summaryrefslogtreecommitdiffstats
path: root/target/arm/helper-a64.c
blob: b110c57956a1fa4bd62d583c419e09c5ef1034d2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
/*
 *  AArch64 specific helpers
 *
 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/bitops.h"
#include "internals.h"
#include "qemu/crc32c.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qemu/int128.h"
#include "qemu/atomic128.h"
#include "fpu/softfloat.h"
#include <zlib.h> /* For crc32 */

/* C2.4.7 Multiply and divide */
/* special cases for 0 and LLONG_MIN are mandated by the standard */
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
{
    if (den == 0) {
        return 0;
    }
    return num / den;
}

int64_t HELPER(sdiv64)(int64_t num, int64_t den)
{
    if (den == 0) {
        return 0;
    }
    if (num == LLONG_MIN && den == -1) {
        return LLONG_MIN;
    }
    return num / den;
}

uint64_t HELPER(rbit64)(uint64_t x)
{
    return revbit64(x);
}

void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
{
    update_spsel(env, imm);
}

static void daif_check(CPUARMState *env, uint32_t op,
                       uint32_t imm, uintptr_t ra)
{
    /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
        raise_exception_ra(env, EXCP_UDEF,
                           syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                               extract32(op, 3, 3), 4,
                                               imm, 0x1f, 0),
                           exception_target_el(env), ra);
    }
}

void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
{
    daif_check(env, 0x1e, imm, GETPC());
    env->daif |= (imm << 6) & PSTATE_DAIF;
}

void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
{
    daif_check(env, 0x1f, imm, GETPC());
    env->daif &= ~((imm << 6) & PSTATE_DAIF);
}

/* Convert a softfloat float_relation_ (as returned by
 * the float*_compare functions) to the correct ARM
 * NZCV flag state.
 */
static inline uint32_t float_rel_to_flags(int res)
{
    uint64_t flags;
    switch (res) {
    case float_relation_equal:
        flags = PSTATE_Z | PSTATE_C;
        break;
    case float_relation_less:
        flags = PSTATE_N;
        break;
    case float_relation_greater:
        flags = PSTATE_C;
        break;
    case float_relation_unordered:
    default:
        flags = PSTATE_C | PSTATE_V;
        break;
    }
    return flags;
}

uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
{
    return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
{
    return float_rel_to_flags(float16_compare(x, y, fp_status));
}

uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
{
    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
{
    return float_rel_to_flags(float32_compare(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
{
    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
{
    return float_rel_to_flags(float64_compare(x, y, fp_status));
}

float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
        (float32_is_infinity(a) && float32_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float32((1U << 30) |
                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
    }
    return float32_mul(a, b, fpst);
}

float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
        (float64_is_infinity(a) && float64_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float64((1ULL << 62) |
                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
    }
    return float64_mul(a, b, fpst);
}

/* 64bit/double versions of the neon float compare functions */
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_eq_quiet(a, b, fpst);
}

uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_le(b, a, fpst);
}

uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_lt(b, a, fpst);
}

/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 * versions, these do a fully fused multiply-add or
 * multiply-add-and-halve.
 */

uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    a = float16_chs(a);
    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
        (float16_is_infinity(b) && float16_is_zero(a))) {
        return float16_two;
    }
    return float16_muladd(a, b, float16_two, 0, fpst);
}

float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    a = float32_chs(a);
    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
        (float32_is_infinity(b) && float32_is_zero(a))) {
        return float32_two;
    }
    return float32_muladd(a, b, float32_two, 0, fpst);
}

float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    a = float64_chs(a);
    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
        (float64_is_infinity(b) && float64_is_zero(a))) {
        return float64_two;
    }
    return float64_muladd(a, b, float64_two, 0, fpst);
}

uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    a = float16_chs(a);
    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
        (float16_is_infinity(b) && float16_is_zero(a))) {
        return float16_one_point_five;
    }
    return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
}

float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    a = float32_chs(a);
    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
        (float32_is_infinity(b) && float32_is_zero(a))) {
        return float32_one_point_five;
    }
    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
}

float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    a = float64_chs(a);
    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
        (float64_is_infinity(b) && float64_is_zero(a))) {
        return float64_one_point_five;
    }
    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
}

/* Pairwise long add: add pairs of adjacent elements into
 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 */
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
{
    uint64_t nsignmask = 0x0080008000800080ULL;
    uint64_t wsignmask = 0x8000800080008000ULL;
    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
    uint64_t tmp1, tmp2;
    uint64_t res, signres;

    /* Extract odd elements, sign extend each to a 16 bit field */
    tmp1 = a & elementmask;
    tmp1 ^= nsignmask;
    tmp1 |= wsignmask;
    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
    /* Ditto for the even elements */
    tmp2 = (a >> 8) & elementmask;
    tmp2 ^= nsignmask;
    tmp2 |= wsignmask;
    tmp2 = (tmp2 - nsignmask) ^ wsignmask;

    /* calculate the result by summing bits 0..14, 16..22, etc,
     * and then adjusting the sign bits 15, 23, etc manually.
     * This ensures the addition can't overflow the 16 bit field.
     */
    signres = (tmp1 ^ tmp2) & wsignmask;
    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
    res ^= signres;

    return res;
}

uint64_t HELPER(neon_addlp_u8)(uint64_t a)
{
    uint64_t tmp;

    tmp = a & 0x00ff00ff00ff00ffULL;
    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
    return tmp;
}

uint64_t HELPER(neon_addlp_s16)(uint64_t a)
{
    int32_t reslo, reshi;

    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);

    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
}

uint64_t HELPER(neon_addlp_u16)(uint64_t a)
{
    uint64_t tmp;

    tmp = a & 0x0000ffff0000ffffULL;
    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
    return tmp;
}

/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint16_t val16, sbit;
    int16_t exp;

    if (float16_is_any_nan(a)) {
        float16 nan = a;
        if (float16_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float16_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float16_default_nan(fpst);
        }
        return nan;
    }

    a = float16_squash_input_denormal(a, fpst);

    val16 = float16_val(a);
    sbit = 0x8000 & val16;
    exp = extract32(val16, 10, 5);

    if (exp == 0) {
        return make_float16(deposit32(sbit, 10, 5, 0x1e));
    } else {
        return make_float16(deposit32(sbit, 10, 5, ~exp));
    }
}

float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint32_t val32, sbit;
    int32_t exp;

    if (float32_is_any_nan(a)) {
        float32 nan = a;
        if (float32_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float32_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float32_default_nan(fpst);
        }
        return nan;
    }

    a = float32_squash_input_denormal(a, fpst);

    val32 = float32_val(a);
    sbit = 0x80000000ULL & val32;
    exp = extract32(val32, 23, 8);

    if (exp == 0) {
        return make_float32(sbit | (0xfe << 23));
    } else {
        return make_float32(sbit | (~exp & 0xff) << 23);
    }
}

float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint64_t val64, sbit;
    int64_t exp;

    if (float64_is_any_nan(a)) {
        float64 nan = a;
        if (float64_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float64_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float64_default_nan(fpst);
        }
        return nan;
    }

    a = float64_squash_input_denormal(a, fpst);

    val64 = float64_val(a);
    sbit = 0x8000000000000000ULL & val64;
    exp = extract64(float64_val(a), 52, 11);

    if (exp == 0) {
        return make_float64(sbit | (0x7feULL << 52));
    } else {
        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
    }
}

float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
{
    /* Von Neumann rounding is implemented by using round-to-zero
     * and then setting the LSB of the result if Inexact was raised.
     */
    float32 r;
    float_status *fpst = &env->vfp.fp_status;
    float_status tstat = *fpst;
    int exflags;

    set_float_rounding_mode(float_round_to_zero, &tstat);
    set_float_exception_flags(0, &tstat);
    r = float64_to_float32(a, &tstat);
    exflags = get_float_exception_flags(&tstat);
    if (exflags & float_flag_inexact) {
        r = make_float32(float32_val(r) | 1);
    }
    exflags |= get_float_exception_flags(fpst);
    set_float_exception_flags(exflags, fpst);
    return r;
}

/* 64-bit versions of the CRC helpers. Note that although the operation
 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 * 32 bits of the accumulator and result are used, we pass and return
 * uint64_t for convenience of the generated code. Unlike the 32-bit
 * instruction set versions, val may genuinely have 64 bits of data in it.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
    uint8_t buf[8];

    stq_le_p(buf, val);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
    uint8_t buf[8];

    stq_le_p(buf, val);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}

uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
                                     uint64_t new_lo, uint64_t new_hi)
{
    Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
    Int128 newv = int128_make128(new_lo, new_hi);
    Int128 oldv;
    uintptr_t ra = GETPC();
    uint64_t o0, o1;
    bool success;

#ifdef CONFIG_USER_ONLY
    /* ??? Enforce alignment.  */
    uint64_t *haddr = g2h(env_cpu(env), addr);

    set_helper_retaddr(ra);
    o0 = ldq_le_p(haddr + 0);
    o1 = ldq_le_p(haddr + 1);
    oldv = int128_make128(o0, o1);

    success = int128_eq(oldv, cmpv);
    if (success) {
        stq_le_p(haddr + 0, int128_getlo(newv));
        stq_le_p(haddr + 1, int128_gethi(newv));
    }
    clear_helper_retaddr();
#else
    int mem_idx = cpu_mmu_index(env, false);
    MemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
    MemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);

    o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
    o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
    oldv = int128_make128(o0, o1);

    success = int128_eq(oldv, cmpv);
    if (success) {
        helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
        helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
    }
#endif

    return !success;
}

uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
                                              uint64_t new_lo, uint64_t new_hi)
{
    Int128 oldv, cmpv, newv;
    uintptr_t ra = GETPC();
    bool success;
    int mem_idx;
    MemOpIdx oi;

    assert(HAVE_CMPXCHG128);

    mem_idx = cpu_mmu_index(env, false);
    oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);

    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
    newv = int128_make128(new_lo, new_hi);
    oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);

    success = int128_eq(oldv, cmpv);
    return !success;
}

uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
                                     uint64_t new_lo, uint64_t new_hi)
{
    /*
     * High and low need to be switched here because this is not actually a
     * 128bit store but two doublewords stored consecutively
     */
    Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
    Int128 newv = int128_make128(new_hi, new_lo);
    Int128 oldv;
    uintptr_t ra = GETPC();
    uint64_t o0, o1;
    bool success;

#ifdef CONFIG_USER_ONLY
    /* ??? Enforce alignment.  */
    uint64_t *haddr = g2h(env_cpu(env), addr);

    set_helper_retaddr(ra);
    o1 = ldq_be_p(haddr + 0);
    o0 = ldq_be_p(haddr + 1);
    oldv = int128_make128(o0, o1);

    success = int128_eq(oldv, cmpv);
    if (success) {
        stq_be_p(haddr + 0, int128_gethi(newv));
        stq_be_p(haddr + 1, int128_getlo(newv));
    }
    clear_helper_retaddr();
#else
    int mem_idx = cpu_mmu_index(env, false);
    MemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
    MemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);

    o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
    o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
    oldv = int128_make128(o0, o1);

    success = int128_eq(oldv, cmpv);
    if (success) {
        helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
        helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
    }
#endif

    return !success;
}

uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
                                              uint64_t new_lo, uint64_t new_hi)
{
    Int128 oldv, cmpv, newv;
    uintptr_t ra = GETPC();
    bool success;
    int mem_idx;
    MemOpIdx oi;

    assert(HAVE_CMPXCHG128);

    mem_idx = cpu_mmu_index(env, false);
    oi = make_memop_idx(MO_BE | MO_128 | MO_ALIGN, mem_idx);

    /*
     * High and low need to be switched here because this is not actually a
     * 128bit store but two doublewords stored consecutively
     */
    cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
    newv = int128_make128(new_hi, new_lo);
    oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);

    success = int128_eq(oldv, cmpv);
    return !success;
}

/* Writes back the old data into Rs.  */
void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
                              uint64_t new_lo, uint64_t new_hi)
{
    Int128 oldv, cmpv, newv;
    uintptr_t ra = GETPC();
    int mem_idx;
    MemOpIdx oi;

    assert(HAVE_CMPXCHG128);

    mem_idx = cpu_mmu_index(env, false);
    oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);

    cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
    newv = int128_make128(new_lo, new_hi);
    oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);

    env->xregs[rs] = int128_getlo(oldv);
    env->xregs[rs + 1] = int128_gethi(oldv);
}

void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
                              uint64_t new_hi, uint64_t new_lo)
{
    Int128 oldv, cmpv, newv;
    uintptr_t ra = GETPC();
    int mem_idx;
    MemOpIdx oi;

    assert(HAVE_CMPXCHG128);

    mem_idx = cpu_mmu_index(env, false);
    oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);

    cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
    newv = int128_make128(new_lo, new_hi);
    oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);

    env->xregs[rs + 1] = int128_getlo(oldv);
    env->xregs[rs] = int128_gethi(oldv);
}

/*
 * AdvSIMD half-precision
 */

#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))

#define ADVSIMD_HALFOP(name) \
uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float16_ ## name(a, b, fpst);    \
}

ADVSIMD_HALFOP(add)
ADVSIMD_HALFOP(sub)
ADVSIMD_HALFOP(mul)
ADVSIMD_HALFOP(div)
ADVSIMD_HALFOP(min)
ADVSIMD_HALFOP(max)
ADVSIMD_HALFOP(minnum)
ADVSIMD_HALFOP(maxnum)

#define ADVSIMD_TWOHALFOP(name)                                         \
uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
{ \
    float16  a1, a2, b1, b2;                        \
    uint32_t r1, r2;                                \
    float_status *fpst = fpstp;                     \
    a1 = extract32(two_a, 0, 16);                   \
    a2 = extract32(two_a, 16, 16);                  \
    b1 = extract32(two_b, 0, 16);                   \
    b2 = extract32(two_b, 16, 16);                  \
    r1 = float16_ ## name(a1, b1, fpst);            \
    r2 = float16_ ## name(a2, b2, fpst);            \
    return deposit32(r1, 16, 16, r2);               \
}

ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)
ADVSIMD_TWOHALFOP(mul)
ADVSIMD_TWOHALFOP(div)
ADVSIMD_TWOHALFOP(min)
ADVSIMD_TWOHALFOP(max)
ADVSIMD_TWOHALFOP(minnum)
ADVSIMD_TWOHALFOP(maxnum)

/* Data processing - scalar floating-point and advanced SIMD */
static float16 float16_mulx(float16 a, float16 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    if ((float16_is_zero(a) && float16_is_infinity(b)) ||
        (float16_is_infinity(a) && float16_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float16((1U << 14) |
                            ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
    }
    return float16_mul(a, b, fpst);
}

ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)

/* fused multiply-accumulate */
uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
                                 void *fpstp)
{
    float_status *fpst = fpstp;
    return float16_muladd(a, b, c, 0, fpst);
}

uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
                                  uint32_t two_c, void *fpstp)
{
    float_status *fpst = fpstp;
    float16  a1, a2, b1, b2, c1, c2;
    uint32_t r1, r2;
    a1 = extract32(two_a, 0, 16);
    a2 = extract32(two_a, 16, 16);
    b1 = extract32(two_b, 0, 16);
    b2 = extract32(two_b, 16, 16);
    c1 = extract32(two_c, 0, 16);
    c2 = extract32(two_c, 16, 16);
    r1 = float16_muladd(a1, b1, c1, 0, fpst);
    r2 = float16_muladd(a2, b2, c2, 0, fpst);
    return deposit32(r1, 16, 16, r2);
}

/*
 * Floating point comparisons produce an integer result. Softfloat
 * routines return float_relation types which we convert to the 0/-1
 * Neon requires.
 */

#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0

uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare_quiet(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_equal);
}

uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater ||
                          compare == float_relation_equal);
}

uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater);
}

uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f0 = float16_abs(a);
    float16 f1 = float16_abs(b);
    int compare = float16_compare(f0, f1, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater ||
                          compare == float_relation_equal);
}

uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f0 = float16_abs(a);
    float16 f1 = float16_abs(b);
    int compare = float16_compare(f0, f1, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater);
}

/* round to integral */
uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
{
    return float16_round_to_int(x, fp_status);
}

uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float16 ret;

    ret = float16_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

/*
 * Half-precision floating point conversion functions
 *
 * There are a multitude of conversion functions with various
 * different rounding modes. This is dealt with by the calling code
 * setting the mode appropriately before calling the helper.
 */

uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;

    /* Invalid if we are passed a NaN */
    if (float16_is_any_nan(a)) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_int16(a, fpst);
}

uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;

    /* Invalid if we are passed a NaN */
    if (float16_is_any_nan(a)) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_uint16(a, fpst);
}

static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

static void cpsr_write_from_spsr_elx(CPUARMState *env,
                                     uint32_t val)
{
    uint32_t mask;

    /* Save SPSR_ELx.SS into PSTATE. */
    env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
    val &= ~PSTATE_SS;

    /* Move DIT to the correct location for CPSR */
    if (val & PSTATE_DIT) {
        val &= ~PSTATE_DIT;
        val |= CPSR_DIT;
    }

    mask = aarch32_cpsr_valid_mask(env->features, \
        &env_archcpu(env)->isar);
    cpsr_write(env, val, mask, CPSRWriteRaw);
}

void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
{
    int cur_el = arm_current_el(env);
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
    uint32_t spsr = env->banked_spsr[spsr_idx];
    int new_el;
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;

    aarch64_save_sp(env, cur_el);

    arm_clear_exclusive(env);

    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

    if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
        goto illegal_return;
    }

    qemu_mutex_lock_iothread();
    arm_call_pre_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();

    if (!return_to_aa64) {
        env->aarch64 = 0;
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
        cpsr_write_from_spsr_elx(env, spsr);
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
        aarch64_sync_64_to_32(env);

        if (spsr & CPSR_T) {
            env->regs[15] = new_pc & ~0x1;
        } else {
            env->regs[15] = new_pc & ~0x3;
        }
        helper_rebuild_hflags_a32(env, new_el);
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
    } else {
        int tbii;

        env->aarch64 = 1;
        spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
        pstate_write(env, spsr);
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
        aarch64_restore_sp(env, new_el);
        helper_rebuild_hflags_a64(env, new_el);

        /*
         * Apply TBI to the exception return address.  We had to delay this
         * until after we selected the new EL, so that we could select the
         * correct TBI+TBID bits.  This is made easier by waiting until after
         * the hflags rebuild, since we can pull the composite TBII field
         * from there.
         */
        tbii = EX_TBFLAG_A64(env->hflags, TBII);
        if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
            /* TBI is enabled. */
            int core_mmu_idx = cpu_mmu_index(env, false);
            if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
                new_pc = sextract64(new_pc, 0, 56);
            } else {
                new_pc = extract64(new_pc, 0, 56);
            }
        }
        env->pc = new_pc;

        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
    }

    /*
     * Note that cur_el can never be 0.  If new_el is 0, then
     * el0_a64 is return_to_aa64, else el0_a64 is ignored.
     */
    aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);

    qemu_mutex_lock_iothread();
    arm_call_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();

    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
    env->pc = new_pc;
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
    helper_rebuild_hflags_a64(env, cur_el);
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
}

/*
 * Square Root and Reciprocal square root
 */

uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
{
    float_status *s = fpstp;

    return float16_sqrt(a, s);
}

void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /*
     * Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */
    int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
    int mmu_idx = cpu_mmu_index(env, false);
    void *mem;

    /*
     * Trapless lookup.  In addition to actual invalid page, may
     * return NULL for I/O, watchpoints, clean pages, etc.
     */
    mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);

#ifndef CONFIG_USER_ONLY
    if (unlikely(!mem)) {
        uintptr_t ra = GETPC();

        /*
         * Trap if accessing an invalid page.  DC_ZVA requires that we supply
         * the original pointer for an invalid page.  But watchpoints require
         * that we probe the actual space.  So do both.
         */
        (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
        mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);

        if (unlikely(!mem)) {
            /*
             * The only remaining reason for mem == NULL is I/O.
             * Just do a series of byte writes as the architecture demands.
             */
            for (int i = 0; i < blocklen; i++) {
                cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
            }
            return;
        }
    }
#endif

    memset(mem, 0, blocklen);
}