1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
/*
* AArch64 specific helpers
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "internals.h"
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
/* C2.4.7 Multiply and divide */
/* special cases for 0 and LLONG_MIN are mandated by the standard */
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
{
if (den == 0) {
return 0;
}
return num / den;
}
int64_t HELPER(sdiv64)(int64_t num, int64_t den)
{
if (den == 0) {
return 0;
}
if (num == LLONG_MIN && den == -1) {
return LLONG_MIN;
}
return num / den;
}
uint64_t HELPER(clz64)(uint64_t x)
{
return clz64(x);
}
uint64_t HELPER(cls64)(uint64_t x)
{
return clrsb64(x);
}
uint32_t HELPER(cls32)(uint32_t x)
{
return clrsb32(x);
}
uint32_t HELPER(clz32)(uint32_t x)
{
return clz32(x);
}
uint64_t HELPER(rbit64)(uint64_t x)
{
/* assign the correct byte position */
x = bswap64(x);
/* assign the correct nibble position */
x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4)
| ((x & 0x0f0f0f0f0f0f0f0fULL) << 4);
/* assign the correct bit position */
x = ((x & 0x8888888888888888ULL) >> 3)
| ((x & 0x4444444444444444ULL) >> 1)
| ((x & 0x2222222222222222ULL) << 1)
| ((x & 0x1111111111111111ULL) << 3);
return x;
}
/* Convert a softfloat float_relation_ (as returned by
* the float*_compare functions) to the correct ARM
* NZCV flag state.
*/
static inline uint32_t float_rel_to_flags(int res)
{
uint64_t flags;
switch (res) {
case float_relation_equal:
flags = PSTATE_Z | PSTATE_C;
break;
case float_relation_less:
flags = PSTATE_N;
break;
case float_relation_greater:
flags = PSTATE_C;
break;
case float_relation_unordered:
default:
flags = PSTATE_C | PSTATE_V;
break;
}
return flags;
}
uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare(x, y, fp_status));
}
float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float32_is_zero(a) && float32_is_infinity(b)) ||
(float32_is_infinity(a) && float32_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float32((1U << 30) |
((float32_val(a) ^ float32_val(b)) & (1U << 31)));
}
return float32_mul(a, b, fpst);
}
float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float64_is_zero(a) && float64_is_infinity(b)) ||
(float64_is_infinity(a) && float64_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float64((1ULL << 62) |
((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
}
return float64_mul(a, b, fpst);
}
uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
uint32_t rn, uint32_t numregs)
{
/* Helper function for SIMD TBL and TBX. We have to do the table
* lookup part for the 64 bits worth of indices we're passed in.
* result is the initial results vector (either zeroes for TBL
* or some guest values for TBX), rn the register number where
* the table starts, and numregs the number of registers in the table.
* We return the results of the lookups.
*/
int shift;
for (shift = 0; shift < 64; shift += 8) {
int index = extract64(indices, shift, 8);
if (index < 16 * numregs) {
/* Convert index (a byte offset into the virtual table
* which is a series of 128-bit vectors concatenated)
* into the correct vfp.regs[] element plus a bit offset
* into that element, bearing in mind that the table
* can wrap around from V31 to V0.
*/
int elt = (rn * 2 + (index >> 3)) % 64;
int bitidx = (index & 7) * 8;
uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
result = deposit64(result, shift, 8, val);
}
}
return result;
}
/* 64bit/double versions of the neon float compare functions */
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_eq_quiet(a, b, fpst);
}
uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_le(b, a, fpst);
}
uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_lt(b, a, fpst);
}
/* Reciprocal step and sqrt step. Note that unlike the A32/T32
* versions, these do a fully fused multiply-add or
* multiply-add-and-halve.
*/
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
#define float64_two make_float64(0x4000000000000000ULL)
#define float64_three make_float64(0x4008000000000000ULL)
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_two;
}
return float32_muladd(a, b, float32_two, 0, fpst);
}
float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_two;
}
return float64_muladd(a, b, float64_two, 0, fpst);
}
float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_one_point_five;
}
return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
}
float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_one_point_five;
}
return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
}
/* Pairwise long add: add pairs of adjacent elements into
* double-width elements in the result (eg _s8 is an 8x8->16 op)
*/
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
{
uint64_t nsignmask = 0x0080008000800080ULL;
uint64_t wsignmask = 0x8000800080008000ULL;
uint64_t elementmask = 0x00ff00ff00ff00ffULL;
uint64_t tmp1, tmp2;
uint64_t res, signres;
/* Extract odd elements, sign extend each to a 16 bit field */
tmp1 = a & elementmask;
tmp1 ^= nsignmask;
tmp1 |= wsignmask;
tmp1 = (tmp1 - nsignmask) ^ wsignmask;
/* Ditto for the even elements */
tmp2 = (a >> 8) & elementmask;
tmp2 ^= nsignmask;
tmp2 |= wsignmask;
tmp2 = (tmp2 - nsignmask) ^ wsignmask;
/* calculate the result by summing bits 0..14, 16..22, etc,
* and then adjusting the sign bits 15, 23, etc manually.
* This ensures the addition can't overflow the 16 bit field.
*/
signres = (tmp1 ^ tmp2) & wsignmask;
res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
res ^= signres;
return res;
}
uint64_t HELPER(neon_addlp_u8)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x00ff00ff00ff00ffULL;
tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
return tmp;
}
uint64_t HELPER(neon_addlp_s16)(uint64_t a)
{
int32_t reslo, reshi;
reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
return (uint32_t)reslo | (((uint64_t)reshi) << 32);
}
uint64_t HELPER(neon_addlp_u16)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x0000ffff0000ffffULL;
tmp += (a >> 16) & 0x0000ffff0000ffffULL;
return tmp;
}
/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
{
float_status *fpst = fpstp;
uint32_t val32, sbit;
int32_t exp;
if (float32_is_any_nan(a)) {
float32 nan = a;
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(a);
}
if (fpst->default_nan_mode) {
nan = float32_default_nan;
}
return nan;
}
val32 = float32_val(a);
sbit = 0x80000000ULL & val32;
exp = extract32(val32, 23, 8);
if (exp == 0) {
return make_float32(sbit | (0xfe << 23));
} else {
return make_float32(sbit | (~exp & 0xff) << 23);
}
}
float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
{
float_status *fpst = fpstp;
uint64_t val64, sbit;
int64_t exp;
if (float64_is_any_nan(a)) {
float64 nan = a;
if (float64_is_signaling_nan(a)) {
float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(a);
}
if (fpst->default_nan_mode) {
nan = float64_default_nan;
}
return nan;
}
val64 = float64_val(a);
sbit = 0x8000000000000000ULL & val64;
exp = extract64(float64_val(a), 52, 11);
if (exp == 0) {
return make_float64(sbit | (0x7feULL << 52));
} else {
return make_float64(sbit | (~exp & 0x7ffULL) << 52);
}
}
float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
{
/* Von Neumann rounding is implemented by using round-to-zero
* and then setting the LSB of the result if Inexact was raised.
*/
float32 r;
float_status *fpst = &env->vfp.fp_status;
float_status tstat = *fpst;
int exflags;
set_float_rounding_mode(float_round_to_zero, &tstat);
set_float_exception_flags(0, &tstat);
r = float64_to_float32(a, &tstat);
r = float32_maybe_silence_nan(r);
exflags = get_float_exception_flags(&tstat);
if (exflags & float_flag_inexact) {
r = make_float32(float32_val(r) | 1);
}
exflags |= get_float_exception_flags(fpst);
set_float_exception_flags(exflags, fpst);
return r;
}
/* 64-bit versions of the CRC helpers. Note that although the operation
* (and the prototypes of crc32c() and crc32() mean that only the bottom
* 32 bits of the accumulator and result are used, we pass and return
* uint64_t for convenience of the generated code. Unlike the 32-bit
* instruction set versions, val may genuinely have 64 bits of data in it.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
/* zlib crc32 converts the accumulator and output to one's complement. */
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}
uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
/* Linux crc32c converts the output to one's complement. */
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
/* Handle a CPU exception. */
void aarch64_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
target_ulong addr = env->cp15.vbar_el[1];
int i;
if (arm_current_pl(env) == 0) {
if (env->aarch64) {
addr += 0x400;
} else {
addr += 0x600;
}
} else if (pstate_read(env) & PSTATE_SP) {
addr += 0x200;
}
arm_log_exception(cs->exception_index);
qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_pl(env));
if (qemu_loglevel_mask(CPU_LOG_INT)
&& !excp_is_internal(cs->exception_index)) {
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n",
env->exception.syndrome);
}
env->cp15.esr_el[1] = env->exception.syndrome;
env->cp15.far_el1 = env->exception.vaddress;
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
env->cp15.far_el1);
break;
case EXCP_BKPT:
case EXCP_UDEF:
case EXCP_SWI:
break;
case EXCP_IRQ:
addr += 0x80;
break;
case EXCP_FIQ:
addr += 0x100;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
}
if (is_a64(env)) {
env->banked_spsr[aarch64_banked_spsr_index(1)] = pstate_read(env);
aarch64_save_sp(env, arm_current_pl(env));
env->elr_el[1] = env->pc;
} else {
env->banked_spsr[0] = cpsr_read(env);
if (!env->thumb) {
env->cp15.esr_el[1] |= 1 << 25;
}
env->elr_el[1] = env->regs[15];
for (i = 0; i < 15; i++) {
env->xregs[i] = env->regs[i];
}
env->condexec_bits = 0;
}
pstate_write(env, PSTATE_DAIF | PSTATE_MODE_EL1h);
env->aarch64 = 1;
aarch64_restore_sp(env, 1);
env->pc = addr;
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
|