summaryrefslogtreecommitdiffstats
path: root/target-xtensa/op_helper.c
blob: 806384f310bad4e622dcfd3814e7c51ac98d80e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
#include "dyngen-exec.h"
#include "helper.h"
#include "host-utils.h"

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
        void *retaddr);

#define ALIGNED_ONLY
#define MMUSUFFIX _mmu

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_restore_state(void *pc_ptr)
{
    TranslationBlock *tb;
    uint32_t pc = (uint32_t)(intptr_t)pc_ptr;

    tb = tb_find_pc(pc);
    if (tb) {
        cpu_restore_state(tb, env, pc);
    }
}

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
        void *retaddr)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
        do_restore_state(retaddr);
        HELPER(exception_cause_vaddr)(
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

void tlb_fill(CPUXtensaState *env1, target_ulong vaddr, int is_write, int mmu_idx,
              void *retaddr)
{
    CPUXtensaState *saved_env = env;

    env = env1;
    {
        uint32_t paddr;
        uint32_t page_size;
        unsigned access;
        int ret = xtensa_get_physical_addr(env, vaddr, is_write, mmu_idx,
                &paddr, &page_size, &access);

        qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
                vaddr, is_write, mmu_idx, paddr, ret);

        if (ret == 0) {
            tlb_set_page(env,
                    vaddr & TARGET_PAGE_MASK,
                    paddr & TARGET_PAGE_MASK,
                    access, mmu_idx, page_size);
        } else {
            do_restore_state(retaddr);
            HELPER(exception_cause_vaddr)(env->pc, ret, vaddr);
        }
    }
    env = saved_env;
}

void HELPER(exception)(uint32_t excp)
{
    env->exception_index = excp;
    cpu_loop_exit(env);
}

void HELPER(exception_cause)(uint32_t pc, uint32_t cause)
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

    HELPER(exception)(vector);
}

void HELPER(exception_cause_vaddr)(uint32_t pc, uint32_t cause, uint32_t vaddr)
{
    env->sregs[EXCVADDR] = vaddr;
    HELPER(exception_cause)(pc, cause);
}

void debug_exception_env(CPUXtensaState *new_env, uint32_t cause)
{
    if (xtensa_get_cintlevel(new_env) < new_env->config->debug_level) {
        env = new_env;
        HELPER(debug_exception)(env->pc, cause);
    }
}

void HELPER(debug_exception)(uint32_t pc, uint32_t cause)
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
    HELPER(exception)(EXC_DEBUG);
}

uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}

static void copy_window_from_phys(CPUXtensaState *env,
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

static void copy_phys_from_window(CPUXtensaState *env,
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
{
    return a & (env->config->nareg / 4 - 1);
}

static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
{
    return 1 << windowbase_bound(a, env);
}

void xtensa_sync_window_from_phys(CPUXtensaState *env)
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

void xtensa_sync_phys_from_window(CPUXtensaState *env)
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

static void rotate_window_abs(uint32_t position)
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

static void rotate_window(uint32_t delta)
{
    rotate_window_abs(env->sregs[WINDOW_BASE] + delta);
}

void HELPER(wsr_windowbase)(uint32_t v)
{
    rotate_window_abs(v);
}

void HELPER(entry)(uint32_t pc, uint32_t s, uint32_t imm)
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
        HELPER(exception_cause)(pc, ILLEGAL_INSTRUCTION_CAUSE);
    } else {
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
        rotate_window(callinc);
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

void HELPER(window_check)(uint32_t pc, uint32_t w)
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t m, n;

    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
        return;
    }

    for (n = 1; ; ++n) {
        if (n > w) {
            return;
        }
        if (windowstart & windowstart_bit(windowbase + n, env)) {
            break;
        }
    }

    m = windowbase_bound(windowbase + n, env);
    rotate_window(n);
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

    if (windowstart & windowstart_bit(m + 1, env)) {
        HELPER(exception)(EXC_WINDOW_OVERFLOW4);
    } else if (windowstart & windowstart_bit(m + 2, env)) {
        HELPER(exception)(EXC_WINDOW_OVERFLOW8);
    } else {
        HELPER(exception)(EXC_WINDOW_OVERFLOW12);
    }
}

uint32_t HELPER(retw)(uint32_t pc)
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
        HELPER(exception_cause)(pc, ILLEGAL_INSTRUCTION_CAUSE);
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

        rotate_window(-n);
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
                HELPER(exception)(EXC_WINDOW_UNDERFLOW4);
            } else if (n == 2) {
                HELPER(exception)(EXC_WINDOW_UNDERFLOW8);
            } else if (n == 3) {
                HELPER(exception)(EXC_WINDOW_UNDERFLOW12);
            }
        }
    }
    return ret_pc;
}

void HELPER(rotw)(uint32_t imm4)
{
    rotate_window(imm4);
}

void HELPER(restore_owb)(void)
{
    rotate_window_abs((env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
}

void HELPER(movsp)(uint32_t pc)
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
        HELPER(exception_cause)(pc, ALLOCA_CAUSE);
    }
}

void HELPER(wsr_lbeg)(uint32_t v)
{
    if (env->sregs[LBEG] != v) {
        tb_invalidate_phys_page_range(
                env->sregs[LEND] - 1, env->sregs[LEND], 0);
        env->sregs[LBEG] = v;
    }
}

void HELPER(wsr_lend)(uint32_t v)
{
    if (env->sregs[LEND] != v) {
        tb_invalidate_phys_page_range(
                env->sregs[LEND] - 1, env->sregs[LEND], 0);
        env->sregs[LEND] = v;
        tb_invalidate_phys_page_range(
                env->sregs[LEND] - 1, env->sregs[LEND], 0);
    }
}

void HELPER(dump_state)(void)
{
    cpu_dump_state(env, stderr, fprintf, 0);
}

void HELPER(waiti)(uint32_t pc, uint32_t intlevel)
{
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
        cpu_loop_exit(env);
        return;
    }

    env->halt_clock = qemu_get_clock_ns(vm_clock);
    env->halted = 1;
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
    HELPER(exception)(EXCP_HLT);
}

void HELPER(timer_irq)(uint32_t id, uint32_t active)
{
    xtensa_timer_irq(env, id, active);
}

void HELPER(advance_ccount)(uint32_t d)
{
    xtensa_advance_ccount(env, d);
}

void HELPER(check_interrupts)(CPUXtensaState *env)
{
    check_interrupts(env);
}

void HELPER(wsr_rasid)(uint32_t v)
{
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
        tlb_flush(env, 1);
    }
}

static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
static void split_tlb_entry_spec(uint32_t v, bool dtlb,
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

static xtensa_tlb_entry *get_tlb_entry(uint32_t v, bool dtlb, uint32_t *pwi)
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

    split_tlb_entry_spec(v, dtlb, &vpn, &wi, &ei);
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

uint32_t HELPER(rtlb0)(uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        const xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, &wi);
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

uint32_t HELPER(rtlb1)(uint32_t v, uint32_t dtlb)
{
    const xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, NULL);
    return entry->paddr | entry->attr;
}

void HELPER(itlb)(uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, &wi);
        if (entry->variable && entry->asid) {
            tlb_flush_page(env, entry->vaddr);
            entry->asid = 0;
        }
    }
}

uint32_t HELPER(ptlb)(uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
            HELPER(exception_cause_vaddr)(env->pc, res, v);
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
                tlb_flush_page(env, entry->vaddr);
            }
            entry->vaddr = vpn;
            entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
            entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
            entry->attr = pte & 0xf;
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
        tlb_flush_page(env, entry->vaddr);
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

void HELPER(wtlb)(uint32_t p, uint32_t v, uint32_t dtlb)
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
    split_tlb_entry_spec(v, dtlb, &vpn, &wi, &ei);
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}


void HELPER(wsr_ibreakenable)(uint32_t v)
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
            tb_invalidate_phys_page_range(
                    env->sregs[IBREAKA + i], env->sregs[IBREAKA + i] + 1, 0);
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

void HELPER(wsr_ibreaka)(uint32_t i, uint32_t v)
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
        tb_invalidate_phys_page_range(
                env->sregs[IBREAKA + i], env->sregs[IBREAKA + i] + 1, 0);
        tb_invalidate_phys_page_range(v, v + 1, 0);
    }
    env->sregs[IBREAKA + i] = v;
}

static void set_dbreak(unsigned i, uint32_t dbreaka, uint32_t dbreakc)
{
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

void HELPER(wsr_dbreaka)(uint32_t i, uint32_t v)
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
        set_dbreak(i, v, dbreakc);
    }
    env->sregs[DBREAKA + i] = v;
}

void HELPER(wsr_dbreakc)(uint32_t i, uint32_t v)
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
            set_dbreak(i, env->sregs[DBREAKA + i], v);
        } else {
            if (env->cpu_watchpoint[i]) {
                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}