summaryrefslogtreecommitdiffstats
path: root/target-arm/kvm32.c
blob: c03e3e526acea56f029188236512d75bb88f40b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/*
 * ARM implementation of KVM hooks, 32 bit specific code.
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "internals.h"
#include "hw/arm/arm.h"
#include "qemu/log.h"

static inline void set_feature(uint64_t *features, int feature)
{
    *features |= 1ULL << feature;
}

bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     */
    int i, ret, fdarray[3];
    uint32_t midr, id_pfr0, id_isar0, mvfr1;
    uint64_t features = 0;
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type.
     */
    static const uint32_t cpus_to_try[] = {
        QEMU_KVM_ARM_TARGET_CORTEX_A15,
        QEMU_KVM_ARM_TARGET_NONE
    };
    struct kvm_vcpu_init init;
    struct kvm_one_reg idregs[] = {
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
            .addr = (uintptr_t)&midr,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
            .addr = (uintptr_t)&id_pfr0,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
            .addr = (uintptr_t)&id_isar0,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
            .addr = (uintptr_t)&mvfr1,
        },
    };

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

    ahcc->target = init.target;

    /* This is not strictly blessed by the device tree binding docs yet,
     * but in practice the kernel does not care about this string so
     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
     */
    ahcc->dtb_compatible = "arm,arm-v7";

    for (i = 0; i < ARRAY_SIZE(idregs); i++) {
        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
        if (ret) {
            break;
        }
    }

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

    if (ret) {
        return false;
    }

    /* Now we've retrieved all the register information we can
     * set the feature bits based on the ID register fields.
     * We can assume any KVM supporting CPU is at least a v7
     * with VFPv3, LPAE and the generic timers; this in turn implies
     * most of the other feature bits, but a few must be tested.
     */
    set_feature(&features, ARM_FEATURE_V7);
    set_feature(&features, ARM_FEATURE_VFP3);
    set_feature(&features, ARM_FEATURE_LPAE);
    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);

    switch (extract32(id_isar0, 24, 4)) {
    case 1:
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
        break;
    case 2:
        set_feature(&features, ARM_FEATURE_ARM_DIV);
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
        break;
    default:
        break;
    }

    if (extract32(id_pfr0, 12, 4) == 1) {
        set_feature(&features, ARM_FEATURE_THUMB2EE);
    }
    if (extract32(mvfr1, 20, 4) == 1) {
        set_feature(&features, ARM_FEATURE_VFP_FP16);
    }
    if (extract32(mvfr1, 12, 4) == 1) {
        set_feature(&features, ARM_FEATURE_NEON);
    }
    if (extract32(mvfr1, 28, 4) == 1) {
        /* FMAC support implies VFPv4 */
        set_feature(&features, ARM_FEATURE_VFP4);
    }

    ahcc->features = features;

    return true;
}

bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
    /* Return true if the regidx is a register we should synchronize
     * via the cpreg_tuples array (ie is not a core reg we sync by
     * hand in kvm_arch_get/put_registers())
     */
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
    case KVM_REG_ARM_CORE:
    case KVM_REG_ARM_VFP:
        return false;
    default:
        return true;
    }
}

typedef struct CPRegStateLevel {
    uint64_t regidx;
    int level;
} CPRegStateLevel;

/* All coprocessor registers not listed in the following table are assumed to
 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 * often, you must add it to this table with a state of either
 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 */
static const CPRegStateLevel non_runtime_cpregs[] = {
    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};

int kvm_arm_cpreg_level(uint64_t regidx)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
        const CPRegStateLevel *l = &non_runtime_cpregs[i];
        if (l->regidx == regidx) {
            return l->level;
        }
    }

    return KVM_PUT_RUNTIME_STATE;
}

#define ARM_CPU_ID_MPIDR       0, 0, 0, 5

int kvm_arch_init_vcpu(CPUState *cs)
{
    int ret;
    uint64_t v;
    uint32_t mpidr;
    struct kvm_one_reg r;
    ARMCPU *cpu = ARM_CPU(cs);

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

    /* Determine init features for this CPU */
    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
    if (cpu->start_powered_off) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
    }
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
        cpu->psci_version = 2;
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
    }

    /* Do KVM_ARM_VCPU_INIT ioctl */
    ret = kvm_arm_vcpu_init(cs);
    if (ret) {
        return ret;
    }

    /* Query the kernel to make sure it supports 32 VFP
     * registers: QEMU's "cortex-a15" CPU is always a
     * VFP-D32 core. The simplest way to do this is just
     * to attempt to read register d31.
     */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
    r.addr = (uintptr_t)(&v);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret == -ENOENT) {
        return -EINVAL;
    }

    /*
     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
     * Currently KVM has its own idea about MPIDR assignment, so we
     * override our defaults with what we get from KVM.
     */
    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
    if (ret) {
        return ret;
    }
    cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;

    return kvm_arm_init_cpreg_list(cpu);
}

typedef struct Reg {
    uint64_t id;
    int offset;
} Reg;

#define COREREG(KERNELNAME, QEMUFIELD)                       \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetof(CPUARMState, QEMUFIELD)                     \
    }

#define VFPSYSREG(R)                                       \
    {                                                      \
        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
        KVM_REG_ARM_VFP_##R,                               \
        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
    }

/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
#define COREREG64(KERNELNAME, QEMUFIELD)                     \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetoflow32(CPUARMState, QEMUFIELD)                \
    }

static const Reg regs[] = {
    /* R0_usr .. R14_usr */
    COREREG(usr_regs.uregs[0], regs[0]),
    COREREG(usr_regs.uregs[1], regs[1]),
    COREREG(usr_regs.uregs[2], regs[2]),
    COREREG(usr_regs.uregs[3], regs[3]),
    COREREG(usr_regs.uregs[4], regs[4]),
    COREREG(usr_regs.uregs[5], regs[5]),
    COREREG(usr_regs.uregs[6], regs[6]),
    COREREG(usr_regs.uregs[7], regs[7]),
    COREREG(usr_regs.uregs[8], usr_regs[0]),
    COREREG(usr_regs.uregs[9], usr_regs[1]),
    COREREG(usr_regs.uregs[10], usr_regs[2]),
    COREREG(usr_regs.uregs[11], usr_regs[3]),
    COREREG(usr_regs.uregs[12], usr_regs[4]),
    COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
    COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
    COREREG(svc_regs[0], banked_r13[BANK_SVC]),
    COREREG(svc_regs[1], banked_r14[BANK_SVC]),
    COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
    COREREG(abt_regs[0], banked_r13[BANK_ABT]),
    COREREG(abt_regs[1], banked_r14[BANK_ABT]),
    COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
    COREREG(und_regs[0], banked_r13[BANK_UND]),
    COREREG(und_regs[1], banked_r14[BANK_UND]),
    COREREG64(und_regs[2], banked_spsr[BANK_UND]),
    COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
    COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
    COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
    /* R8_fiq .. R14_fiq and SPSR_fiq */
    COREREG(fiq_regs[0], fiq_regs[0]),
    COREREG(fiq_regs[1], fiq_regs[1]),
    COREREG(fiq_regs[2], fiq_regs[2]),
    COREREG(fiq_regs[3], fiq_regs[3]),
    COREREG(fiq_regs[4], fiq_regs[4]),
    COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
    COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
    COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
    /* R15 */
    COREREG(usr_regs.uregs[15], regs[15]),
    /* VFP system registers */
    VFPSYSREG(FPSID),
    VFPSYSREG(MVFR1),
    VFPSYSREG(MVFR0),
    VFPSYSREG(FPEXC),
    VFPSYSREG(FPINST),
    VFPSYSREG(FPINST2),
};

int kvm_arch_put_registers(CPUState *cs, int level)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    /* Make sure the banked regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    }
    env->banked_r13[bn] = env->regs[13];
    env->banked_r14[bn] = env->regs[14];
    env->banked_spsr[bn] = env->spsr;

    /* Now we can safely copy stuff down to the kernel */
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    cpsr = cpsr_read(env);
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    fpscr = vfp_get_fpscr(env);
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* Note that we do not call write_cpustate_to_list()
     * here, so we are only writing the tuple list back to
     * KVM. This is safe because nothing can change the
     * CPUARMState cp15 fields (in particular gdb accesses cannot)
     * and so there are no changes to sync. In fact syncing would
     * be wrong at this point: for a constant register where TCG and
     * KVM disagree about its value, the preceding write_list_to_cpustate()
     * would not have had any effect on the CPUARMState value (since the
     * register is read-only), and a write_cpustate_to_list() here would
     * then try to write the TCG value back into KVM -- this would either
     * fail or incorrectly change the value the guest sees.
     *
     * If we ever want to allow the user to modify cp15 registers via
     * the gdb stub, we would need to be more clever here (for instance
     * tracking the set of registers kvm_arch_get_registers() successfully
     * managed to update the CPUARMState with, and only allowing those
     * to be written back up into the kernel).
     */
    if (!write_list_to_kvmstate(cpu, level)) {
        return EINVAL;
    }

    kvm_arm_sync_mpstate_to_kvm(cpu);

    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);

    /* Make sure the current mode regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    }
    env->regs[13] = env->banked_r13[bn];
    env->regs[14] = env->banked_r14[bn];
    env->spsr = env->banked_spsr[bn];

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    vfp_set_fpscr(env, fpscr);

    if (!write_kvmstate_to_list(cpu)) {
        return EINVAL;
    }
    /* Note that it's OK to have registers which aren't in CPUState,
     * so we can ignore a failure return here.
     */
    write_list_to_cpustate(cpu);

    kvm_arm_sync_mpstate_to_qemu(cpu);

    return 0;
}

int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return -EINVAL;
}

bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return false;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

bool kvm_arm_hw_debug_active(CPUState *cs)
{
    return false;
}