summaryrefslogtreecommitdiffstats
path: root/target/arm/kvm32.c
blob: 1f2b8f8b7a571cfd08a5e308f8b52323f809be6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*
 * ARM implementation of KVM hooks, 32 bit specific code.
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include <sys/ioctl.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "internals.h"
#include "qemu/log.h"

static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
{
    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };

    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
}

bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     */
    int err = 0, fdarray[3];
    uint32_t midr, id_pfr0;
    uint64_t features = 0;

    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type.
     */
    static const uint32_t cpus_to_try[] = {
        QEMU_KVM_ARM_TARGET_CORTEX_A15,
        QEMU_KVM_ARM_TARGET_NONE
    };
    /*
     * target = -1 informs kvm_arm_create_scratch_host_vcpu()
     * to use the preferred target
     */
    struct kvm_vcpu_init init = { .target = -1, };

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

    ahcf->target = init.target;

    /* This is not strictly blessed by the device tree binding docs yet,
     * but in practice the kernel does not care about this string so
     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
     */
    ahcf->dtb_compatible = "arm,arm-v7";

    err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
    err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));

    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
                          ARM_CP15_REG32(0, 0, 2, 0));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
                          ARM_CP15_REG32(0, 0, 2, 1));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
                          ARM_CP15_REG32(0, 0, 2, 2));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
                          ARM_CP15_REG32(0, 0, 2, 3));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
                          ARM_CP15_REG32(0, 0, 2, 4));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
                          ARM_CP15_REG32(0, 0, 2, 5));
    if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
                       ARM_CP15_REG32(0, 0, 2, 7))) {
        /*
         * Older kernels don't support reading ID_ISAR6. This register was
         * only introduced in ARMv8, so we can assume that it is zero on a
         * CPU that a kernel this old is running on.
         */
        ahcf->isar.id_isar6 = 0;
    }

    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
                          ARM_CP15_REG32(0, 0, 1, 2));

    err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
                          KVM_REG_ARM | KVM_REG_SIZE_U32 |
                          KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
                          KVM_REG_ARM | KVM_REG_SIZE_U32 |
                          KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
    /*
     * FIXME: There is not yet a way to read MVFR2.
     * Fortunately there is not yet anything in there that affects migration.
     */

    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
                          ARM_CP15_REG32(0, 0, 1, 4));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
                          ARM_CP15_REG32(0, 0, 1, 5));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
                          ARM_CP15_REG32(0, 0, 1, 6));
    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
                          ARM_CP15_REG32(0, 0, 1, 7));
    if (read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
                       ARM_CP15_REG32(0, 0, 2, 6))) {
        /*
         * Older kernels don't support reading ID_MMFR4 (a new in v8
         * register); assume it's zero.
         */
        ahcf->isar.id_mmfr4 = 0;
    }

    /*
     * There is no way to read DBGDIDR, because currently 32-bit KVM
     * doesn't implement debug at all. Leave it at zero.
     */

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

    if (err < 0) {
        return false;
    }

    /* Now we've retrieved all the register information we can
     * set the feature bits based on the ID register fields.
     * We can assume any KVM supporting CPU is at least a v7
     * with VFPv3, virtualization extensions, and the generic
     * timers; this in turn implies most of the other feature
     * bits, but a few must be tested.
     */
    features |= 1ULL << ARM_FEATURE_V7VE;
    features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;

    if (extract32(id_pfr0, 12, 4) == 1) {
        features |= 1ULL << ARM_FEATURE_THUMB2EE;
    }
    if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
        features |= 1ULL << ARM_FEATURE_NEON;
    }

    ahcf->features = features;

    return true;
}

bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
    /* Return true if the regidx is a register we should synchronize
     * via the cpreg_tuples array (ie is not a core reg we sync by
     * hand in kvm_arch_get/put_registers())
     */
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
    case KVM_REG_ARM_CORE:
    case KVM_REG_ARM_VFP:
        return false;
    default:
        return true;
    }
}

typedef struct CPRegStateLevel {
    uint64_t regidx;
    int level;
} CPRegStateLevel;

/* All coprocessor registers not listed in the following table are assumed to
 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 * often, you must add it to this table with a state of either
 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 */
static const CPRegStateLevel non_runtime_cpregs[] = {
    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};

int kvm_arm_cpreg_level(uint64_t regidx)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
        const CPRegStateLevel *l = &non_runtime_cpregs[i];
        if (l->regidx == regidx) {
            return l->level;
        }
    }

    return KVM_PUT_RUNTIME_STATE;
}

#define ARM_CPU_ID_MPIDR       0, 0, 0, 5

int kvm_arch_init_vcpu(CPUState *cs)
{
    int ret;
    uint64_t v;
    uint32_t mpidr;
    struct kvm_one_reg r;
    ARMCPU *cpu = ARM_CPU(cs);

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);

    /* Determine init features for this CPU */
    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
    if (cs->start_powered_off) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
    }
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
        cpu->psci_version = 2;
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
    }

    /* Do KVM_ARM_VCPU_INIT ioctl */
    ret = kvm_arm_vcpu_init(cs);
    if (ret) {
        return ret;
    }

    /* Query the kernel to make sure it supports 32 VFP
     * registers: QEMU's "cortex-a15" CPU is always a
     * VFP-D32 core. The simplest way to do this is just
     * to attempt to read register d31.
     */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
    r.addr = (uintptr_t)(&v);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret == -ENOENT) {
        return -EINVAL;
    }

    /*
     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
     * Currently KVM has its own idea about MPIDR assignment, so we
     * override our defaults with what we get from KVM.
     */
    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
    if (ret) {
        return ret;
    }
    cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;

    /* Check whether userspace can specify guest syndrome value */
    kvm_arm_init_serror_injection(cs);

    return kvm_arm_init_cpreg_list(cpu);
}

int kvm_arch_destroy_vcpu(CPUState *cs)
{
	return 0;
}

typedef struct Reg {
    uint64_t id;
    int offset;
} Reg;

#define COREREG(KERNELNAME, QEMUFIELD)                       \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetof(CPUARMState, QEMUFIELD)                     \
    }

#define VFPSYSREG(R)                                       \
    {                                                      \
        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
        KVM_REG_ARM_VFP_##R,                               \
        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
    }

/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
#define COREREG64(KERNELNAME, QEMUFIELD)                     \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetoflow32(CPUARMState, QEMUFIELD)                \
    }

static const Reg regs[] = {
    /* R0_usr .. R14_usr */
    COREREG(usr_regs.uregs[0], regs[0]),
    COREREG(usr_regs.uregs[1], regs[1]),
    COREREG(usr_regs.uregs[2], regs[2]),
    COREREG(usr_regs.uregs[3], regs[3]),
    COREREG(usr_regs.uregs[4], regs[4]),
    COREREG(usr_regs.uregs[5], regs[5]),
    COREREG(usr_regs.uregs[6], regs[6]),
    COREREG(usr_regs.uregs[7], regs[7]),
    COREREG(usr_regs.uregs[8], usr_regs[0]),
    COREREG(usr_regs.uregs[9], usr_regs[1]),
    COREREG(usr_regs.uregs[10], usr_regs[2]),
    COREREG(usr_regs.uregs[11], usr_regs[3]),
    COREREG(usr_regs.uregs[12], usr_regs[4]),
    COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
    COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
    COREREG(svc_regs[0], banked_r13[BANK_SVC]),
    COREREG(svc_regs[1], banked_r14[BANK_SVC]),
    COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
    COREREG(abt_regs[0], banked_r13[BANK_ABT]),
    COREREG(abt_regs[1], banked_r14[BANK_ABT]),
    COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
    COREREG(und_regs[0], banked_r13[BANK_UND]),
    COREREG(und_regs[1], banked_r14[BANK_UND]),
    COREREG64(und_regs[2], banked_spsr[BANK_UND]),
    COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
    COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
    COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
    /* R8_fiq .. R14_fiq and SPSR_fiq */
    COREREG(fiq_regs[0], fiq_regs[0]),
    COREREG(fiq_regs[1], fiq_regs[1]),
    COREREG(fiq_regs[2], fiq_regs[2]),
    COREREG(fiq_regs[3], fiq_regs[3]),
    COREREG(fiq_regs[4], fiq_regs[4]),
    COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
    COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
    COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
    /* R15 */
    COREREG(usr_regs.uregs[15], regs[15]),
    /* VFP system registers */
    VFPSYSREG(FPSID),
    VFPSYSREG(MVFR1),
    VFPSYSREG(MVFR0),
    VFPSYSREG(FPEXC),
    VFPSYSREG(FPINST),
    VFPSYSREG(FPINST2),
};

int kvm_arch_put_registers(CPUState *cs, int level)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    /* Make sure the banked regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    }
    env->banked_r13[bn] = env->regs[13];
    env->banked_spsr[bn] = env->spsr;
    env->banked_r14[r14_bank_number(mode)] = env->regs[14];

    /* Now we can safely copy stuff down to the kernel */
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    cpsr = cpsr_read(env);
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    fpscr = vfp_get_fpscr(env);
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    write_cpustate_to_list(cpu, true);

    if (!write_list_to_kvmstate(cpu, level)) {
        return EINVAL;
    }

    /*
     * Setting VCPU events should be triggered after syncing the registers
     * to avoid overwriting potential changes made by KVM upon calling
     * KVM_SET_VCPU_EVENTS ioctl
     */
    ret = kvm_put_vcpu_events(cpu);
    if (ret) {
        return ret;
    }

    kvm_arm_sync_mpstate_to_kvm(cpu);

    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);

    /* Make sure the current mode regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    }
    env->regs[13] = env->banked_r13[bn];
    env->spsr = env->banked_spsr[bn];
    env->regs[14] = env->banked_r14[r14_bank_number(mode)];

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    vfp_set_fpscr(env, fpscr);

    ret = kvm_get_vcpu_events(cpu);
    if (ret) {
        return ret;
    }

    if (!write_kvmstate_to_list(cpu)) {
        return EINVAL;
    }
    /* Note that it's OK to have registers which aren't in CPUState,
     * so we can ignore a failure return here.
     */
    write_list_to_cpustate(cpu);

    kvm_arm_sync_mpstate_to_qemu(cpu);

    return 0;
}

int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return -EINVAL;
}

bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
    return false;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

bool kvm_arm_hw_debug_active(CPUState *cs)
{
    return false;
}

void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

void kvm_arm_pmu_init(CPUState *cs)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

#define ARM_REG_DFSR  ARM_CP15_REG32(0, 5, 0, 0)
#define ARM_REG_TTBCR ARM_CP15_REG32(0, 2, 0, 2)
/*
 *DFSR:
 *      TTBCR.EAE == 0
 *          FS[4]   - DFSR[10]
 *          FS[3:0] - DFSR[3:0]
 *      TTBCR.EAE == 1
 *          FS, bits [5:0]
 */
#define DFSR_FSC(lpae, v) \
    ((lpae) ? ((v) & 0x3F) : (((v) >> 6) | ((v) & 0x1F)))

#define DFSC_EXTABT(lpae) ((lpae) ? 0x10 : 0x08)

bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
{
    uint32_t dfsr_val;

    if (!kvm_get_one_reg(cs, ARM_REG_DFSR, &dfsr_val)) {
        ARMCPU *cpu = ARM_CPU(cs);
        CPUARMState *env = &cpu->env;
        uint32_t ttbcr;
        int lpae = 0;

        if (!kvm_get_one_reg(cs, ARM_REG_TTBCR, &ttbcr)) {
            lpae = arm_feature(env, ARM_FEATURE_LPAE) && (ttbcr & TTBCR_EAE);
        }
        /* The verification is based on FS filed of the DFSR reg only*/
        return (DFSR_FSC(lpae, dfsr_val) == DFSC_EXTABT(lpae));
    }
    return false;
}