summaryrefslogtreecommitdiffstats
path: root/target/arm/kvm_arm.h
blob: 633d08828a5d5f7a75b1059a63c4d384e8b2b20f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * QEMU KVM support -- ARM specific functions.
 *
 * Copyright (c) 2012 Linaro Limited
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#ifndef QEMU_KVM_ARM_H
#define QEMU_KVM_ARM_H

#include "sysemu/kvm.h"
#include "exec/memory.h"
#include "qemu/error-report.h"

/**
 * kvm_arm_vcpu_init:
 * @cs: CPUState
 *
 * Initialize (or reinitialize) the VCPU by invoking the
 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
 * bitmask specified in the CPUState.
 *
 * Returns: 0 if success else < 0 error code
 */
int kvm_arm_vcpu_init(CPUState *cs);

/**
 * kvm_arm_register_device:
 * @mr: memory region for this device
 * @devid: the KVM device ID
 * @group: device control API group for setting addresses
 * @attr: device control API address type
 * @dev_fd: device control device file descriptor (or -1 if not supported)
 *
 * Remember the memory region @mr, and when it is mapped by the
 * machine model, tell the kernel that base address using the
 * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API.  @devid
 * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
 * the arm-vgic device in the device control API.
 * The machine model may map
 * and unmap the device multiple times; the kernel will only be told the final
 * address at the point where machine init is complete.
 */
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
                             uint64_t attr, int dev_fd);

/**
 * kvm_arm_init_cpreg_list:
 * @cs: CPUState
 *
 * Initialize the CPUState's cpreg list according to the kernel's
 * definition of what CPU registers it knows about (and throw away
 * the previous TCG-created cpreg list).
 *
 * Returns: 0 if success, else < 0 error code
 */
int kvm_arm_init_cpreg_list(ARMCPU *cpu);

/**
 * kvm_arm_reg_syncs_via_cpreg_list
 * regidx: KVM register index
 *
 * Return true if this KVM register should be synchronized via the
 * cpreg list of arbitrary system registers, false if it is synchronized
 * by hand using code in kvm_arch_get/put_registers().
 */
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);

/**
 * kvm_arm_cpreg_level
 * regidx: KVM register index
 *
 * Return the level of this coprocessor/system register.  Return value is
 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
 */
int kvm_arm_cpreg_level(uint64_t regidx);

/**
 * write_list_to_kvmstate:
 * @cpu: ARMCPU
 * @level: the state level to sync
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the kernel (via ioctl).
 * This updates KVM's working data structures from TCG data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown to the kernel or could not
 * be written (eg constant register with the wrong value).
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_kvmstate(ARMCPU *cpu, int level);

/**
 * write_kvmstate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the kernel into the cpreg_values list. This is used to
 * copy info from KVM's working data structures into TCG or
 * for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_kvmstate_to_list(ARMCPU *cpu);

/**
 * kvm_arm_reset_vcpu:
 * @cpu: ARMCPU
 *
 * Called at reset time to kernel registers to their initial values.
 */
void kvm_arm_reset_vcpu(ARMCPU *cpu);

#ifdef CONFIG_KVM
/**
 * kvm_arm_create_scratch_host_vcpu:
 * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
 * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
 * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing
 * an empty array.
 * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
 * @init: filled in with the necessary values for creating a host
 * vcpu. If NULL is provided, will not init the vCPU (though the cpufd
 * will still be set up).
 *
 * Create a scratch vcpu in its own VM of the type preferred by the host
 * kernel (as would be used for '-cpu host'), for purposes of probing it
 * for capabilities.
 *
 * Returns: true on success (and fdarray and init are filled in),
 * false on failure (and fdarray and init are not valid).
 */
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
                                      int *fdarray,
                                      struct kvm_vcpu_init *init);

/**
 * kvm_arm_destroy_scratch_host_vcpu:
 * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
 *
 * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
 */
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);

#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
#define ARM_HOST_CPU_CLASS(klass) \
    OBJECT_CLASS_CHECK(ARMHostCPUClass, (klass), TYPE_ARM_HOST_CPU)
#define ARM_HOST_CPU_GET_CLASS(obj) \
    OBJECT_GET_CLASS(ARMHostCPUClass, (obj), TYPE_ARM_HOST_CPU)

typedef struct ARMHostCPUClass {
    /*< private >*/
    ARMCPUClass parent_class;
    /*< public >*/

    uint64_t features;
    uint32_t target;
    const char *dtb_compatible;
} ARMHostCPUClass;

/**
 * kvm_arm_get_host_cpu_features:
 * @ahcc: ARMHostCPUClass to fill in
 *
 * Probe the capabilities of the host kernel's preferred CPU and fill
 * in the ARMHostCPUClass struct accordingly.
 */
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc);


/**
 * kvm_arm_sync_mpstate_to_kvm
 * @cpu: ARMCPU
 *
 * If supported set the KVM MP_STATE based on QEMU's model.
 */
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);

/**
 * kvm_arm_sync_mpstate_to_qemu
 * @cpu: ARMCPU
 *
 * If supported get the MP_STATE from KVM and store in QEMU's model.
 */
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);

int kvm_arm_vgic_probe(void);

int kvm_arm_pmu_create(CPUState *cs, int irq);

#else

static inline int kvm_arm_vgic_probe(void)
{
    return 0;
}

static inline int kvm_arm_pmu_create(CPUState *cs, int irq)
{
    return 0;
}

#endif

static inline const char *gic_class_name(void)
{
    return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
}

/**
 * gicv3_class_name
 *
 * Return name of GICv3 class to use depending on whether KVM acceleration is
 * in use. May throw an error if the chosen implementation is not available.
 *
 * Returns: class name to use
 */
static inline const char *gicv3_class_name(void)
{
    if (kvm_irqchip_in_kernel()) {
#ifdef TARGET_AARCH64
        return "kvm-arm-gicv3";
#else
        error_report("KVM GICv3 acceleration is not supported on this "
                     "platform");
        exit(1);
#endif
    } else {
        return "arm-gicv3";
    }
}

/**
 * kvm_arm_handle_debug:
 * @cs: CPUState
 * @debug_exit: debug part of the KVM exit structure
 *
 * Returns: TRUE if the debug exception was handled.
 */
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);

/**
 * kvm_arm_hw_debug_active:
 * @cs: CPU State
 *
 * Return: TRUE if any hardware breakpoints in use.
 */

bool kvm_arm_hw_debug_active(CPUState *cs);

/**
 * kvm_arm_copy_hw_debug_data:
 *
 * @ptr: kvm_guest_debug_arch structure
 *
 * Copy the architecture specific debug registers into the
 * kvm_guest_debug ioctl structure.
 */
struct kvm_guest_debug_arch;

void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);

/**
 * its_class_name
 *
 * Return the ITS class name to use depending on whether KVM acceleration
 * and KVM CAP_SIGNAL_MSI are supported
 *
 * Returns: class name to use or NULL
 */
static inline const char *its_class_name(void)
{
    if (kvm_irqchip_in_kernel()) {
        /* KVM implementation requires this capability */
        return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
    } else {
        /* Software emulation is not implemented yet */
        return NULL;
    }
}

#endif