summaryrefslogtreecommitdiffstats
path: root/target-ppc/mmu-hash64.c
blob: 72c4ab5d751c6be84a0a1a23f4ae3b670bff0c99 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *  Copyright (c) 2013 David Gibson, IBM Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "qemu/error-report.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
#include "exec/log.h"

//#define DEBUG_SLB

#ifdef DEBUG_SLB
#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
#else
#  define LOG_SLB(...) do { } while (0)
#endif

/*
 * Used to indicate that a CPU has its hash page table (HPT) managed
 * within the host kernel
 */
#define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)

/*
 * SLB handling
 */

static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
{
    CPUPPCState *env = &cpu->env;
    uint64_t esid_256M, esid_1T;
    int n;

    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);

    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;

    for (n = 0; n < env->slb_nr; n++) {
        ppc_slb_t *slb = &env->slb[n];

        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
        /* We check for 1T matches on all MMUs here - if the MMU
         * doesn't have 1T segment support, we will have prevented 1T
         * entries from being inserted in the slbmte code. */
        if (((slb->esid == esid_256M) &&
             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
            || ((slb->esid == esid_1T) &&
                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
            return slb;
        }
    }

    return NULL;
}

void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    int i;
    uint64_t slbe, slbv;

    cpu_synchronize_state(CPU(cpu));

    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
    for (i = 0; i < env->slb_nr; i++) {
        slbe = env->slb[i].esid;
        slbv = env->slb[i].vsid;
        if (slbe == 0 && slbv == 0) {
            continue;
        }
        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
                    i, slbe, slbv);
    }
}

void helper_slbia(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    int n, do_invalidate;

    do_invalidate = 0;
    /* XXX: Warning: slbia never invalidates the first segment */
    for (n = 1; n < env->slb_nr; n++) {
        ppc_slb_t *slb = &env->slb[n];

        if (slb->esid & SLB_ESID_V) {
            slb->esid &= ~SLB_ESID_V;
            /* XXX: given the fact that segment size is 256 MB or 1TB,
             *      and we still don't have a tlb_flush_mask(env, n, mask)
             *      in QEMU, we just invalidate all TLBs
             */
            do_invalidate = 1;
        }
    }
    if (do_invalidate) {
        tlb_flush(CPU(cpu), 1);
    }
}

void helper_slbie(CPUPPCState *env, target_ulong addr)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    ppc_slb_t *slb;

    slb = slb_lookup(cpu, addr);
    if (!slb) {
        return;
    }

    if (slb->esid & SLB_ESID_V) {
        slb->esid &= ~SLB_ESID_V;

        /* XXX: given the fact that segment size is 256 MB or 1TB,
         *      and we still don't have a tlb_flush_mask(env, n, mask)
         *      in QEMU, we just invalidate all TLBs
         */
        tlb_flush(CPU(cpu), 1);
    }
}

int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
                  target_ulong esid, target_ulong vsid)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb = &env->slb[slot];
    const struct ppc_one_seg_page_size *sps = NULL;
    int i;

    if (slot >= env->slb_nr) {
        return -1; /* Bad slot number */
    }
    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
        return -1; /* Reserved bits set */
    }
    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
        return -1; /* Bad segment size */
    }
    if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
        return -1; /* 1T segment on MMU that doesn't support it */
    }

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];

        if (!sps1->page_shift) {
            break;
        }

        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
            sps = sps1;
            break;
        }
    }

    if (!sps) {
        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
                     slot, esid, vsid);
        return -1;
    }

    slb->esid = esid;
    slb->vsid = vsid;
    slb->sps = sps;

    LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
            " %016" PRIx64 "\n", __func__, slot, esid, vsid,
            slb->esid, slb->vsid);

    return 0;
}

static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= env->slb_nr) {
        return -1;
    }

    *rt = slb->esid;
    return 0;
}

static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= env->slb_nr) {
        return -1;
    }

    *rt = slb->vsid;
    return 0;
}

void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
                                   POWERPC_EXCP_INVAL);
    }
}

target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
                                   POWERPC_EXCP_INVAL);
    }
    return rt;
}

target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
        helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
                                   POWERPC_EXCP_INVAL);
    }
    return rt;
}

/*
 * 64-bit hash table MMU handling
 */
void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
                         Error **errp)
{
    CPUPPCState *env = &cpu->env;
    target_ulong htabsize = value & SDR_64_HTABSIZE;

    env->spr[SPR_SDR1] = value;
    if (htabsize > 28) {
        error_setg(errp,
                   "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
                   htabsize);
        htabsize = 28;
    }
    env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
    env->htab_base = value & SDR_64_HTABORG;
}

void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
                                 Error **errp)
{
    CPUPPCState *env = &cpu->env;
    Error *local_err = NULL;

    cpu_synchronize_state(CPU(cpu));

    if (hpt) {
        env->external_htab = hpt;
    } else {
        env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
    }
    ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
                        &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    /* Not strictly necessary, but makes it clearer that an external
     * htab is in use when debugging */
    env->htab_base = -1;

    if (kvm_enabled()) {
        if (kvmppc_put_books_sregs(cpu) < 0) {
            error_setg(errp, "Unable to update SDR1 in KVM");
        }
    }
}

static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
{
    CPUPPCState *env = &cpu->env;
    unsigned pp, key;
    /* Some pp bit combinations have undefined behaviour, so default
     * to no access in those cases */
    int prot = 0;

    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
             : (slb->vsid & SLB_VSID_KS));
    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);

    if (key == 0) {
        switch (pp) {
        case 0x0:
        case 0x1:
        case 0x2:
            prot = PAGE_READ | PAGE_WRITE;
            break;

        case 0x3:
        case 0x6:
            prot = PAGE_READ;
            break;
        }
    } else {
        switch (pp) {
        case 0x0:
        case 0x6:
            prot = 0;
            break;

        case 0x1:
        case 0x3:
            prot = PAGE_READ;
            break;

        case 0x2:
            prot = PAGE_READ | PAGE_WRITE;
            break;
        }
    }

    /* No execute if either noexec or guarded bits set */
    if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
        || (slb->vsid & SLB_VSID_N)) {
        prot |= PAGE_EXEC;
    }

    return prot;
}

static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
{
    CPUPPCState *env = &cpu->env;
    int key, amrbits;
    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;

    /* Only recent MMUs implement Virtual Page Class Key Protection */
    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
        return prot;
    }

    key = HPTE64_R_KEY(pte.pte1);
    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;

    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
    /*         env->spr[SPR_AMR]); */

    /*
     * A store is permitted if the AMR bit is 0. Remove write
     * protection if it is set.
     */
    if (amrbits & 0x2) {
        prot &= ~PAGE_WRITE;
    }
    /*
     * A load is permitted if the AMR bit is 0. Remove read
     * protection if it is set.
     */
    if (amrbits & 0x1) {
        prot &= ~PAGE_READ;
    }

    return prot;
}

uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
{
    uint64_t token = 0;
    hwaddr pte_offset;

    pte_offset = pte_index * HASH_PTE_SIZE_64;
    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
        /*
         * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
         */
        token = kvmppc_hash64_read_pteg(cpu, pte_index);
    } else if (cpu->env.external_htab) {
        /*
         * HTAB is controlled by QEMU. Just point to the internally
         * accessible PTEG.
         */
        token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
    } else if (cpu->env.htab_base) {
        token = cpu->env.htab_base + pte_offset;
    }
    return token;
}

void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
{
    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
        kvmppc_hash64_free_pteg(token);
    }
}

static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
                                     bool secondary, target_ulong ptem,
                                     ppc_hash_pte64_t *pte)
{
    CPUPPCState *env = &cpu->env;
    int i;
    uint64_t token;
    target_ulong pte0, pte1;
    target_ulong pte_index;

    pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
    token = ppc_hash64_start_access(cpu, pte_index);
    if (!token) {
        return -1;
    }
    for (i = 0; i < HPTES_PER_GROUP; i++) {
        pte0 = ppc_hash64_load_hpte0(cpu, token, i);
        pte1 = ppc_hash64_load_hpte1(cpu, token, i);

        if ((pte0 & HPTE64_V_VALID)
            && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
            && HPTE64_V_COMPARE(pte0, ptem)) {
            pte->pte0 = pte0;
            pte->pte1 = pte1;
            ppc_hash64_stop_access(cpu, token);
            return (pte_index + i) * HASH_PTE_SIZE_64;
        }
    }
    ppc_hash64_stop_access(cpu, token);
    /*
     * We didn't find a valid entry.
     */
    return -1;
}

static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
                                     ppc_slb_t *slb, target_ulong eaddr,
                                     ppc_hash_pte64_t *pte)
{
    CPUPPCState *env = &cpu->env;
    hwaddr pte_offset;
    hwaddr hash;
    uint64_t vsid, epnmask, epn, ptem;

    /* The SLB store path should prevent any bad page size encodings
     * getting in there, so: */
    assert(slb->sps);

    epnmask = ~((1ULL << slb->sps->page_shift) - 1);

    if (slb->vsid & SLB_VSID_B) {
        /* 1TB segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
        hash = vsid ^ (vsid << 25) ^ (epn >> slb->sps->page_shift);
    } else {
        /* 256M segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
        hash = vsid ^ (epn >> slb->sps->page_shift);
    }
    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);

    /* Page address translation */
    qemu_log_mask(CPU_LOG_MMU,
            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
            " hash " TARGET_FMT_plx "\n",
            env->htab_base, env->htab_mask, hash);

    /* Primary PTEG lookup */
    qemu_log_mask(CPU_LOG_MMU,
            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
            " hash=" TARGET_FMT_plx "\n",
            env->htab_base, env->htab_mask, vsid, ptem,  hash);
    pte_offset = ppc_hash64_pteg_search(cpu, hash, 0, ptem, pte);

    if (pte_offset == -1) {
        /* Secondary PTEG lookup */
        qemu_log_mask(CPU_LOG_MMU,
                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
                " hash=" TARGET_FMT_plx "\n", env->htab_base,
                env->htab_mask, vsid, ptem, ~hash);

        pte_offset = ppc_hash64_pteg_search(cpu, ~hash, 1, ptem, pte);
    }

    return pte_offset;
}

static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
    uint64_t pte0, uint64_t pte1)
{
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        if (sps->page_shift != 12) {
            /* 4kiB page in a non 4kiB segment */
            return 0;
        }
        /* Normal 4kiB page */
        return 12;
    }

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_page_size *ps = &sps->enc[i];
        uint64_t mask;

        if (!ps->page_shift) {
            break;
        }

        if (ps->page_shift == 12) {
            /* L bit is set so this can't be a 4kiB page */
            continue;
        }

        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;

        if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
            return ps->page_shift;
        }
    }

    return 0; /* Bad page size encoding */
}

unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
                                          uint64_t pte0, uint64_t pte1,
                                          unsigned *seg_page_shift)
{
    CPUPPCState *env = &cpu->env;
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        *seg_page_shift = 12;
        return 12;
    }

    /*
     * The encodings in env->sps need to be carefully chosen so that
     * this gives an unambiguous result.
     */
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
        unsigned shift;

        if (!sps->page_shift) {
            break;
        }

        shift = hpte_page_shift(sps, pte0, pte1);
        if (shift) {
            *seg_page_shift = sps->page_shift;
            return shift;
        }
    }

    *seg_page_shift = 0;
    return 0;
}

int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
                                int rwx, int mmu_idx)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;
    unsigned apshift;
    hwaddr pte_offset;
    ppc_hash_pte64_t pte;
    int pp_prot, amr_prot, prot;
    uint64_t new_pte1;
    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
    hwaddr raddr;

    assert((rwx == 0) || (rwx == 1) || (rwx == 2));

    /* 1. Handle real mode accesses */
    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
        /* Translation is off */
        /* In real mode the top 4 effective address bits are ignored */
        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
                     TARGET_PAGE_SIZE);
        return 0;
    }

    /* 2. Translation is on, so look up the SLB */
    slb = slb_lookup(cpu, eaddr);

    if (!slb) {
        if (rwx == 2) {
            cs->exception_index = POWERPC_EXCP_ISEG;
            env->error_code = 0;
        } else {
            cs->exception_index = POWERPC_EXCP_DSEG;
            env->error_code = 0;
            env->spr[SPR_DAR] = eaddr;
        }
        return 1;
    }

    /* 3. Check for segment level no-execute violation */
    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
        cs->exception_index = POWERPC_EXCP_ISI;
        env->error_code = 0x10000000;
        return 1;
    }

    /* 4. Locate the PTE in the hash table */
    pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte);
    if (pte_offset == -1) {
        if (rwx == 2) {
            cs->exception_index = POWERPC_EXCP_ISI;
            env->error_code = 0x40000000;
        } else {
            cs->exception_index = POWERPC_EXCP_DSI;
            env->error_code = 0;
            env->spr[SPR_DAR] = eaddr;
            if (rwx == 1) {
                env->spr[SPR_DSISR] = 0x42000000;
            } else {
                env->spr[SPR_DSISR] = 0x40000000;
            }
        }
        return 1;
    }
    qemu_log_mask(CPU_LOG_MMU,
                "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);

    /* Validate page size encoding */
    apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
    if (!apshift) {
        error_report("Bad page size encoding in HPTE 0x%"PRIx64" - 0x%"PRIx64
                     " @ 0x%"HWADDR_PRIx, pte.pte0, pte.pte1, pte_offset);
        /* Not entirely sure what the right action here, but machine
         * check seems reasonable */
        cs->exception_index = POWERPC_EXCP_MCHECK;
        env->error_code = 0;
        return 1;
    }

    /* 5. Check access permissions */

    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
    amr_prot = ppc_hash64_amr_prot(cpu, pte);
    prot = pp_prot & amr_prot;

    if ((need_prot[rwx] & ~prot) != 0) {
        /* Access right violation */
        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
        if (rwx == 2) {
            cs->exception_index = POWERPC_EXCP_ISI;
            env->error_code = 0x08000000;
        } else {
            target_ulong dsisr = 0;

            cs->exception_index = POWERPC_EXCP_DSI;
            env->error_code = 0;
            env->spr[SPR_DAR] = eaddr;
            if (need_prot[rwx] & ~pp_prot) {
                dsisr |= 0x08000000;
            }
            if (rwx == 1) {
                dsisr |= 0x02000000;
            }
            if (need_prot[rwx] & ~amr_prot) {
                dsisr |= 0x00200000;
            }
            env->spr[SPR_DSISR] = dsisr;
        }
        return 1;
    }

    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");

    /* 6. Update PTE referenced and changed bits if necessary */

    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
    if (rwx == 1) {
        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
    } else {
        /* Treat the page as read-only for now, so that a later write
         * will pass through this function again to set the C bit */
        prot &= ~PAGE_WRITE;
    }

    if (new_pte1 != pte.pte1) {
        ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
                              pte.pte0, new_pte1);
    }

    /* 7. Determine the real address from the PTE */

    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);

    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
                 prot, mmu_idx, 1ULL << apshift);

    return 0;
}

hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;
    hwaddr pte_offset;
    ppc_hash_pte64_t pte;
    unsigned apshift;

    if (msr_dr == 0) {
        /* In real mode the top 4 effective address bits are ignored */
        return addr & 0x0FFFFFFFFFFFFFFFULL;
    }

    slb = slb_lookup(cpu, addr);
    if (!slb) {
        return -1;
    }

    pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte);
    if (pte_offset == -1) {
        return -1;
    }

    apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
    if (!apshift) {
        return -1;
    }

    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
        & TARGET_PAGE_MASK;
}

void ppc_hash64_store_hpte(PowerPCCPU *cpu,
                           target_ulong pte_index,
                           target_ulong pte0, target_ulong pte1)
{
    CPUPPCState *env = &cpu->env;

    if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
        kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
        return;
    }

    pte_index *= HASH_PTE_SIZE_64;
    if (env->external_htab) {
        stq_p(env->external_htab + pte_index, pte0);
        stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
    } else {
        stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
        stq_phys(CPU(cpu)->as,
                 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
    }
}

void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
                               target_ulong pte_index,
                               target_ulong pte0, target_ulong pte1)
{
    /*
     * XXX: given the fact that there are too many segments to
     * invalidate, and we still don't have a tlb_flush_mask(env, n,
     * mask) in QEMU, we just invalidate all TLBs
     */
    tlb_flush(CPU(cpu), 1);
}