip=0; p<FASTDIGS && count>0;
p+=DECDPUN, cup++, count-=DECDPUN)
*rip+=*cup*powers[p];
rmsi=rip-1; /* save -> msi */
/* zero the accumulator */
for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
/* Start the multiplication */
/* Resolving carries can dominate the cost of accumulating the */
/* partial products, so this is only done when necessary. */
/* Each uLong item in the accumulator can hold values up to */
/* 2**64-1, and each partial product can be as large as */
/* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */
/* itself 18.4 times in a uLong without overflowing, so during */
/* the main calculation resolution is carried out every 18th */
/* add -- every 162 digits. Similarly, when FASTDIGS=8, the */
/* partial products can be added to themselves 1844.6 times in */
/* a uLong without overflowing, so intermediate carry */
/* resolution occurs only every 14752 digits. Hence for common */
/* short numbers usually only the one final carry resolution */
/* occurs. */
/* (The count is set via FASTLAZY to simplify experiments to */
/* measure the value of this approach: a 35% improvement on a */
/* [34x34] multiply.) */
lazy=FASTLAZY; /* carry delay count */
for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */
lp=zacc+(rip-zrhi); /* where to add the lhs */
for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
*lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */
} /* lip loop */
lazy--;
if (lazy>0 && rip!=rmsi) continue;
lazy=FASTLAZY; /* reset delay count */
/* spin up the accumulator resolving overflows */
for (lp=zacc; lp<zacc+iacc; lp++) {
if (*lp<FASTBASE) continue; /* it fits */
lcarry=*lp/FASTBASE; /* top part [slow divide] */
/* lcarry can exceed 2**32-1, so check again; this check */
/* and occasional extra divide (slow) is well worth it, as */
/* it allows FASTLAZY to be increased to 18 rather than 4 */
/* in the FASTDIGS=9 case */
if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */
else { /* two-place carry [fairly rare] */
uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */
*(lp+2)+=carry2; /* add to item+2 */
*lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
}
*(lp+1)+=carry; /* add to item above [inline] */
*lp-=((uLong)FASTBASE*carry); /* [inline] */
} /* carry resolution */
} /* rip loop */
/* The multiplication is complete; time to convert back into */
/* units. This can be done in-place in the accumulator and in */
/* 32-bit operations, because carries were resolved after the */
/* final add. This needs N-1 divides and multiplies for */
/* each item in the accumulator (which will become up to N */
/* units, where 2<=N<=9). */
for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
uInt item=(uInt)*lp; /* decapitate to uInt */
for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
uInt part=item/(DECDPUNMAX+1);
*up=(Unit)(item-(part*(DECDPUNMAX+1)));
item=part;
} /* p */
*up=(Unit)item; up++; /* [final needs no division] */
} /* lp */
accunits=up-acc; /* count of units */
}
else { /* here to use units directly, without chunking ['old code'] */
#endif
/* if accumulator will be too long for local storage, then allocate */
acc=accbuff; /* -> assume buffer for accumulator */
needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
if (needbytes>(Int)sizeof(accbuff)) {
allocacc=(Unit *)malloc(needbytes);
if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
acc=(Unit *)allocacc; /* use the allocated space */
}
/* Now the main long multiplication loop */
/* Unlike the equivalent in the IBM Java implementation, there */
/* is no advantage in calculating from msu to lsu. So, do it */
/* by the book, as it were. */
/* Each iteration calculates ACC=ACC+MULTAND*MULT */
accunits=1; /* accumulator starts at '0' */
*acc=0; /* .. (lsu=0) */
shift=0; /* no multiplicand shift at first */
madlength=D2U(lhs->digits); /* this won't change */
mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
for (mer=rhs->lsu; mer<mermsup; mer++) {
/* Here, *mer is the next Unit in the multiplier to use */
/* If non-zero [optimization] add it... */
if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
lhs->lsu, madlength, 0,
&acc[shift], *mer)
+ shift;
else { /* extend acc with a 0; it will be used shortly */
*(acc+accunits)=0; /* [this avoids length of <=0 later] */
accunits++;
}
/* multiply multiplicand by 10**DECDPUN for next Unit to left */
shift++; /* add this for 'logical length' */
} /* n */
#if FASTMUL
} /* unchunked units */
#endif
/* common end-path */
#if DECTRACE
decDumpAr('*', acc, accunits); /* Show exact result */
#endif
/* acc now contains the exact result of the multiplication, */
/* possibly with a leading zero unit; build the decNumber from */
/* it, noting if any residue */
res->bits=bits; /* set sign */
res->digits=decGetDigits(acc, accunits); /* count digits exactly */
/* There can be a 31-bit wrap in calculating the exponent. */
/* This can only happen if both input exponents are negative and */
/* both their magnitudes are large. If there was a wrap, set a */
/* safe very negative exponent, from which decFinalize() will */
/* raise a hard underflow shortly. */
exponent=lhs->exponent+rhs->exponent; /* calculate exponent */
if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
exponent=-2*DECNUMMAXE; /* force underflow */
res->exponent=exponent; /* OK to overwrite now */
/* Set the coefficient. If any rounding, residue records */
decSetCoeff(res, set, acc, res->digits, &residue, status);
decFinish(res, set, &residue, status); /* final cleanup */
} while(0); /* end protected */
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
#if DECSUBSET
if (allocrhs!=NULL) free(allocrhs); /* .. */
if (alloclhs!=NULL) free(alloclhs); /* .. */
#endif
#if FASTMUL
if (allocrhi!=NULL) free(allocrhi); /* .. */
if (alloclhi!=NULL) free(alloclhi); /* .. */
#endif
return res;
} /* decMultiplyOp */
/* ------------------------------------------------------------------ */
/* decExpOp -- effect exponentiation */
/* */
/* This computes C = exp(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. status is updated but */
/* not set. */
/* */
/* Restrictions: */
/* */
/* digits, emax, and -emin in the context must be less than */
/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
/* bounds or a zero. This is an internal routine, so these */
/* restrictions are contractual and not enforced. */
/* */
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* */
/* Finite results will always be full precision and Inexact, except */
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
/* ------------------------------------------------------------------ */
/* This approach used here is similar to the algorithm described in */
/* */
/* Variable Precision Exponential Function, T. E. Hull and */
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
/* pp79-91, ACM, June 1986. */
/* */
/* with the main difference being that the iterations in the series */
/* evaluation are terminated dynamically (which does not require the */
/* extra variable-precision variables which are expensive in this */
/* context). */
/* */
/* The error analysis in Hull & Abrham's paper applies except for the */
/* round-off error accumulation during the series evaluation. This */
/* code does not precalculate the number of iterations and so cannot */
/* use Horner's scheme. Instead, the accumulation is done at double- */
/* precision, which ensures that the additions of the terms are exact */
/* and do not accumulate round-off (and any round-off errors in the */
/* terms themselves move 'to the right' faster than they can */
/* accumulate). This code also extends the calculation by allowing, */
/* in the spirit of other decNumber operators, the input to be more */
/* precise than the result (the precision used is based on the more */
/* precise of the input or requested result). */
/* */
/* Implementation notes: */
/* */
/* 1. This is separated out as decExpOp so it can be called from */
/* other Mathematical functions (notably Ln) with a wider range */
/* than normal. In particular, it can handle the slightly wider */
/* (double) range needed by Ln (which has to be able to calculate */
/* exp(-x) where x can be the tiniest number (Ntiny). */
/* */
/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
/* iterations by appoximately a third with additional (although */
/* diminishing) returns as the range is reduced to even smaller */
/* fractions. However, h (the power of 10 used to correct the */
/* result at the end, see below) must be kept <=8 as otherwise */
/* the final result cannot be computed. Hence the leverage is a */
/* sliding value (8-h), where potentially the range is reduced */
/* more for smaller values. */
/* */
/* The leverage that can be applied in this way is severely */
/* limited by the cost of the raise-to-the power at the end, */
/* which dominates when the number of iterations is small (less */
/* than ten) or when rhs is short. As an example, the adjustment */
/* x**10,000,000 needs 31 multiplications, all but one full-width. */
/* */
/* 3. The restrictions (especially precision) could be raised with */
/* care, but the full decNumber range seems very hard within the */
/* 32-bit limits. */
/* */
/* 4. The working precisions for the static buffers are twice the */
/* obvious size to allow for calls from decNumberPower. */
/* ------------------------------------------------------------------ */
decNumber * decExpOp(decNumber *res, const decNumber *rhs,
decContext *set, uInt *status) {
uInt ignore=0; /* working status */
Int h; /* adjusted exponent for 0.xxxx */
Int p; /* working precision */
Int residue; /* rounding residue */
uInt needbytes; /* for space calculations */
const decNumber *x=rhs; /* (may point to safe copy later) */
decContext aset, tset, dset; /* working contexts */
Int comp; /* work */
/* the argument is often copied to normalize it, so (unusually) it */
/* is treated like other buffers, using DECBUFFER, +1 in case */
/* DECBUFFER is 0 */
decNumber bufr[D2N(DECBUFFER*2+1)];
decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */
/* the working precision will be no more than set->digits+8+1 */
/* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
/* is 0 (and twice that for the accumulator) */
/* buffer for t, term (working precision plus) */
decNumber buft[D2N(DECBUFFER*2+9+1)];
decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */
decNumber *t=buft; /* term */
/* buffer for a, accumulator (working precision * 2), at least 9 */
decNumber bufa[D2N(DECBUFFER*4+18+1)];
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber *a=bufa; /* accumulator */
/* decNumber for the divisor term; this needs at most 9 digits */
/* and so can be fixed size [16 so can use standard context] */
decNumber bufd[D2N(16)];
decNumber *d=bufd; /* divisor */
decNumber numone; /* constant 1 */
#if DECCHECK
Int iterations=0; /* for later sanity check */
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
do { /* protect allocated storage */
if (SPECIALARG) { /* handle infinities and NaNs */
if (decNumberIsInfinite(rhs)) { /* an infinity */
if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */
decNumberZero(res);
else decNumberCopy(res, rhs); /* +Infinity -> self */
}
else decNaNs(res, rhs, NULL, set, status); /* a NaN */
break;}
if (ISZERO(rhs)) { /* zeros -> exact 1 */
decNumberZero(res); /* make clean 1 */
*res->lsu=1; /* .. */
break;} /* [no status to set] */
/* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
/* positive and negative tiny cases which will result in inexact */
/* 1. This also allows the later add-accumulate to always be */
/* exact (because its length will never be more than twice the */
/* working precision). */
/* The comparator (tiny) needs just one digit, so use the */
/* decNumber d for it (reused as the divisor, etc., below); its */
/* exponent is such that if x is positive it will have */
/* set->digits-1 zeros between the decimal point and the digit, */
/* which is 4, and if x is negative one more zero there as the */
/* more precise result will be of the form 0.9999999 rather than */
/* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */
/* or 0.00000004 if digits=7 and x<0. If RHS not larger than */
/* this then the result will be 1.000000 */
decNumberZero(d); /* clean */
*d->lsu=4; /* set 4 .. */
d->exponent=-set->digits; /* * 10**(-d) */
if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */
comp=decCompare(d, rhs, 1); /* signless compare */
if (comp==BADINT) {
*status|=DEC_Insufficient_storage;
break;}
if (comp>=0) { /* rhs < d */
Int shift=set->digits-1;
decNumberZero(res); /* set 1 */
*res->lsu=1; /* .. */
res->digits=decShiftToMost(res->lsu, 1, shift);
res->exponent=-shift; /* make 1.0000... */
*status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */
break;} /* tiny */
/* set up the context to be used for calculating a, as this is */
/* used on both paths below */
decContextDefault(&aset, DEC_INIT_DECIMAL64);
/* accumulator bounds are as requested (could underflow) */
aset.emax=set->emax; /* usual bounds */
aset.emin=set->emin; /* .. */
aset.clamp=0; /* and no concrete format */
/* calculate the adjusted (Hull & Abrham) exponent (where the */
/* decimal point is just to the left of the coefficient msd) */
h=rhs->exponent+rhs->digits;
/* if h>8 then 10**h cannot be calculated safely; however, when */
/* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
/* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
/* overflow (or underflow to 0) is guaranteed -- so this case can */
/* be handled by simply forcing the appropriate excess */
if (h>8) { /* overflow/underflow */
/* set up here so Power call below will over or underflow to */
/* zero; set accumulator to either 2 or 0.02 */
/* [stack buffer for a is always big enough for this] */
decNumberZero(a);
*a->lsu=2; /* not 1 but < exp(1) */
if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
h=8; /* clamp so 10**h computable */
p=9; /* set a working precision */
}
else { /* h<=8 */
Int maxlever=(rhs->digits>8?1:0);
/* [could/should increase this for precisions >40 or so, too] */
/* if h is 8, cannot normalize to a lower upper limit because */
/* the final result will not be computable (see notes above), */
/* but leverage can be applied whenever h is less than 8. */
/* Apply as much as possible, up to a MAXLEVER digits, which */
/* sets the tradeoff against the cost of the later a**(10**h). */
/* As h is increased, the working precision below also */
/* increases to compensate for the "constant digits at the */
/* front" effect. */
Int lever=MINI(8-h, maxlever); /* leverage attainable */
Int use=-rhs->digits-lever; /* exponent to use for RHS */
h+=lever; /* apply leverage selected */
if (h<0) { /* clamp */
use+=h; /* [may end up subnormal] */
h=0;
}
/* Take a copy of RHS if it needs normalization (true whenever x>=1) */
if (rhs->exponent!=use) {
decNumber *newrhs=bufr; /* assume will fit on stack */
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
if (needbytes>sizeof(bufr)) { /* need malloc space */
allocrhs=(decNumber *)malloc(needbytes);
if (allocrhs==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
newrhs=allocrhs; /* use the allocated space */
}
decNumberCopy(newrhs, rhs); /* copy to safe space */
newrhs->exponent=use; /* normalize; now <1 */
x=newrhs; /* ready for use */
/* decNumberShow(x); */
}
/* Now use the usual power series to evaluate exp(x). The */
/* series starts as 1 + x + x^2/2 ... so prime ready for the */
/* third term by setting the term variable t=x, the accumulator */
/* a=1, and the divisor d=2. */
/* First determine the working precision. From Hull & Abrham */
/* this is set->digits+h+2. However, if x is 'over-precise' we */
/* need to allow for all its digits to potentially participate */
/* (consider an x where all the excess digits are 9s) so in */
/* this case use x->digits+h+2 */
p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */
/* a and t are variable precision, and depend on p, so space */
/* must be allocated for them if necessary */
/* the accumulator needs to be able to hold 2p digits so that */
/* the additions on the second and subsequent iterations are */
/* sufficiently exact. */
needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
if (needbytes>sizeof(bufa)) { /* need malloc space */
allocbufa=(decNumber *)malloc(needbytes);
if (allocbufa==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
a=allocbufa; /* use the allocated space */
}
/* the term needs to be able to hold p digits (which is */
/* guaranteed to be larger than x->digits, so the initial copy */
/* is safe); it may also be used for the raise-to-power */
/* calculation below, which needs an extra two digits */
needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
if (needbytes>sizeof(buft)) { /* need malloc space */
allocbuft=(decNumber *)malloc(needbytes);
if (allocbuft==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
t=allocbuft; /* use the allocated space */
}
decNumberCopy(t, x); /* term=x */
decNumberZero(a); *a->lsu=1; /* accumulator=1 */
decNumberZero(d); *d->lsu=2; /* divisor=2 */
decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
/* set up the contexts for calculating a, t, and d */
decContextDefault(&tset, DEC_INIT_DECIMAL64);
dset=tset;
/* accumulator bounds are set above, set precision now */
aset.digits=p*2; /* double */
/* term bounds avoid any underflow or overflow */
tset.digits=p;
tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */
/* [dset.digits=16, etc., are sufficient] */
/* finally ready to roll */
for (;;) {
#if DECCHECK
iterations++;
#endif
/* only the status from the accumulation is interesting */
/* [but it should remain unchanged after first add] */
decAddOp(a, a, t, &aset, 0, status); /* a=a+t */
decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */
decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */
/* the iteration ends when the term cannot affect the result, */
/* if rounded to p digits, which is when its value is smaller */
/* than the accumulator by p+1 digits. There must also be */
/* full precision in a. */
if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
&& (a->digits>=p)) break;
decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */
} /* iterate */
#if DECCHECK
/* just a sanity check; comment out test to show always */
if (iterations>p+3)
printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
iterations, *status, p, x->digits);
#endif
} /* h<=8 */
/* apply postconditioning: a=a**(10**h) -- this is calculated */
/* at a slightly higher precision than Hull & Abrham suggest */
if (h>0) {
Int seenbit=0; /* set once a 1-bit is seen */
Int i; /* counter */
Int n=powers[h]; /* always positive */
aset.digits=p+2; /* sufficient precision */
/* avoid the overhead and many extra digits of decNumberPower */
/* as all that is needed is the short 'multipliers' loop; here */
/* accumulate the answer into t */
decNumberZero(t); *t->lsu=1; /* acc=1 */
for (i=1;;i++){ /* for each bit [top bit ignored] */
/* abandon if have had overflow or terminal underflow */
if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
if (*status&DEC_Overflow || ISZERO(t)) break;}
n=n<<1; /* move next bit to testable position */
if (n<0) { /* top bit is set */
seenbit=1; /* OK, have a significant bit */
decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
}
if (i==31) break; /* that was the last bit */
if (!seenbit) continue; /* no need to square 1 */
decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
} /*i*/ /* 32 bits */
/* decNumberShow(t); */
a=t; /* and carry on using t instead of a */
}
/* Copy and round the result to res */
residue=1; /* indicate dirt to right .. */
if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
aset.digits=set->digits; /* [use default rounding] */
decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
decFinish(res, set, &residue, status); /* cleanup/set flags */
} while(0); /* end protected */
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
if (allocbufa!=NULL) free(allocbufa); /* .. */
if (allocbuft!=NULL) free(allocbuft); /* .. */
/* [status is handled by caller] */
return res;
} /* decExpOp */
/* ------------------------------------------------------------------ */
/* Initial-estimate natural logarithm table */
/* */
/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
/* The result is a 4-digit encode of the coefficient (c=the */
/* top 14 bits encoding 0-9999) and a 2-digit encode of the */
/* exponent (e=the bottom 2 bits encoding 0-3) */
/* */
/* The resulting value is given by: */
/* */
/* v = -c * 10**(-e-3) */
/* */
/* where e and c are extracted from entry k = LNnn[x-10] */
/* where x is truncated (NB) into the range 10 through 99, */
/* and then c = k>>2 and e = k&3. */
/* ------------------------------------------------------------------ */
const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
10130, 6046, 20055};
/* ------------------------------------------------------------------ */
/* decLnOp -- effect natural logarithm */
/* */
/* This computes C = ln(A) */
/* */
/* res is C, the result. C may be A */
/* rhs is A */
/* set is the context; note that rounding mode has no effect */
/* */
/* C must have space for set->digits digits. */
/* */
/* Notable cases: */
/* A<0 -> Invalid */
/* A=0 -> -Infinity (Exact) */
/* A=+Infinity -> +Infinity (Exact) */
/* A=1 exactly -> 0 (Exact) */
/* */
/* Restrictions (as for Exp): */
/* */
/* digits, emax, and -emin in the context must be less than */
/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
/* bounds or a zero. This is an internal routine, so these */
/* restrictions are contractual and not enforced. */
/* */
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
/* almost always be correctly rounded, but may be up to 1 ulp in */
/* error in rare cases. */
/* ------------------------------------------------------------------ */
/* The result is calculated using Newton's method, with each */
/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
/* Epperson 1989. */
/* */
/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
/* This has to be calculated at the sum of the precision of x and the */
/* working precision. */
/* */
/* Implementation notes: */
/* */
/* 1. This is separated out as decLnOp so it can be called from */
/* other Mathematical functions (e.g., Log 10) with a wider range */
/* than normal. In particular, it can handle the slightly wider */
/* (+9+2) range needed by a power function. */
/* */
/* 2. The speed of this function is about 10x slower than exp, as */
/* it typically needs 4-6 iterations for short numbers, and the */
/* extra precision needed adds a squaring effect, twice. */
/* */
/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
/* as these are common requests. ln(10) is used by log10(x). */
/* */
/* 4. An iteration might be saved by widening the LNnn table, and */
/* would certainly save at least one if it were made ten times */
/* bigger, too (for truncated fractions 0.100 through 0.999). */
/* However, for most practical evaluations, at least four or five */
/* iterations will be neede -- so this would only speed up by */
/* 20-25% and that probably does not justify increasing the table */
/* size. */
/* */
/* 5. The static buffers are larger than might be expected to allow */
/* for calls from decNumberPower. */
/* ------------------------------------------------------------------ */
decNumber * decLnOp(decNumber *res, const decNumber *rhs,
decContext *set, uInt *status) {
uInt ignore=0; /* working status accumulator */
uInt needbytes; /* for space calculations */
Int residue; /* rounding residue */
Int r; /* rhs=f*10**r [see below] */
Int p; /* working precision */
Int pp; /* precision for iteration */
Int t; /* work */
/* buffers for a (accumulator, typically precision+2) and b */
/* (adjustment calculator, same size) */
decNumber bufa[D2N(DECBUFFER+12)];
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
decNumber *a=bufa; /* accumulator/work */
decNumber bufb[D2N(DECBUFFER*2+2)];
decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */
decNumber *b=bufb; /* adjustment/work */
decNumber numone; /* constant 1 */
decNumber cmp; /* work */
decContext aset, bset; /* working contexts */
#if DECCHECK
Int iterations=0; /* for later sanity check */
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
#endif
do { /* protect allocated storage */
if (SPECIALARG) { /* handle infinities and NaNs */
if (decNumberIsInfinite(rhs)) { /* an infinity */
if (decNumberIsNegative(rhs)) /* -Infinity -> error */
*status|=DEC_Invalid_operation;
else decNumberCopy(res, rhs); /* +Infinity -> self */
}
else decNaNs(res, rhs, NULL, set, status); /* a NaN */
break;}
if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */
decNumberZero(res); /* make clean */
res->bits=DECINF|DECNEG; /* set - infinity */
break;} /* [no status to set] */
/* Non-zero negatives are bad... */
if (decNumberIsNegative(rhs)) { /* -x -> error */
*status|=DEC_Invalid_operation;
break;}
/* Here, rhs is positive, finite, and in range */
/* lookaside fastpath code for ln(2) and ln(10) at common lengths */
if (rhs->exponent==0 && set->digits<=40) {
#if DECDPUN==1
if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
#else
if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */
#endif
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
#define LN10 "2.302585092994045684017991454684364207601"
decNumberFromString(res, LN10, &aset);
*status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
break;}
if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
#define LN2 "0.6931471805599453094172321214581765680755"
decNumberFromString(res, LN2, &aset);
*status|=(DEC_Inexact | DEC_Rounded);
break;}
} /* integer and short */
/* Determine the working precision. This is normally the */
/* requested precision + 2, with a minimum of 9. However, if */
/* the rhs is 'over-precise' then allow for all its digits to */
/* potentially participate (consider an rhs where all the excess */
/* digits are 9s) so in this case use rhs->digits+2. */
p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
/* Allocate space for the accumulator and the high-precision */
/* adjustment calculator, if necessary. The accumulator must */
/* be able to hold p digits, and the adjustment up to */
/* rhs->digits+p digits. They are also made big enough for 16 */
/* digits so that they can be used for calculating the initial */
/* estimate. */
needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
if (needbytes>sizeof(bufa)) { /* need malloc space */
allocbufa=(decNumber *)malloc(needbytes);
if (allocbufa==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
a=allocbufa; /* use the allocated space */
}
pp=p+rhs->digits;
needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
if (needbytes>sizeof(bufb)) { /* need malloc space */
allocbufb=(decNumber *)malloc(needbytes);
if (allocbufb==NULL) { /* hopeless -- abandon */
*status|=DEC_Insufficient_storage;
break;}
b=allocbufb; /* use the allocated space */
}
/* Prepare an initial estimate in acc. Calculate this by */
/* considering the coefficient of x to be a normalized fraction, */
/* f, with the decimal point at far left and multiplied by */
/* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */
/* ln(x) = ln(f) + ln(10)*r */
/* Get the initial estimate for ln(f) from a small lookup */
/* table (see above) indexed by the first two digits of f, */
/* truncated. */
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
r=rhs->exponent+rhs->digits; /* 'normalised' exponent */
decNumberFromInt32(a, r); /* a=r */
decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */
b->exponent=-6; /* .. */
decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */
/* now get top two digits of rhs into b by simple truncate and */
/* force to integer */
residue=0; /* (no residue) */
aset.digits=2; aset.round=DEC_ROUND_DOWN;
decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
b->exponent=0; /* make integer */
t=decGetInt(b); /* [cannot fail] */
if (t<10) t=X10(t); /* adjust single-digit b */
t=LNnn[t-10]; /* look up ln(b) */
decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */
b->exponent=-(t&3)-3; /* set exponent */
b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */
aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
/* the initial estimate is now in a, with up to 4 digits correct. */
/* When rhs is at or near Nmax the estimate will be low, so we */
/* will approach it from below, avoiding overflow when calling exp. */
decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */
/* accumulator bounds are as requested (could underflow, but */
/* cannot overflow) */
aset.emax=set->emax;
aset.emin=set->emin;
aset.clamp=0; /* no concrete format */
/* set up a context to be used for the multiply and subtract */
bset=aset;
bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */
bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */
/* [see decExpOp call below] */
/* for each iteration double the number of digits to calculate, */
/* up to a maximum of p */
pp=9; /* initial precision */
/* [initially 9 as then the sequence starts 7+2, 16+2, and */
/* 34+2, which is ideal for standard-sized numbers] */
aset.digits=pp; /* working context */
bset.digits=pp+rhs->digits; /* wider context */
for (;;) { /* iterate */
#if DECCHECK
iterations++;
if (iterations>24) break; /* consider 9 * 2**24 */
#endif
/* calculate the adjustment (exp(-a)*x-1) into b. This is a */
/* catastrophic subtraction but it really is the difference */
/* from 1 that is of interest. */
/* Use the internal entry point to Exp as it allows the double */
/* range for calculating exp(-a) when a is the tiniest subnormal. */
a->bits^=DECNEG; /* make -a */
decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */
a->bits^=DECNEG; /* restore sign of a */
/* now multiply by rhs and subtract 1, at the wider precision */
decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */
decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
/* the iteration ends when the adjustment cannot affect the */
/* result by >=0.5 ulp (at the requested digits), which */
/* is when its value is smaller than the accumulator by */
/* set->digits+1 digits (or it is zero) -- this is a looser */
/* requirement than for Exp because all that happens to the */
/* accumulator after this is the final rounding (but note that */
/* there must also be full precision in a, or a=0). */
if (decNumberIsZero(b) ||
(a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
if (a->digits==p) break;
if (decNumberIsZero(a)) {
decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */
else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */
break;
}
/* force padding if adjustment has gone to 0 before full length */
if (decNumberIsZero(b)) b->exponent=a->exponent-p;
}
/* not done yet ... */
decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */
if (pp==p) continue; /* precision is at maximum */
/* lengthen the next calculation */
pp=pp*2; /* double precision */
if (pp>p) pp=p; /* clamp to maximum */
aset.digits=pp; /* working context */
bset.digits=pp+rhs->digits; /* wider context */
} /* Newton's iteration */
#if DECCHECK
/* just a sanity check; remove the test to show always */
if (iterations>24)
printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
iterations, *status, p, rhs->digits);
#endif
/* Copy and round the result to res */
residue=1; /* indicate dirt to right */
if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
aset.digits=set->digits; /* [use default rounding] */
decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
decFinish(res, set, &residue, status); /* cleanup/set flags */
} while(0); /* end protected */
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
if (allocbufb!=NULL) free(allocbufb); /* .. */
/* [status is handled by caller] */
return res;
} /* decLnOp */
/* ------------------------------------------------------------------ */
/* decQuantizeOp -- force exponent to requested value */
/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has the value B or matches the exponent of B. */
/* The numerical value of C will equal A, except for the effects of */
/* any rounding that occurred. */
/* */
/* res is C, the result. C may be A or B */
/* lhs is A, the number to adjust */
/* rhs is B, the requested exponent */
/* set is the context */
/* quant is 1 for quantize or 0 for rescale */
/* status is the status accumulator (this can be called without */
/* risk of control loss) */
/* */
/* C must have space for set->digits digits. */
/* */
/* Unless there is an error or the result is infinite, the exponent */
/* after the operation is guaranteed to be that requested. */
/* ------------------------------------------------------------------ */
static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set,
Flag quant, uInt *status) {
#if DECSUBSET
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs=NULL; /* .., rhs */
#endif
const decNumber *inrhs=rhs; /* save original rhs */
Int reqdigits=set->digits; /* requested DIGITS */
Int reqexp; /* requested exponent [-scale] */
Int residue=0; /* rounding residue */
Int etiny=set->emin-(reqdigits-1);
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits>reqdigits) {
alloclhs=decRoundOperand(lhs, set, status);
if (alloclhs==NULL) break;
lhs=alloclhs;
}
if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
allocrhs=decRoundOperand(rhs, set, status);
if (allocrhs==NULL) break;
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* Handle special values */
if (SPECIALARGS) {
/* NaNs get usual processing */
if (SPECIALARGS & (DECSNAN | DECNAN))
decNaNs(res, lhs, rhs, set, status);
/* one infinity but not both is bad */
else if ((lhs->bits ^ rhs->bits) & DECINF)
*status|=DEC_Invalid_operation;
/* both infinity: return lhs */
else decNumberCopy(res, lhs); /* [nop if in place] */
break;
}
/* set requested exponent */
if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */
else { /* rescale -- use value of rhs */
/* Original rhs must be an integer that fits and is in range, */
/* which could be from -1999999997 to +999999999, thanks to */
/* subnormals */
reqexp=decGetInt(inrhs); /* [cannot fail] */
}
#if DECSUBSET
if (!set->extended) etiny=set->emin; /* no subnormals */
#endif
if (reqexp==BADINT /* bad (rescale only) or .. */
|| reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */
|| (reqexp<etiny) /* < lowest */
|| (reqexp>set->emax)) { /* > emax */
*status|=DEC_Invalid_operation;
break;}
/* the RHS has been processed, so it can be overwritten now if necessary */
if (ISZERO(lhs)) { /* zero coefficient unchanged */
decNumberCopy(res, lhs); /* [nop if in place] */
res->exponent=reqexp; /* .. just set exponent */
#if DECSUBSET
if (!set->extended) res->bits=0; /* subset specification; no -0 */
#endif
}
else { /* non-zero lhs */
Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */
/* if adjusted coefficient will definitely not fit, give up now */
if ((lhs->digits-adjust)>reqdigits) {
*status|=DEC_Invalid_operation;
break;
}
if (adjust>0) { /* increasing exponent */
/* this will decrease the length of the coefficient by adjust */
/* digits, and must round as it does so */
decContext workset; /* work */
workset=*set; /* clone rounding, etc. */
workset.digits=lhs->digits-adjust; /* set requested length */
/* [note that the latter can be <1, here] */
decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
decApplyRound(res, &workset, residue, status); /* .. and round */
residue=0; /* [used] */
/* If just rounded a 999s case, exponent will be off by one; */
/* adjust back (after checking space), if so. */
if (res->exponent>reqexp) {
/* re-check needed, e.g., for quantize(0.9999, 0.001) under */
/* set->digits==3 */
if (res->digits==reqdigits) { /* cannot shift by 1 */
*status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
*status|=DEC_Invalid_operation;
break;
}
res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
res->exponent--; /* (re)adjust the exponent. */
}
#if DECSUBSET
if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
#endif
} /* increase */
else /* adjust<=0 */ { /* decreasing or = exponent */
/* this will increase the length of the coefficient by -adjust */
/* digits, by adding zero or more trailing zeros; this is */
/* already checked for fit, above */
decNumberCopy(res, lhs); /* [it will fit] */
/* if padding needed (adjust<0), add it now... */
if (adjust<0) {
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
res->exponent+=adjust; /* adjust the exponent */
}
} /* decrease */
} /* non-zero */
/* Check for overflow [do not use Finalize in this case, as an */
/* overflow here is a "don't fit" situation] */
if (res->exponent>set->emax-res->digits+1) { /* too big */
*status|=DEC_Invalid_operation;
break;
}
else {
decFinalize(res, set, &residue, status); /* set subnormal flags */
*status&=~DEC_Underflow; /* suppress Underflow [754r] */
}
} while(0); /* end protected */
#if DECSUBSET
if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */
if (alloclhs!=NULL) free(alloclhs); /* .. */
#endif
return res;
} /* decQuantizeOp */
/* ------------------------------------------------------------------ */
/* decCompareOp -- compare, min, or max two Numbers */
/* */
/* This computes C = A ? B and carries out one of four operations: */
/* COMPARE -- returns the signum (as a number) giving the */
/* result of a comparison unless one or both */
/* operands is a NaN (in which case a NaN results) */
/* COMPSIG -- as COMPARE except that a quiet NaN raises */
/* Invalid operation. */
/* COMPMAX -- returns the larger of the operands, using the */
/* 754r maxnum operation */
/* COMPMAXMAG -- ditto, comparing absolute values */
/* COMPMIN -- the 754r minnum operation */
/* COMPMINMAG -- ditto, comparing absolute values */
/* COMTOTAL -- returns the signum (as a number) giving the */
/* result of a comparison using 754r total ordering */
/* */
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
/* lhs is A */
/* rhs is B */
/* set is the context */
/* op is the operation flag */
/* status is the usual accumulator */
/* */
/* C must have space for one digit for COMPARE or set->digits for */
/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
/* ------------------------------------------------------------------ */
/* The emphasis here is on speed for common cases, and avoiding */
/* coefficient comparison if possible. */
/* ------------------------------------------------------------------ */
decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set,
Flag op, uInt *status) {
#if DECSUBSET
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
decNumber *allocrhs=NULL; /* .., rhs */
#endif
Int result=0; /* default result value */
uByte merged; /* work */
#if DECCHECK
if (decCheckOperands(res, lhs, rhs, set)) return res;
#endif
do { /* protect allocated storage */
#if DECSUBSET
if (!set->extended) {
/* reduce operands and set lostDigits status, as needed */
if (lhs->digits>set->digits) {
alloclhs=decRoundOperand(lhs, set, status);
if (alloclhs==NULL) {result=BADINT; break;}
lhs=alloclhs;
}
if (rhs->digits>set->digits) {
allocrhs=decRoundOperand(rhs, set, status);
if (allocrhs==NULL) {result=BADINT; break;}
rhs=allocrhs;
}
}
#endif
/* [following code does not require input rounding] */
/* If total ordering then handle differing signs 'up front' */
if (op==COMPTOTAL) { /* total ordering */
if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) {
result=-1;
break;
}
if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) {
result=+1;
break;
}
}
/* handle NaNs specially; let infinities drop through */
/* This assumes sNaN (even just one) leads to NaN. */
merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
if (merged) { /* a NaN bit set */
if (op==COMPARE); /* result will be NaN */
else if (op==COMPSIG) /* treat qNaN as sNaN */
*status|=DEC_Invalid_operation | DEC_sNaN;
else if (op==COMPTOTAL) { /* total ordering, always finite */
/* signs are known to be the same; compute the ordering here */
/* as if the signs are both positive, then invert for negatives */
if (!decNumberIsNaN(lhs)) result=-1;
else if (!decNumberIsNaN(rhs)) result=+1;
/* here if both NaNs */
else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
else { /* both NaN or both sNaN */
/* now it just depends on the payload */
result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
rhs->lsu, D2U(rhs->digits), 0);
/* [Error not possible, as these are 'aligned'] */
} /* both same NaNs */
if (decNumberIsNegative(lhs)) result=-result;
break;
} /* total order */
else if (merged & DECSNAN); /* sNaN -> qNaN */
else { /* here if MIN or MAX and one or two quiet NaNs */
/* min or max -- 754r rules ignore single NaN */
if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
/* just one NaN; force choice to be the non-NaN operand */
op=COMPMAX;
if (lhs->bits & DECNAN) result=-1; /* pick rhs */
else result=+1; /* pick lhs */
break;
}
} /* max or min */
op=COMPNAN; /* use special path */
decNaNs(res, lhs, rhs, set, status); /* propagate NaN */
break;
}
/* have numbers */
if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
else result=decCompare(lhs, rhs, 0); /* sign matters */
} while(0); /* end protected */
if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
else {
if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
if (op==COMPTOTAL && result==0) {
/* operands are numerically equal or same NaN (and same sign, */
/* tested first); if identical, leave result 0 */
if (lhs->exponent!=rhs->exponent) {
if (lhs->exponent<rhs->exponent) result=-1;
else result=+1;
if (decNumberIsNegative(lhs)) result=-result;
} /* lexp!=rexp */
} /* total-order by exponent */
decNumberZero(res); /* [always a valid result] */
if (result!=0) { /* must be -1 or +1 */
*res->lsu=1;
if (result<0) res->bits=DECNEG;
}
}
else if (op==COMPNAN); /* special, drop through */
else { /* MAX or MIN, non-NaN result */
Int residue=0; /* rounding accumulator */
/* choose the operand for the result */
const decNumber *choice;
if (result==0) { /* operands are numerically equal */
/* choose according to sign then exponent (see 754r) */
uByte slhs=(lhs->bits & DECNEG);
uByte srhs=(rhs->bits & DECNEG);
#if DECSUBSET
if (!set->extended) { /* subset: force left-hand */
op=COMPMAX;
result=+1;
}
else
#endif
if (slhs!=srhs) { /* signs differ */
if (slhs) result=-1; /* rhs is max */
else result=+1; /* lhs is max */
}
else if (slhs && srhs) { /* both negative */
if (lhs->exponent<rhs->exponent) result=+1;
else result=-1;
/* [if equal, use lhs, technically identical] */
}
else { /* both positive */
if (lhs->exponent>rhs->exponent) result=+1;
else result=-1;
/* [ditto] */
}
} /* numerically equal */
/* here result will be non-0; reverse if looking for MIN */
if (op==COMPMIN || op==COMPMINMAG) result=-result;
choice=(result>0 ? lhs : rhs); /* choose */
/* copy chosen to result, rounding if need be */
decCopyFit(res, choice, set, &residue, status);
decFinish(res, set, &residue, status);
}
}
#if DECSUBSET
if (allocrhs!=NULL) free(allocrhs); /* free any storage used */
if (alloclhs!=NULL) free(alloclhs); /* .. */
#endif
return res;
} /* decCompareOp */
/* ------------------------------------------------------------------ */
/* decCompare -- compare two decNumbers by numerical value */
/* */
/* This routine compares A ? B without altering them. */
/* */
/* Arg1 is A, a decNumber which is not a NaN */
/* Arg2 is B, a decNumber which is not a NaN */
/* Arg3 is 1 for a sign-independent compare, 0 otherwise */
/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
/* (the only possible failure is an allocation error) */
/* ------------------------------------------------------------------ */
static Int decCompare(const decNumber *lhs, const decNumber *rhs,
Flag abs) {
Int result; /* result value */
Int sigr; /* rhs signum */
Int compare; /* work */
result=1; /* assume signum(lhs) */
if (ISZERO(lhs)) result=0;
if (abs) {
if (ISZERO(rhs)) return result; /* LHS wins or both 0 */
/* RHS is non-zero */
if (result==0) return -1; /* LHS is 0; RHS wins */
/* [here, both non-zero, result=1] */
}
else { /* signs matter */
if (result && decNumberIsNegative(lhs)) result=-1;
sigr=1; /* compute signum(rhs) */
if (ISZERO(rhs)) sigr=0;
else if (decNumberIsNegative(rhs)) sigr=-1;
if (result > sigr) return +1; /* L > R, return 1 */
if (result < sigr) return -1; /* L < R, return -1 */
if (result==0) return 0; /* both 0 */
}
/* signums are the same; both are non-zero */
if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */
if (decNumberIsInfinite(rhs)) {
if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
else result=-result; /* only rhs infinite */
}
return result;
}
/* must compare the coefficients, allowing for exponents */
if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */
/* swap sides, and sign */
const decNumber *temp=lhs;
lhs=rhs;
rhs=temp;
result=-result;
}
compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
rhs->lsu, D2U(rhs->digits),
rhs->exponent-lhs->exponent);
if (compare!=BADINT) compare*=result; /* comparison succeeded */
return compare;
} /* decCompare */
/* ------------------------------------------------------------------ */
/* decUnitCompare -- compare two >=0 integers in Unit arrays */
/* */
/* This routine compares A ? B*10**E where A and B are unit arrays */
/* A is a plain integer */
/* B has an exponent of E (which must be non-negative) */
/* */
/* Arg1 is A first Unit (lsu) */
/* Arg2 is A length in Units */
/* Arg3 is B first Unit (lsu) */
/* Arg4 is B length in Units */
/* Arg5 is E (0 if the units are aligned) */
/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
/* (the only possible failure is an allocation error, which can */
/* only occur if E!=0) */
/* ------------------------------------------------------------------ */
static Int decUnitCompare(const Unit *a, Int alength,
const Unit *b, Int blength, Int exp) {
Unit *acc; /* accumulator for result */
Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
Int accunits, need; /* units in use or needed for acc */
const Unit *l, *r, *u; /* work */
Int expunits, exprem, result; /* .. */
if (exp==0) { /* aligned; fastpath */
if (alength>blength) return 1;
if (alength<blength) return -1;
/* same number of units in both -- need unit-by-unit compare */
l=a+alength-1;
r=b+alength-1;
for (;l>=a; l--, r--) {
if (*l>*r) return 1;
if (*l<*r) return -1;
}
return 0; /* all units match */
} /* aligned */
/* Unaligned. If one is >1 unit longer than the other, padded */
/* approximately, then can return easily */
if (alength>blength+(Int)D2U(exp)) return 1;
if (alength+1<blength+(Int)D2U(exp)) return -1;
/* Need to do a real subtract. For this, a result buffer is needed */
/* even though only the sign is of interest. Its length needs */
/* to be the larger of alength and padded blength, +2 */
need=blength+D2U(exp); /* maximum real length of B */
if (need<alength) need=alength;
need+=2;
acc=accbuff; /* assume use local buffer */
if (need*sizeof(Unit)>sizeof(accbuff)) {
allocacc=(Unit *)malloc(need*sizeof(Unit));
if (allocacc==NULL) return BADINT; /* hopeless -- abandon */
acc=allocacc;
}
/* Calculate units and remainder from exponent. */
expunits=exp/DECDPUN;
exprem=exp%DECDPUN;
/* subtract [A+B*(-m)] */
accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
-(Int)powers[exprem]);
/* [UnitAddSub result may have leading zeros, even on zero] */
if (accunits<0) result=-1; /* negative result */
else { /* non-negative result */
/* check units of the result before freeing any storage */
for (u=acc; u<acc+accunits-1 && *u==0;) u++;
result=(*u==0 ? 0 : +1);
}
/* clean up and return the result */
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
return result;
} /* decUnitCompare */
/* ------------------------------------------------------------------ */
/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
/* */
/* This routine performs the calculation: */
/* */
/* C=A+(B*M) */
/* */
/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
/* */
/* A may be shorter or longer than B. */
/* */
/* Leading zeros are not removed after a calculation. The result is */
/* either the same length as the longer of A and B (adding any */
/* shift), or one Unit longer than that (if a Unit carry occurred). */
/* */
/* A and B content are not altered unless C is also A or B. */
/* C may be the same array as A or B, but only if no zero padding is */
/* requested (that is, C may be B only if bshift==0). */
/* C is filled from the lsu; only those units necessary to complete */
/* the calculation are referenced. */
/* */
/* Arg1 is A first Unit (lsu) */
/* Arg2 is A length in Units */
/* Arg3 is B first Unit (lsu) */
/* Arg4 is B length in Units */
/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
/* Arg6 is C first Unit (lsu) */
/* Arg7 is M, the multiplier */
/* */
/* returns the count of Units written to C, which will be non-zero */
/* and negated if the result is negative. That is, the sign of the */
/* returned Int is the sign of the result (positive for zero) and */
/* the absolute value of the Int is the count of Units. */
/* */
/* It is the caller's responsibility to make sure that C size is */
/* safe, allowing space if necessary for a one-Unit carry. */
/* */
/* This routine is severely performance-critical; *any* change here */
/* must be measured (timed) to assure no performance degradation. */
/* In particular, trickery here tends to be counter-productive, as */
/* increased complexity of code hurts register optimizations on */
/* register-poor architectures. Avoiding divisions is nearly */
/* always a Good Idea, however. */
/* */
/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
/* (IBM Warwick, UK) for some of the ideas used in this routine. */
/* ------------------------------------------------------------------ */
static Int decUnitAddSub(const Unit *a, Int alength,
const Unit *b, Int blength, Int bshift,
Unit *c, Int m) {
const Unit *alsu=a; /* A lsu [need to remember it] */
Unit *clsu=c; /* C ditto */
Unit *minC; /* low water mark for C */
Unit *maxC; /* high water mark for C */
eInt carry=0; /* carry integer (could be Long) */
Int add; /* work */
#if DECDPUN<=4 /* myriadal, millenary, etc. */
Int est; /* estimated quotient */
#endif
#if DECTRACE
if (alength<1 || blength<1)
printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
#endif
maxC=c+alength; /* A is usually the longer */
minC=c+blength; /* .. and B the shorter */
if (bshift!=0) { /* B is shifted; low As copy across */
minC+=bshift;
/* if in place [common], skip copy unless there's a gap [rare] */
if (a==c && bshift<=alength) {
c+=bshift;
a+=bshift;
}
else for (; c<clsu+bshift; a++, c++) { /* copy needed */
if (a<alsu+alength) *c=*a;
else *c=0;
}
}
if (minC>maxC) { /* swap */
Unit *hold=minC;
minC=maxC;
maxC=hold;
}
/* For speed, do the addition as two loops; the first where both A */
/* and B contribute, and the second (if necessary) where only one or */
/* other of the numbers contribute. */
/* Carry handling is the same (i.e., duplicated) in each case. */
for (; c<minC; c++) {
carry+=*a;
a++;
carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */
b++; /* here is not a win] */
/* here carry is new Unit of digits; it could be +ve or -ve */
if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
*c=(Unit)carry;
carry=0;
continue;
}
#if DECDPUN==4 /* use divide-by-multiply */
if (carry>=0) {
est=(((ueInt)carry>>11)*53687)>>18;
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* likely quotient [89%] */
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
carry++;
*c-=DECDPUNMAX+1;
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=(((ueInt)carry>>11)*53687)>>18;
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
if (*c<DECDPUNMAX+1) continue; /* was OK */
carry++;
*c-=DECDPUNMAX+1;
#elif DECDPUN==3
if (carry>=0) {
est=(((ueInt)carry>>3)*16777)>>21;
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* likely quotient [99%] */
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
carry++;
*c-=DECDPUNMAX+1;
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=(((ueInt)carry>>3)*16777)>>21;
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
if (*c<DECDPUNMAX+1) continue; /* was OK */
carry++;
*c-=DECDPUNMAX+1;
#elif DECDPUN<=2
/* Can use QUOT10 as carry <= 4 digits */
if (carry>=0) {
est=QUOT10(carry, DECDPUN);
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* quotient */
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=QUOT10(carry, DECDPUN);
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
#else
/* remainder operator is undefined if negative, so must test */
if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */
*c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */
carry=1;
continue;
}
if (carry>=0) {
*c=(Unit)(carry%(DECDPUNMAX+1));
carry=carry/(DECDPUNMAX+1);
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
*c=(Unit)(carry%(DECDPUNMAX+1));
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
#endif
} /* c */
/* now may have one or other to complete */
/* [pretest to avoid loop setup/shutdown] */
if (c<maxC) for (; c<maxC; c++) {
if (a<alsu+alength) { /* still in A */
carry+=*a;
a++;
}
else { /* inside B */
carry+=((eInt)*b)*m;
b++;
}
/* here carry is new Unit of digits; it could be +ve or -ve and */
/* magnitude up to DECDPUNMAX squared */
if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
*c=(Unit)carry;
carry=0;
continue;
}
/* result for this unit is negative or >DECDPUNMAX */
#if DECDPUN==4 /* use divide-by-multiply */
if (carry>=0) {
est=(((ueInt)carry>>11)*53687)>>18;
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* likely quotient [79.7%] */
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
carry++;
*c-=DECDPUNMAX+1;
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=(((ueInt)carry>>11)*53687)>>18;
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
if (*c<DECDPUNMAX+1) continue; /* was OK */
carry++;
*c-=DECDPUNMAX+1;
#elif DECDPUN==3
if (carry>=0) {
est=(((ueInt)carry>>3)*16777)>>21;
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* likely quotient [99%] */
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
carry++;
*c-=DECDPUNMAX+1;
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=(((ueInt)carry>>3)*16777)>>21;
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
if (*c<DECDPUNMAX+1) continue; /* was OK */
carry++;
*c-=DECDPUNMAX+1;
#elif DECDPUN<=2
if (carry>=0) {
est=QUOT10(carry, DECDPUN);
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
carry=est; /* quotient */
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
est=QUOT10(carry, DECDPUN);
*c=(Unit)(carry-est*(DECDPUNMAX+1));
carry=est-(DECDPUNMAX+1); /* correctly negative */
#else
if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */
*c=(Unit)(carry-(DECDPUNMAX+1));
carry=1;
continue;
}
/* remainder operator is undefined if negative, so must test */
if (carry>=0) {
*c=(Unit)(carry%(DECDPUNMAX+1));
carry=carry/(DECDPUNMAX+1);
continue;
}
/* negative case */
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
*c=(Unit)(carry%(DECDPUNMAX+1));
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
#endif
} /* c */
/* OK, all A and B processed; might still have carry or borrow */
/* return number of Units in the result, negated if a borrow */
if (carry==0) return c-clsu; /* no carry, so no more to do */
if (carry>0) { /* positive carry */
*c=(Unit)carry; /* place as new unit */
c++; /* .. */
return c-clsu;
}
/* -ve carry: it's a borrow; complement needed */
add=1; /* temporary carry... */
for (c=clsu; c<maxC; c++) {
add=DECDPUNMAX+add-*c;
if (add<=DECDPUNMAX) {
*c=(Unit)add;
add=0;
}
else {
*c=0;
add=1;
}
}
/* add an extra unit iff it would be non-zero */
#if DECTRACE
printf("UAS borrow: add %ld, carry %ld\n", add, carry);
#endif
if ((add-carry-1)!=0) {
*c=(Unit)(add-carry-1);
c++; /* interesting, include it */
}
return clsu-c; /* -ve result indicates borrowed */
} /* decUnitAddSub */
/* ------------------------------------------------------------------ */
/* decTrim -- trim trailing zeros or normalize */
/* */
/* dn is the number to trim or normalize */
/* set is the context to use to check for clamp */
/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
/* dropped returns the number of discarded trailing zeros */
/* returns dn */
/* */
/* If clamp is set in the context then the number of zeros trimmed */
/* may be limited if the exponent is high. */
/* All fields are updated as required. This is a utility operation, */
/* so special values are unchanged and no error is possible. */
/* ------------------------------------------------------------------ */
static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
Int *dropped) {
Int d, exp; /* work */
uInt cut; /* .. */
Unit *up; /* -> current Unit */
#if DECCHECK
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
#endif
*dropped=0; /* assume no zeros dropped */
if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
|| (*dn->lsu & 0x01)) return dn; /* .. or odd */
if (ISZERO(dn)) { /* .. or 0 */
dn->exponent=0; /* (sign is preserved) */
return dn;
}
/* have a finite number which is even */
exp=dn->exponent;
cut=1; /* digit (1-DECDPUN) in Unit */
up=dn->lsu; /* -> current Unit */
for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
/* slice by powers */
#if DECDPUN<=4
uInt quot=QUOT10(*up, cut);
if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */
#else
if (*up%powers[cut]!=0) break; /* found non-0 digit */
#endif
/* have a trailing 0 */
if (!all) { /* trimming */
/* [if exp>0 then all trailing 0s are significant for trim] */
if (exp<=0) { /* if digit might be significant */
if (exp==0) break; /* then quit */
exp++; /* next digit might be significant */
}
}
cut++; /* next power */
if (cut>DECDPUN) { /* need new Unit */
up++;
cut=1;
}
} /* d */
if (d==0) return dn; /* none to drop */
/* may need to limit drop if clamping */
if (set->clamp) {
Int maxd=set->emax-set->digits+1-dn->exponent;
if (maxd<=0) return dn; /* nothing possible */
if (d>maxd) d=maxd;
}
/* effect the drop */
decShiftToLeast(dn->lsu, D2U(dn->digits), d);
dn->exponent+=d; /* maintain numerical value */
dn->digits-=d; /* new length */
*dropped=d; /* report the count */
return dn;
} /* decTrim */
/* ------------------------------------------------------------------ */
/* decReverse -- reverse a Unit array in place */
/* */
/* ulo is the start of the array */
/* uhi is the end of the array (highest Unit to include) */
/* */
/* The units ulo through uhi are reversed in place (if the number */
/* of units is odd, the middle one is untouched). Note that the */
/* digit(s) in each unit are unaffected. */
/* ------------------------------------------------------------------ */
static void decReverse(Unit *ulo, Unit *uhi) {
Unit temp;
for (; ulo<uhi; ulo++, uhi--) {
temp=*ulo;
*ulo=*uhi;
*uhi=temp;
}
return;
} /* decReverse */
/* ------------------------------------------------------------------ */
/* decShiftToMost -- shift digits in array towards most significant */
/* */
/* uar is the array */
/* digits is the count of digits in use in the array */
/* shift is the number of zeros to pad with (least significant); */
/* it must be zero or positive */
/* */
/* returns the new length of the integer in the array, in digits */
/* */
/* No overflow is permitted (that is, the uar array must be known to */
/* be large enough to hold the result, after shifting). */
/* ------------------------------------------------------------------ */
static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
Unit *target, *source, *first; /* work */
Int cut; /* odd 0's to add */
uInt next; /* work */
if (shift==0) return digits; /* [fastpath] nothing to do */
if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */
*uar=(Unit)(*uar*powers[shift]);
return digits+shift;
}
next=0; /* all paths */
source=uar+D2U(digits)-1; /* where msu comes from */
target=source+D2U(shift); /* where upper part of first cut goes */
cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
if (cut==0) { /* unit-boundary case */
for (; source>=uar; source--, target--) *target=*source;
}
else {
first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
for (; source>=uar; source--, target--) {
/* split the source Unit and accumulate remainder for next */
#if DECDPUN<=4
uInt quot=QUOT10(*source, cut);
uInt rem=*source-quot*powers[cut];
next+=quot;
#else
uInt rem=*source%powers[cut];
next+=*source/powers[cut];
#endif
if (target<=first) *target=(Unit)next; /* write to target iff valid */
next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */
}
} /* shift-move */
/* propagate any partial unit to one below and clear the rest */
for (; target>=uar; target--) {
*target=(Unit)next;
next=0;
}
return digits+shift;
} /* decShiftToMost */
/* ------------------------------------------------------------------ */
/* decShiftToLeast -- shift digits in array towards least significant */
/* */
/* uar is the array */
/* units is length of the array, in units */
/* shift is the number of digits to remove from the lsu end; it */
/* must be zero or positive and <= than units*DECDPUN. */
/* */
/* returns the new length of the integer in the array, in units */
/* */
/* Removed digits are discarded (lost). Units not required to hold */
/* the final result are unchanged. */
/* ------------------------------------------------------------------ */
static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
Unit *target, *up; /* work */
Int cut, count; /* work */
Int quot, rem; /* for division */
if (shift==0) return units; /* [fastpath] nothing to do */
if (shift==units*DECDPUN) { /* [fastpath] little to do */
*uar=0; /* all digits cleared gives zero */
return 1; /* leaves just the one */
}
target=uar; /* both paths */
cut=MSUDIGITS(shift);
if (cut==DECDPUN) { /* unit-boundary case; easy */
up=uar+D2U(shift);
for (; up<uar+units; target++, up++) *target=*up;
return target-uar;
}
/* messier */
up=uar+D2U(shift-cut); /* source; correct to whole Units */
count=units*DECDPUN-shift; /* the maximum new length */
#if DECDPUN<=4
quot=QUOT10(*up, cut);
#else
quot=*up/powers[cut];
#endif
for (; ; target++) {
*target=(Unit)quot;
count-=(DECDPUN-cut);
if (count<=0) break;
up++;
quot=*up;
#if DECDPUN<=4
quot=QUOT10(quot, cut);
rem=*up-quot*powers[cut];
#else
rem=quot%powers[cut];
quot=quot/powers[cut];
#endif
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
count-=cut;
if (count<=0) break;
}
return target-uar+1;
} /* decShiftToLeast */
#if DECSUBSET
/* ------------------------------------------------------------------ */
/* decRoundOperand -- round an operand [used for subset only] */
/* */
/* dn is the number to round (dn->digits is > set->digits) */
/* set is the relevant context */
/* status is the status accumulator */
/* */
/* returns an allocated decNumber with the rounded result. */
/* */
/* lostDigits and other status may be set by this. */
/* */
/* Since the input is an operand, it must not be modified. */
/* Instead, return an allocated decNumber, rounded as required. */
/* It is the caller's responsibility to free the allocated storage. */
/* */
/* If no storage is available then the result cannot be used, so NULL */
/* is returned. */
/* ------------------------------------------------------------------ */
static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
uInt *status) {
decNumber *res; /* result structure */
uInt newstatus=0; /* status from round */
Int residue=0; /* rounding accumulator */
/* Allocate storage for the returned decNumber, big enough for the */
/* length specified by the context */
res=(decNumber *)malloc(sizeof(decNumber)
+(D2U(set->digits)-1)*sizeof(Unit));
if (res==NULL) {
*status|=DEC_Insufficient_storage;
return NULL;
}
decCopyFit(res, dn, set, &residue, &newstatus);
decApplyRound(res, set, residue, &newstatus);
/* If that set Inexact then "lost digits" is raised... */
if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
*status|=newstatus;
return res;
} /* decRoundOperand */
#endif
/* ------------------------------------------------------------------ */
/* decCopyFit -- copy a number, truncating the coefficient if needed */
/* */
/* dest is the target decNumber */
/* src is the source decNumber */
/* set is the context [used for length (digits) and rounding mode] */
/* residue is the residue accumulator */
/* status contains the current status to be updated */
/* */
/* (dest==src is allowed and will be a no-op if fits) */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void decCopyFit(decNumber *dest, const decNumber *src,
decContext *set, Int *residue, uInt *status) {
dest->bits=src->bits;
dest->exponent=src->exponent;
decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
} /* decCopyFit */
/* ------------------------------------------------------------------ */
/* decSetCoeff -- set the coefficient of a number */
/* */
/* dn is the number whose coefficient array is to be set. */
/* It must have space for set->digits digits */
/* set is the context [for size] */
/* lsu -> lsu of the source coefficient [may be dn->lsu] */
/* len is digits in the source coefficient [may be dn->digits] */
/* residue is the residue accumulator. This has values as in */
/* decApplyRound, and will be unchanged unless the */
/* target size is less than len. In this case, the */
/* coefficient is truncated and the residue is updated to */
/* reflect the previous residue and the dropped digits. */
/* status is the status accumulator, as usual */
/* */
/* The coefficient may already be in the number, or it can be an */
/* external intermediate array. If it is in the number, lsu must == */
/* dn->lsu and len must == dn->digits. */
/* */
/* Note that the coefficient length (len) may be < set->digits, and */
/* in this case this merely copies the coefficient (or is a no-op */
/* if dn->lsu==lsu). */
/* */
/* Note also that (only internally, from decQuantizeOp and */
/* decSetSubnormal) the value of set->digits may be less than one, */
/* indicating a round to left. This routine handles that case */
/* correctly; caller ensures space. */
/* */
/* dn->digits, dn->lsu (and as required), and dn->exponent are */
/* updated as necessary. dn->bits (sign) is unchanged. */
/* */
/* DEC_Rounded status is set if any digits are discarded. */
/* DEC_Inexact status is set if any non-zero digits are discarded, or */
/* incoming residue was non-0 (implies rounded) */
/* ------------------------------------------------------------------ */
/* mapping array: maps 0-9 to canonical residues, so that a residue */
/* can be adjusted in the range [-1, +1] and achieve correct rounding */
/* 0 1 2 3 4 5 6 7 8 9 */
static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
Int len, Int *residue, uInt *status) {
Int discard; /* number of digits to discard */
uInt cut; /* cut point in Unit */
const Unit *up; /* work */
Unit *target; /* .. */
Int count; /* .. */
#if DECDPUN<=4
uInt temp; /* .. */
#endif
discard=len-set->digits; /* digits to discard */
if (discard<=0) { /* no digits are being discarded */
if (dn->lsu!=lsu) { /* copy needed */
/* copy the coefficient array to the result number; no shift needed */
count=len; /* avoids D2U */
up=lsu;
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
*target=*up;
dn->digits=len; /* set the new length */
}
/* dn->exponent and residue are unchanged, record any inexactitude */
if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
return;
}
/* some digits must be discarded ... */
dn->exponent+=discard; /* maintain numerical value */
*status|=DEC_Rounded; /* accumulate Rounded status */
if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
if (discard>len) { /* everything, +1, is being discarded */
/* guard digit is 0 */
/* residue is all the number [NB could be all 0s] */
if (*residue<=0) { /* not already positive */
count=len; /* avoids D2U */
for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
*residue=1;
break; /* no need to check any others */
}
}
if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
*dn->lsu=0; /* coefficient will now be 0 */
dn->digits=1; /* .. */
return;
} /* total discard */
/* partial discard [most common case] */
/* here, at least the first (most significant) discarded digit exists */
/* spin up the number, noting residue during the spin, until get to */
/* the Unit with the first discarded digit. When reach it, extract */
/* it and remember its position */
count=0;
for (up=lsu;; up++) {
count+=DECDPUN;
if (count>=discard) break; /* full ones all checked */
if (*up!=0) *residue=1;
} /* up */
/* here up -> Unit with first discarded digit */
cut=discard-(count-DECDPUN)-1;
if (cut==DECDPUN-1) { /* unit-boundary case (fast) */
Unit half=(Unit)powers[DECDPUN]>>1;
/* set residue directly */
if (*up>=half) {
if (*up>half) *residue=7;
else *residue+=5; /* add sticky bit */
}
else { /* <half */
if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
}
if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
*dn->lsu=0; /* .. result is 0 */
dn->digits=1; /* .. */
}
else { /* shift to least */
count=set->digits; /* now digits to end up with */
dn->digits=count; /* set the new length */
up++; /* move to next */
/* on unit boundary, so shift-down copy loop is simple */
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
*target=*up;
}
} /* unit-boundary case */
else { /* discard digit is in low digit(s), and not top digit */
uInt discard1; /* first discarded digit */
uInt quot, rem; /* for divisions */
if (cut==0) quot=*up; /* is at bottom of unit */
else /* cut>0 */ { /* it's not at bottom of unit */
#if DECDPUN<=4
quot=QUOT10(*up, cut);
rem=*up-quot*powers[cut];
#else
rem=*up%powers[cut];
quot=*up/powers[cut];
#endif
if (rem!=0) *residue=1;
}
/* discard digit is now at bottom of quot */
#if DECDPUN<=4
temp=(quot*6554)>>16; /* fast /10 */
/* Vowels algorithm here not a win (9 instructions) */
discard1=quot-X10(temp);
quot=temp;
#else
discard1=quot%10;
quot=quot/10;
#endif
/* here, discard1 is the guard digit, and residue is everything */
/* else [use mapping array to accumulate residue safely] */
*residue+=resmap[discard1];
cut++; /* update cut */
/* here: up -> Unit of the array with bottom digit */
/* cut is the division point for each Unit */
/* quot holds the uncut high-order digits for the current unit */
if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
*dn->lsu=0; /* .. result is 0 */
dn->digits=1; /* .. */
}
else { /* shift to least needed */
count=set->digits; /* now digits to end up with */
dn->digits=count; /* set the new length */
/* shift-copy the coefficient array to the result number */
for (target=dn->lsu; ; target++) {
*target=(Unit)quot;
count-=(DECDPUN-cut);
if (count<=0) break;
up++;
quot=*up;
#if DECDPUN<=4
quot=QUOT10(quot, cut);
rem=*up-quot*powers[cut];
#else
rem=quot%powers[cut];
quot=quot/powers[cut];
#endif
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
count-=cut;
if (count<=0) break;
} /* shift-copy loop */
} /* shift to least */
} /* not unit boundary */
if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
return;
} /* decSetCoeff */
/* ------------------------------------------------------------------ */
/* decApplyRound -- apply pending rounding to a number */
/* */
/* dn is the number, with space for set->digits digits */
/* set is the context [for size and rounding mode] */
/* residue indicates pending rounding, being any accumulated */
/* guard and sticky information. It may be: */
/* 6-9: rounding digit is >5 */
/* 5: rounding digit is exactly half-way */
/* 1-4: rounding digit is <5 and >0 */
/* 0: the coefficient is exact */
/* -1: as 1, but the hidden digits are subtractive, that */
/* is, of the opposite sign to dn. In this case the */
/* coefficient must be non-0. This case occurs when */
/* subtracting a small number (which can be reduced to */
/* a sticky bit); see decAddOp. */
/* status is the status accumulator, as usual */
/* */
/* This routine applies rounding while keeping the length of the */
/* coefficient constant. The exponent and status are unchanged */
/* except if: */
/* */
/* -- the coefficient was increased and is all nines (in which */
/* case Overflow could occur, and is handled directly here so */
/* the caller does not need to re-test for overflow) */
/* */
/* -- the coefficient was decreased and becomes all nines (in which */
/* case Underflow could occur, and is also handled directly). */
/* */
/* All fields in dn are updated as required. */
/* */
/* ------------------------------------------------------------------ */
static void decApplyRound(decNumber *dn, decContext *set, Int residue,
uInt *status) {
Int bump; /* 1 if coefficient needs to be incremented */
/* -1 if coefficient needs to be decremented */
if (residue==0) return; /* nothing to apply */
bump=0; /* assume a smooth ride */
/* now decide whether, and how, to round, depending on mode */
switch (set->round) {
case DEC_ROUND_05UP: { /* round zero or five up (for reround) */
/* This is the same as DEC_ROUND_DOWN unless there is a */
/* positive residue and the lsd of dn is 0 or 5, in which case */
/* it is bumped; when residue is <0, the number is therefore */
/* bumped down unless the final digit was 1 or 6 (in which */
/* case it is bumped down and then up -- a no-op) */
Int lsd5=*dn->lsu%5; /* get lsd and quintate */
if (residue<0 && lsd5!=1) bump=-1;
else if (residue>0 && lsd5==0) bump=1;
/* [bump==1 could be applied directly; use common path for clarity] */
break;} /* r-05 */
case DEC_ROUND_DOWN: {
/* no change, except if negative residue */
if (residue<0) bump=-1;
break;} /* r-d */
case DEC_ROUND_HALF_DOWN: {
if (residue>5) bump=1;
break;} /* r-h-d */
case DEC_ROUND_HALF_EVEN: {
if (residue>5) bump=1; /* >0.5 goes up */
else if (residue==5) { /* exactly 0.5000... */
/* 0.5 goes up iff [new] lsd is odd */
if (*dn->lsu & 0x01) bump=1;
}
break;} /* r-h-e */
case DEC_ROUND_HALF_UP: {
if (residue>=5) bump=1;
break;} /* r-h-u */
case DEC_ROUND_UP: {
if (residue>0) bump=1;
break;} /* r-u */
case DEC_ROUND_CEILING: {
/* same as _UP for positive numbers, and as _DOWN for negatives */
/* [negative residue cannot occur on 0] */
if (decNumberIsNegative(dn)) {
if (residue<0) bump=-1;
}
else {
if (residue>0) bump=1;
}
break;} /* r-c */
case DEC_ROUND_FLOOR: {
/* same as _UP for negative numbers, and as _DOWN for positive */
/* [negative residue cannot occur on 0] */
if (!decNumberIsNegative(dn)) {
if (residue<0) bump=-1;
}
else {
if (residue>0) bump=1;
}
break;} /* r-f */
default: { /* e.g., DEC_ROUND_MAX */
*status|=DEC_Invalid_context;
#if DECTRACE || (DECCHECK && DECVERB)
printf("Unknown rounding mode: %d\n", set->round);
#endif
break;}
} /* switch */
/* now bump the number, up or down, if need be */
if (bump==0) return; /* no action required */
/* Simply use decUnitAddSub unless bumping up and the number is */
/* all nines. In this special case set to 100... explicitly */
/* and adjust the exponent by one (as otherwise could overflow */
/* the array) */
/* Similarly handle all-nines result if bumping down. */
if (bump>0) {
Unit *up; /* work */
uInt count=dn->digits; /* digits to be checked */
for (up=dn->lsu; ; up++) {
if (count<=DECDPUN) {
/* this is the last Unit (the msu) */
if (*up!=powers[count]-1) break; /* not still 9s */
/* here if it, too, is all nines */
*up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */
for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
dn->exponent++; /* and bump exponent */
/* [which, very rarely, could cause Overflow...] */
if ((dn->exponent+dn->digits)>set->emax+1) {
decSetOverflow(dn, set, status);
}
return; /* done */
}
/* a full unit to check, with more to come */
if (*up!=DECDPUNMAX) break; /* not still 9s */
count-=DECDPUN;
} /* up */
} /* bump>0 */
else { /* -1 */
/* here checking for a pre-bump of 1000... (leading 1, all */
/* other digits zero) */
Unit *up, *sup; /* work */
uInt count=dn->digits; /* digits to be checked */
for (up=dn->lsu; ; up++) {
if (count<=DECDPUN) {
/* this is the last Unit (the msu) */
if (*up!=powers[count-1]) break; /* not 100.. */
/* here if have the 1000... case */
sup=up; /* save msu pointer */
*up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */
/* others all to all-nines, too */
for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
dn->exponent--; /* and bump exponent */
/* iff the number was at the subnormal boundary (exponent=etiny) */
/* then the exponent is now out of range, so it will in fact get */
/* clamped to etiny and the final 9 dropped. */
/* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
/* dn->exponent, set->digits); */
if (dn->exponent+1==set->emin-set->digits+1) {
if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */
else {
*sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */
dn->digits--;
}
dn->exponent++;
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
}
return; /* done */
}
/* a full unit to check, with more to come */
if (*up!=0) break; /* not still 0s */
count-=DECDPUN;
} /* up */
} /* bump<0 */
/* Actual bump needed. Do it. */
decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
} /* decApplyRound */
#if DECSUBSET
/* ------------------------------------------------------------------ */
/* decFinish -- finish processing a number */
/* */
/* dn is the number */
/* set is the context */
/* residue is the rounding accumulator (as in decApplyRound) */
/* status is the accumulator */
/* */
/* This finishes off the current number by: */
/* 1. If not extended: */
/* a. Converting a zero result to clean '0' */
/* b. Reducing positive exponents to 0, if would fit in digits */
/* 2. Checking for overflow and subnormals (always) */
/* Note this is just Finalize when no subset arithmetic. */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void decFinish(decNumber *dn, decContext *set, Int *residue,
uInt *status) {
if (!set->extended) {
if ISZERO(dn) { /* value is zero */
dn->exponent=0; /* clean exponent .. */
dn->bits=0; /* .. and sign */
return; /* no error possible */
}
if (dn->exponent>=0) { /* non-negative exponent */
/* >0; reduce to integer if possible */
if (set->digits >= (dn->exponent+dn->digits)) {
dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
dn->exponent=0;
}
}
} /* !extended */
decFinalize(dn, set, residue, status);
} /* decFinish */
#endif
/* ------------------------------------------------------------------ */
/* decFinalize -- final check, clamp, and round of a number */
/* */
/* dn is the number */
/* set is the context */
/* residue is the rounding accumulator (as in decApplyRound) */
/* status is the status accumulator */
/* */
/* This finishes off the current number by checking for subnormal */
/* results, applying any pending rounding, checking for overflow, */
/* and applying any clamping. */
/* Underflow and overflow conditions are raised as appropriate. */
/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
static void decFinalize(decNumber *dn, decContext *set, Int *residue,
uInt *status) {
Int shift; /* shift needed if clamping */
Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */
/* Must be careful, here, when checking the exponent as the */
/* adjusted exponent could overflow 31 bits [because it may already */
/* be up to twice the expected]. */
/* First test for subnormal. This must be done before any final */
/* round as the result could be rounded to Nmin or 0. */
if (dn->exponent<=tinyexp) { /* prefilter */
Int comp;
decNumber nmin;
/* A very nasty case here is dn == Nmin and residue<0 */
if (dn->exponent<tinyexp) {
/* Go handle subnormals; this will apply round if needed. */
decSetSubnormal(dn, set, residue, status);
return;
}
/* Equals case: only subnormal if dn=Nmin and negative residue */
decNumberZero(&nmin);
nmin.lsu[0]=1;
nmin.exponent=set->emin;
comp=decCompare(dn, &nmin, 1); /* (signless compare) */
if (comp==BADINT) { /* oops */
*status|=DEC_Insufficient_storage; /* abandon... */
return;
}
if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */
decApplyRound(dn, set, *residue, status); /* might force down */
decSetSubnormal(dn, set, residue, status);
return;
}
}
/* now apply any pending round (this could raise overflow). */
if (*residue!=0) decApplyRound(dn, set, *residue, status);
/* Check for overflow [redundant in the 'rare' case] or clamp */
if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */
/* here when might have an overflow or clamp to do */
if (dn->exponent>set->emax-dn->digits+1) { /* too big */
decSetOverflow(dn, set, status);
return;
}
/* here when the result is normal but in clamp range */
if (!set->clamp) return;
/* here when need to apply the IEEE exponent clamp (fold-down) */
shift=dn->exponent-(set->emax-set->digits+1);
/* shift coefficient (if non-zero) */
if (!ISZERO(dn)) {
dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
}
dn->exponent-=shift; /* adjust the exponent to match */
*status|=DEC_Clamped; /* and record the dirty deed */
return;
} /* decFinalize */
/* ------------------------------------------------------------------ */
/* decSetOverflow -- set number to proper overflow value */
/* */
/* dn is the number (used for sign [only] and result) */
/* set is the context [used for the rounding mode, etc.] */
/* status contains the current status to be updated */
/* */
/* This sets the sign of a number and sets its value to either */
/* Infinity or the maximum finite value, depending on the sign of */
/* dn and the rounding mode, following IEEE 854 rules. */
/* ------------------------------------------------------------------ */
static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
Flag needmax=0; /* result is maximum finite value */
uByte sign=dn->bits&DECNEG; /* clean and save sign bit */
if (ISZERO(dn)) { /* zero does not overflow magnitude */
Int emax=set->emax; /* limit value */
if (set->clamp) emax-=set->digits-1; /* lower if clamping */
if (dn->exponent>emax) { /* clamp required */
dn->exponent=emax;
*status|=DEC_Clamped;
}
return;
}
decNumberZero(dn);
switch (set->round) {
case DEC_ROUND_DOWN: {
needmax=1; /* never Infinity */
break;} /* r-d */
case DEC_ROUND_05UP: {
needmax=1; /* never Infinity */
break;} /* r-05 */
case DEC_ROUND_CEILING: {
if (sign) needmax=1; /* Infinity if non-negative */
break;} /* r-c */
case DEC_ROUND_FLOOR: {
if (!sign) needmax=1; /* Infinity if negative */
break;} /* r-f */
default: break; /* Infinity in all other cases */
}
if (needmax) {
decSetMaxValue(dn, set);
dn->bits=sign; /* set sign */
}
else dn->bits=sign|DECINF; /* Value is +/-Infinity */
*status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
} /* decSetOverflow */
/* ------------------------------------------------------------------ */
/* decSetMaxValue -- set number to +Nmax (maximum normal value) */
/* */
/* dn is the number to set */
/* set is the context [used for digits and emax] */
/* */
/* This sets the number to the maximum positive value. */
/* ------------------------------------------------------------------ */
static void decSetMaxValue(decNumber *dn, decContext *set) {
Unit *up; /* work */
Int count=set->digits; /* nines to add */
dn->digits=count;
/* fill in all nines to set maximum value */
for (up=dn->lsu; ; up++) {
if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */
else { /* this is the msu */
*up=(Unit)(powers[count]-1);
break;
}
count-=DECDPUN; /* filled those digits */
} /* up */
dn->bits=0; /* + sign */
dn->exponent=set->emax-set->digits+1;
} /* decSetMaxValue */
/* ------------------------------------------------------------------ */
/* decSetSubnormal -- process value whose exponent is <Emin */
/* */
/* dn is the number (used as input as well as output; it may have */
/* an allowed subnormal value, which may need to be rounded) */
/* set is the context [used for the rounding mode] */
/* residue is any pending residue */
/* status contains the current status to be updated */
/* */
/* If subset mode, set result to zero and set Underflow flags. */
/* */
/* Value may be zero with a low exponent; this does not set Subnormal */
/* but the exponent will be clamped to Etiny. */
/* */
/* Otherwise ensure exponent is not out of range, and round as */
/* necessary. Underflow is set if the result is Inexact. */
/* ------------------------------------------------------------------ */
static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
uInt *status) {
decContext workset; /* work */
Int etiny, adjust; /* .. */
#if DECSUBSET
/* simple set to zero and 'hard underflow' for subset */
if (!set->extended) {
decNumberZero(dn);
/* always full overflow */
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
return;
}
#endif
/* Full arithmetic -- allow subnormals, rounded to minimum exponent */
/* (Etiny) if needed */
etiny=set->emin-(set->digits-1); /* smallest allowed exponent */
if ISZERO(dn) { /* value is zero */
/* residue can never be non-zero here */
#if DECCHECK
if (*residue!=0) {
printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
*status|=DEC_Invalid_operation;
}
#endif
if (dn->exponent<etiny) { /* clamp required */
dn->exponent=etiny;
*status|=DEC_Clamped;
}
return;
}
*status|=DEC_Subnormal; /* have a non-zero subnormal */
adjust=etiny-dn->exponent; /* calculate digits to remove */
if (adjust<=0) { /* not out of range; unrounded */
/* residue can never be non-zero here, except in the Nmin-residue */
/* case (which is a subnormal result), so can take fast-path here */
/* it may already be inexact (from setting the coefficient) */
if (*status&DEC_Inexact) *status|=DEC_Underflow;
return;
}
/* adjust>0, so need to rescale the result so exponent becomes Etiny */
/* [this code is similar to that in rescale] */
workset=*set; /* clone rounding, etc. */
workset.digits=dn->digits-adjust; /* set requested length */
workset.emin-=adjust; /* and adjust emin to match */
/* [note that the latter can be <1, here, similar to Rescale case] */
decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
decApplyRound(dn, &workset, *residue, status);
/* Use 754R/854 default rule: Underflow is set iff Inexact */
/* [independent of whether trapped] */
if (*status&DEC_Inexact) *status|=DEC_Underflow;
/* if rounded up a 999s case, exponent will be off by one; adjust */
/* back if so [it will fit, because it was shortened earlier] */
if (dn->exponent>etiny) {
dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
dn->exponent--; /* (re)adjust the exponent. */
}
/* if rounded to zero, it is by definition clamped... */
if (ISZERO(dn)) *status|=DEC_Clamped;
} /* decSetSubnormal */
/* ------------------------------------------------------------------ */
/* decCheckMath - check entry conditions for a math function */
/* */
/* This checks the context and the operand */
/* */
/* rhs is the operand to check */
/* set is the context to check */
/* status is unchanged if both are good */
/* */
/* returns non-zero if status is changed, 0 otherwise */
/* */
/* Restrictions enforced: */
/* */
/* digits, emax, and -emin in the context must be less than */
/* DEC_MAX_MATH (999999), and A must be within these bounds if */
/* non-zero. Invalid_operation is set in the status if a */
/* restriction is violated. */
/* ------------------------------------------------------------------ */
static uInt decCheckMath(const decNumber *rhs, decContext *set,
uInt *status) {
uInt save=*status; /* record */
if (set->digits>DEC_MAX_MATH
|| set->emax>DEC_MAX_MATH
|| -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
else if ((rhs->digits>DEC_MAX_MATH
|| rhs->exponent+rhs->digits>DEC_MAX_MATH+1
|| rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
&& !ISZERO(rhs)) *status|=DEC_Invalid_operation;
return (*status!=save);
} /* decCheckMath */
/* ------------------------------------------------------------------ */
/* decGetInt -- get integer from a number */
/* */
/* dn is the number [which will not be altered] */
/* */
/* returns one of: */
/* BADINT if there is a non-zero fraction */
/* the converted integer */
/* BIGEVEN if the integer is even and magnitude > 2*10**9 */
/* BIGODD if the integer is odd and magnitude > 2*10**9 */
/* */
/* This checks and gets a whole number from the input decNumber. */
/* The sign can be determined from dn by the caller when BIGEVEN or */
/* BIGODD is returned. */
/* ------------------------------------------------------------------ */
static Int decGetInt(const decNumber *dn) {
Int theInt; /* result accumulator */
const Unit *up; /* work */
Int got; /* digits (real or not) processed */
Int ilength=dn->digits+dn->exponent; /* integral length */
Flag neg=decNumberIsNegative(dn); /* 1 if -ve */
/* The number must be an integer that fits in 10 digits */
/* Assert, here, that 10 is enough for any rescale Etiny */
#if DEC_MAX_EMAX > 999999999
#error GetInt may need updating [for Emax]
#endif
#if DEC_MIN_EMIN < -999999999
#error GetInt may need updating [for Emin]
#endif
if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */
up=dn->lsu; /* ready for lsu */
theInt=0; /* ready to accumulate */
if (dn->exponent>=0) { /* relatively easy */
/* no fractional part [usual]; allow for positive exponent */
got=dn->exponent;
}
else { /* -ve exponent; some fractional part to check and discard */
Int count=-dn->exponent; /* digits to discard */
/* spin up whole units until reach the Unit with the unit digit */
for (; count>=DECDPUN; up++) {
if (*up!=0) return BADINT; /* non-zero Unit to discard */
count-=DECDPUN;
}
if (count==0) got=0; /* [a multiple of DECDPUN] */
else { /* [not multiple of DECDPUN] */
Int rem; /* work */
/* slice off fraction digits and check for non-zero */
#if DECDPUN<=4
theInt=QUOT10(*up, count);
rem=*up-theInt*powers[count];
#else
rem=*up%powers[count]; /* slice off discards */
theInt=*up/powers[count];
#endif
if (rem!=0) return BADINT; /* non-zero fraction */
/* it looks good */
got=DECDPUN-count; /* number of digits so far */
up++; /* ready for next */
}
}
/* now it's known there's no fractional part */
/* tricky code now, to accumulate up to 9.3 digits */
if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
if (ilength<11) {
Int save=theInt;
/* collect any remaining unit(s) */
for (; got<ilength; up++) {
theInt+=*up*powers[got];
got+=DECDPUN;
}
if (ilength==10) { /* need to check for wrap */
if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
/* [that test also disallows the BADINT result case] */
else if (neg && theInt>1999999997) ilength=11;
else if (!neg && theInt>999999999) ilength=11;
if (ilength==11) theInt=save; /* restore correct low bit */
}
}
if (ilength>10) { /* too big */
if (theInt&1) return BIGODD; /* bottom bit 1 */
return BIGEVEN; /* bottom bit 0 */
}
if (neg) theInt=-theInt; /* apply sign */
return theInt;
} /* decGetInt */
/* ------------------------------------------------------------------ */
/* decDecap -- decapitate the coefficient of a number */
/* */
/* dn is the number to be decapitated */
/* drop is the number of digits to be removed from the left of dn; */
/* this must be <= dn->digits (if equal, the coefficient is */
/* set to 0) */
/* */
/* Returns dn; dn->digits will be <= the initial digits less drop */
/* (after removing drop digits there may be leading zero digits */
/* which will also be removed). Only dn->lsu and dn->digits change. */
/* ------------------------------------------------------------------ */
static decNumber *decDecap(decNumber *dn, Int drop) {
Unit *msu; /* -> target cut point */
Int cut; /* work */
if (drop>=dn->digits) { /* losing the whole thing */
#if DECCHECK
if (drop>dn->digits)
printf("decDecap called with drop>digits [%ld>%ld]\n",
(LI)drop, (LI)dn->digits);
#endif
dn->lsu[0]=0;
dn->digits=1;
return dn;
}
msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */
cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */
if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */
/* that may have left leading zero digits, so do a proper count... */
dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
return dn;
} /* decDecap */
/* ------------------------------------------------------------------ */
/* decBiStr -- compare string with pairwise options */
/* */
/* targ is the string to compare */
/* str1 is one of the strings to compare against (length may be 0) */
/* str2 is the other; it must be the same length as str1 */
/* */
/* returns 1 if strings compare equal, (that is, it is the same */
/* length as str1 and str2, and each character of targ is in either */
/* str1 or str2 in the corresponding position), or 0 otherwise */
/* */
/* This is used for generic caseless compare, including the awkward */
/* case of the Turkish dotted and dotless Is. Use as (for example): */
/* if (decBiStr(test, "mike", "MIKE")) ... */
/* ------------------------------------------------------------------ */
static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
for (;;targ++, str1++, str2++) {
if (*targ!=*str1 && *targ!=*str2) return 0;
/* *targ has a match in one (or both, if terminator) */
if (*targ=='\0') break;
} /* forever */
return 1;
} /* decBiStr */
/* ------------------------------------------------------------------ */
/* decNaNs -- handle NaN operand or operands */
/* */
/* res is the result number */
/* lhs is the first operand */
/* rhs is the second operand, or NULL if none */
/* context is used to limit payload length */
/* status contains the current status */
/* returns res in case convenient */
/* */
/* Called when one or both operands is a NaN, and propagates the */
/* appropriate result to res. When an sNaN is found, it is changed */
/* to a qNaN and Invalid operation is set. */
/* ------------------------------------------------------------------ */
static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set,
uInt *status) {
/* This decision tree ends up with LHS being the source pointer, */
/* and status updated if need be */
if (lhs->bits & DECSNAN)
*status|=DEC_Invalid_operation | DEC_sNaN;
else if (rhs==NULL);
else if (rhs->bits & DECSNAN) {
lhs=rhs;
*status|=DEC_Invalid_operation | DEC_sNaN;
}
else if (lhs->bits & DECNAN);
else lhs=rhs;
/* propagate the payload */
if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */
else { /* too long */
const Unit *ul;
Unit *ur, *uresp1;
/* copy safe number of units, then decapitate */
res->bits=lhs->bits; /* need sign etc. */
uresp1=res->lsu+D2U(set->digits);
for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
res->digits=D2U(set->digits)*DECDPUN;
/* maybe still too long */
if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
}
res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */
res->bits|=DECNAN; /* .. preserving sign */
res->exponent=0; /* clean exponent */
/* [coefficient was copied/decapitated] */
return res;
} /* decNaNs */
/* ------------------------------------------------------------------ */
/* decStatus -- apply non-zero status */
/* */
/* dn is the number to set if error */
/* status contains the current status (not yet in context) */
/* set is the context */
/* */
/* If the status is an error status, the number is set to a NaN, */
/* unless the error was an overflow, divide-by-zero, or underflow, */
/* in which case the number will have already been set. */
/* */
/* The context status is then updated with the new status. Note that */
/* this may raise a signal, so control may never return from this */
/* routine (hence resources must be recovered before it is called). */
/* ------------------------------------------------------------------ */
static void decStatus(decNumber *dn, uInt status, decContext *set) {
if (status & DEC_NaNs) { /* error status -> NaN */
/* if cause was an sNaN, clear and propagate [NaN is already set up] */
if (status & DEC_sNaN) status&=~DEC_sNaN;
else {
decNumberZero(dn); /* other error: clean throughout */
dn->bits=DECNAN; /* and make a quiet NaN */
}
}
decContextSetStatus(set, status); /* [may not return] */
return;
} /* decStatus */
/* ------------------------------------------------------------------ */
/* decGetDigits -- count digits in a Units array */
/* */
/* uar is the Unit array holding the number (this is often an */
/* accumulator of some sort) */
/* len is the length of the array in units [>=1] */
/* */
/* returns the number of (significant) digits in the array */
/* */
/* All leading zeros are excluded, except the last if the array has */
/* only zero Units. */
/* ------------------------------------------------------------------ */
/* This may be called twice during some operations. */
static Int decGetDigits(Unit *uar, Int len) {
Unit *up=uar+(len-1); /* -> msu */
Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */
#if DECDPUN>4
uInt const *pow; /* work */
#endif
/* (at least 1 in final msu) */
#if DECCHECK
if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
#endif
for (; up>=uar; up--) {
if (*up==0) { /* unit is all 0s */
if (digits==1) break; /* a zero has one digit */
digits-=DECDPUN; /* adjust for 0 unit */
continue;}
/* found the first (most significant) non-zero Unit */
#if DECDPUN>1 /* not done yet */
if (*up<10) break; /* is 1-9 */
digits++;
#if DECDPUN>2 /* not done yet */
if (*up<100) break; /* is 10-99 */
digits++;
#if DECDPUN>3 /* not done yet */
if (*up<1000) break; /* is 100-999 */
digits++;
#if DECDPUN>4 /* count the rest ... */
for (pow=&powers[4]; *up>=*pow; pow++) digits++;
#endif
#endif
#endif
#endif
break;
} /* up */
return digits;
} /* decGetDigits */
#if DECTRACE | DECCHECK
/* ------------------------------------------------------------------ */
/* decNumberShow -- display a number [debug aid] */
/* dn is the number to show */
/* */
/* Shows: sign, exponent, coefficient (msu first), digits */
/* or: sign, special-value */
/* ------------------------------------------------------------------ */
/* this is public so other modules can use it */
void decNumberShow(const decNumber *dn) {
const Unit *up; /* work */
uInt u, d; /* .. */
Int cut; /* .. */
char isign='+'; /* main sign */
if (dn==NULL) {
printf("NULL\n");
return;}
if (decNumberIsNegative(dn)) isign='-';
printf(" >> %c ", isign);
if (dn->bits&DECSPECIAL) { /* Is a special value */
if (decNumberIsInfinite(dn)) printf("Infinity");
else { /* a NaN */
if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */
else printf("NaN");
}
/* if coefficient and exponent are 0, no more to do */
if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
printf("\n");
return;}
/* drop through to report other information */
printf(" ");
}
/* now carefully display the coefficient */
up=dn->lsu+D2U(dn->digits)-1; /* msu */
printf("%ld", (LI)*up);
for (up=up-1; up>=dn->lsu; up--) {
u=*up;
printf(":");
for (cut=DECDPUN-1; cut>=0; cut--) {
d=u/powers[cut];
u-=d*powers[cut];
printf("%ld", (LI)d);
} /* cut */
} /* up */
if (dn->exponent!=0) {
char esign='+';
if (dn->exponent<0) esign='-';
printf(" E%c%ld", esign, (LI)abs(dn->exponent));
}
printf(" [%ld]\n", (LI)dn->digits);
} /* decNumberShow */
#endif
#if DECTRACE || DECCHECK
/* ------------------------------------------------------------------ */
/* decDumpAr -- display a unit array [debug/check aid] */
/* name is a single-character tag name */
/* ar is the array to display */
/* len is the length of the array in Units */
/* ------------------------------------------------------------------ */
static void decDumpAr(char name, const Unit *ar, Int len) {
Int i;
const char *spec;
#if DECDPUN==9
spec="%09d ";
#elif DECDPUN==8
spec="%08d ";
#elif DECDPUN==7
spec="%07d ";
#elif DECDPUN==6
spec="%06d ";
#elif DECDPUN==5
spec="%05d ";
#elif DECDPUN==4
spec="%04d ";
#elif DECDPUN==3
spec="%03d ";
#elif DECDPUN==2
spec="%02d ";
#else
spec="%d ";
#endif
printf(" :%c: ", name);
for (i=len-1; i>=0; i--) {
if (i==len-1) printf("%ld ", (LI)ar[i]);
else printf(spec, ar[i]);
}
printf("\n");
return;}
#endif
#if DECCHECK
/* ------------------------------------------------------------------ */
/* decCheckOperands -- check operand(s) to a routine */
/* res is the result structure (not checked; it will be set to */
/* quiet NaN if error found (and it is not NULL)) */
/* lhs is the first operand (may be DECUNRESU) */
/* rhs is the second (may be DECUNUSED) */
/* set is the context (may be DECUNCONT) */
/* returns 0 if both operands, and the context are clean, or 1 */
/* otherwise (in which case the context will show an error, */
/* unless NULL). Note that res is not cleaned; caller should */
/* handle this so res=NULL case is safe. */
/* The caller is expected to abandon immediately if 1 is returned. */
/* ------------------------------------------------------------------ */
static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
const decNumber *rhs, decContext *set) {
Flag bad=0;
if (set==NULL) { /* oops; hopeless */
#if DECTRACE || DECVERB
printf("Reference to context is NULL.\n");
#endif
bad=1;
return 1;}
else if (set!=DECUNCONT
&& (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
bad=1;
#if DECTRACE || DECVERB
printf("Bad context [digits=%ld round=%ld].\n",
(LI)set->digits, (LI)set->round);
#endif
}
else {
if (res==NULL) {
bad=1;
#if DECTRACE
/* this one not DECVERB as standard tests include NULL */
printf("Reference to result is NULL.\n");
#endif
}
if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
}
if (bad) {
if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
if (res!=DECUNRESU && res!=NULL) {
decNumberZero(res);
res->bits=DECNAN; /* qNaN */
}
}
return bad;
} /* decCheckOperands */
/* ------------------------------------------------------------------ */
/* decCheckNumber -- check a number */
/* dn is the number to check */
/* returns 0 if the number is clean, or 1 otherwise */
/* */
/* The number is considered valid if it could be a result from some */
/* operation in some valid context. */
/* ------------------------------------------------------------------ */
static Flag decCheckNumber(const decNumber *dn) {
const Unit *up; /* work */
uInt maxuint; /* .. */
Int ae, d, digits; /* .. */
Int emin, emax; /* .. */
if (dn==NULL) { /* hopeless */
#if DECTRACE
/* this one not DECVERB as standard tests include NULL */
printf("Reference to decNumber is NULL.\n");
#endif
return 1;}
/* check special values */
if (dn->bits & DECSPECIAL) {
if (dn->exponent!=0) {
#if DECTRACE || DECVERB
printf("Exponent %ld (not 0) for a special value [%02x].\n",
(LI)dn->exponent, dn->bits);
#endif
return 1;}
/* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
if (decNumberIsInfinite(dn)) {
if (dn->digits!=1) {
#if DECTRACE || DECVERB
printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
#endif
return 1;}
if (*dn->lsu!=0) {
#if DECTRACE || DECVERB
printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
#endif
decDumpAr('I', dn->lsu, D2U(dn->digits));
return 1;}
} /* Inf */
/* 2002.12.26: negative NaNs can now appear through proposed IEEE */
/* concrete formats (decimal64, etc.). */
return 0;
}
/* check the coefficient */
if (dn->digits<1 || dn->digits>DECNUMMAXP) {
#if DECTRACE || DECVERB
printf("Digits %ld in number.\n", (LI)dn->digits);
#endif
return 1;}
d=dn->digits;
for (up=dn->lsu; d>0; up++) {
if (d>DECDPUN) maxuint=DECDPUNMAX;
else { /* reached the msu */
maxuint=powers[d]-1;
if (dn->digits>1 && *up<powers[d-1]) {
#if DECTRACE || DECVERB
printf("Leading 0 in number.\n");
decNumberShow(dn);
#endif
return 1;}
}
if (*up>maxuint) {
#if DECTRACE || DECVERB
printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
(LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
#endif
return 1;}
d-=DECDPUN;
}
/* check the exponent. Note that input operands can have exponents */
/* which are out of the set->emin/set->emax and set->digits range */
/* (just as they can have more digits than set->digits). */
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
emax=DECNUMMAXE;
emin=DECNUMMINE;
digits=DECNUMMAXP;
if (ae<emin-(digits-1)) {
#if DECTRACE || DECVERB
printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
decNumberShow(dn);
#endif
return 1;}
if (ae>+emax) {
#if DECTRACE || DECVERB
printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
decNumberShow(dn);
#endif
return 1;}
return 0; /* it's OK */
} /* decCheckNumber */
/* ------------------------------------------------------------------ */
/* decCheckInexact -- check a normal finite inexact result has digits */
/* dn is the number to check */
/* set is the context (for status and precision) */
/* sets Invalid operation, etc., if some digits are missing */
/* [this check is not made for DECSUBSET compilation or when */
/* subnormal is not set] */
/* ------------------------------------------------------------------ */
static void decCheckInexact(const decNumber *dn, decContext *set) {
#if !DECSUBSET && DECEXTFLAG
if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
&& (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
#if DECTRACE || DECVERB
printf("Insufficient digits [%ld] on normal Inexact result.\n",
(LI)dn->digits);
decNumberShow(dn);
#endif
decContextSetStatus(set, DEC_Invalid_operation);
}
#else
/* next is a noop for quiet compiler */
if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
#endif
return;
} /* decCheckInexact */
#endif
#if DECALLOC
#undef malloc
#undef free
/* ------------------------------------------------------------------ */
/* decMalloc -- accountable allocation routine */
/* n is the number of bytes to allocate */
/* */
/* Semantics is the same as the stdlib malloc routine, but bytes */
/* allocated are accounted for globally, and corruption fences are */
/* added before and after the 'actual' storage. */
/* ------------------------------------------------------------------ */
/* This routine allocates storage with an extra twelve bytes; 8 are */
/* at the start and hold: */
/* 0-3 the original length requested */
/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
/* ------------------------------------------------------------------ */
static void *decMalloc(size_t n) {
uInt size=n+12; /* true size */
void *alloc; /* -> allocated storage */
uInt *j; /* work */
uByte *b, *b0; /* .. */
alloc=malloc(size); /* -> allocated storage */
if (alloc==NULL) return NULL; /* out of strorage */
b0=(uByte *)alloc; /* as bytes */
decAllocBytes+=n; /* account for storage */
j=(uInt *)alloc; /* -> first four bytes */
*j=n; /* save n */
/* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */
for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
return b0+8; /* -> play area */
} /* decMalloc */
/* ------------------------------------------------------------------ */
/* decFree -- accountable free routine */
/* alloc is the storage to free */
/* */
/* Semantics is the same as the stdlib malloc routine, except that */
/* the global storage accounting is updated and the fences are */
/* checked to ensure that no routine has written 'out of bounds'. */
/* ------------------------------------------------------------------ */
/* This routine first checks that the fences have not been corrupted. */
/* It then frees the storage using the 'truw' storage address (that */
/* is, offset by 8). */
/* ------------------------------------------------------------------ */
static void decFree(void *alloc) {
uInt *j, n; /* pointer, original length */
uByte *b, *b0; /* work */
if (alloc==NULL) return; /* allowed; it's a nop */
b0=(uByte *)alloc; /* as bytes */
b0-=8; /* -> true start of storage */
j=(uInt *)b0; /* -> first four bytes */
n=*j; /* lift */
for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
b-b0-8, (Int)b0);
for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
b-b0-8, (Int)b0, n);
free(b0); /* drop the storage */
decAllocBytes-=n; /* account for storage */
/* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
} /* decFree */
#define malloc(a) decMalloc(a)
#define free(a) decFree(a)
#endif
|