summaryrefslogtreecommitdiffstats
path: root/target/arm/translate-mve.c
blob: a220521c00b1a9426ec1d4a6d192d9d78785ff88 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
/*
 *  ARM translation: M-profile MVE instructions
 *
 *  Copyright (c) 2021 Linaro, Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/exec-all.h"
#include "exec/gen-icount.h"
#include "translate.h"
#include "translate-a32.h"

static inline int vidup_imm(DisasContext *s, int x)
{
    return 1 << x;
}

/* Include the generated decoder */
#include "decode-mve.c.inc"

typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);

/* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
static inline long mve_qreg_offset(unsigned reg)
{
    return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
}

static TCGv_ptr mve_qreg_ptr(unsigned reg)
{
    TCGv_ptr ret = tcg_temp_new_ptr();
    tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
    return ret;
}

static bool mve_check_qreg_bank(DisasContext *s, int qmask)
{
    /*
     * Check whether Qregs are in range. For v8.1M only Q0..Q7
     * are supported, see VFPSmallRegisterBank().
     */
    return qmask < 8;
}

bool mve_eci_check(DisasContext *s)
{
    /*
     * This is a beatwise insn: check that ECI is valid (not a
     * reserved value) and note that we are handling it.
     * Return true if OK, false if we generated an exception.
     */
    s->eci_handled = true;
    switch (s->eci) {
    case ECI_NONE:
    case ECI_A0:
    case ECI_A0A1:
    case ECI_A0A1A2:
    case ECI_A0A1A2B0:
        return true;
    default:
        /* Reserved value: INVSTATE UsageFault */
        gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
                           default_exception_el(s));
        return false;
    }
}

static void mve_update_eci(DisasContext *s)
{
    /*
     * The helper function will always update the CPUState field,
     * so we only need to update the DisasContext field.
     */
    if (s->eci) {
        s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
    }
}

void mve_update_and_store_eci(DisasContext *s)
{
    /*
     * For insns which don't call a helper function that will call
     * mve_advance_vpt(), this version updates s->eci and also stores
     * it out to the CPUState field.
     */
    if (s->eci) {
        mve_update_eci(s);
        store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
    }
}

static bool mve_skip_first_beat(DisasContext *s)
{
    /* Return true if PSR.ECI says we must skip the first beat of this insn */
    switch (s->eci) {
    case ECI_NONE:
        return false;
    case ECI_A0:
    case ECI_A0A1:
    case ECI_A0A1A2:
    case ECI_A0A1A2B0:
        return true;
    default:
        g_assert_not_reached();
    }
}

static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
                    unsigned msize)
{
    TCGv_i32 addr;
    uint32_t offset;
    TCGv_ptr qreg;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd) ||
        !fn) {
        return false;
    }

    /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
    if (a->rn == 15 || (a->rn == 13 && a->w)) {
        return false;
    }

    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    offset = a->imm << msize;
    if (!a->a) {
        offset = -offset;
    }
    addr = load_reg(s, a->rn);
    if (a->p) {
        tcg_gen_addi_i32(addr, addr, offset);
    }

    qreg = mve_qreg_ptr(a->qd);
    fn(cpu_env, qreg, addr);
    tcg_temp_free_ptr(qreg);

    /*
     * Writeback always happens after the last beat of the insn,
     * regardless of predication
     */
    if (a->w) {
        if (!a->p) {
            tcg_gen_addi_i32(addr, addr, offset);
        }
        store_reg(s, a->rn, addr);
    } else {
        tcg_temp_free_i32(addr);
    }
    mve_update_eci(s);
    return true;
}

static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
{
    static MVEGenLdStFn * const ldstfns[4][2] = {
        { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
        { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
        { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
        { NULL, NULL }
    };
    return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
}

#define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE)           \
    static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a)   \
    {                                                           \
        static MVEGenLdStFn * const ldstfns[2][2] = {           \
            { gen_helper_mve_##ST, gen_helper_mve_##SLD },      \
            { NULL, gen_helper_mve_##ULD },                     \
        };                                                      \
        return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE);       \
    }

DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)

static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
{
    TCGv_ptr qd;
    TCGv_i32 rt;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd)) {
        return false;
    }
    if (a->rt == 13 || a->rt == 15) {
        /* UNPREDICTABLE; we choose to UNDEF */
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    rt = load_reg(s, a->rt);
    tcg_gen_dup_i32(a->size, rt, rt);
    gen_helper_mve_vdup(cpu_env, qd, rt);
    tcg_temp_free_ptr(qd);
    tcg_temp_free_i32(rt);
    mve_update_eci(s);
    return true;
}

static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
{
    TCGv_ptr qd, qm;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd | a->qm) ||
        !fn) {
        return false;
    }

    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    qm = mve_qreg_ptr(a->qm);
    fn(cpu_env, qd, qm);
    tcg_temp_free_ptr(qd);
    tcg_temp_free_ptr(qm);
    mve_update_eci(s);
    return true;
}

#define DO_1OP(INSN, FN)                                        \
    static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
    {                                                           \
        static MVEGenOneOpFn * const fns[] = {                  \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
            gen_helper_mve_##FN##w,                             \
            NULL,                                               \
        };                                                      \
        return do_1op(s, a, fns[a->size]);                      \
    }

DO_1OP(VCLZ, vclz)
DO_1OP(VCLS, vcls)
DO_1OP(VABS, vabs)
DO_1OP(VNEG, vneg)

static bool trans_VREV16(DisasContext *s, arg_1op *a)
{
    static MVEGenOneOpFn * const fns[] = {
        gen_helper_mve_vrev16b,
        NULL,
        NULL,
        NULL,
    };
    return do_1op(s, a, fns[a->size]);
}

static bool trans_VREV32(DisasContext *s, arg_1op *a)
{
    static MVEGenOneOpFn * const fns[] = {
        gen_helper_mve_vrev32b,
        gen_helper_mve_vrev32h,
        NULL,
        NULL,
    };
    return do_1op(s, a, fns[a->size]);
}

static bool trans_VREV64(DisasContext *s, arg_1op *a)
{
    static MVEGenOneOpFn * const fns[] = {
        gen_helper_mve_vrev64b,
        gen_helper_mve_vrev64h,
        gen_helper_mve_vrev64w,
        NULL,
    };
    return do_1op(s, a, fns[a->size]);
}

static bool trans_VMVN(DisasContext *s, arg_1op *a)
{
    return do_1op(s, a, gen_helper_mve_vmvn);
}

static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
{
    static MVEGenOneOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vfabsh,
        gen_helper_mve_vfabss,
        NULL,
    };
    if (!dc_isar_feature(aa32_mve_fp, s)) {
        return false;
    }
    return do_1op(s, a, fns[a->size]);
}

static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
{
    static MVEGenOneOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vfnegh,
        gen_helper_mve_vfnegs,
        NULL,
    };
    if (!dc_isar_feature(aa32_mve_fp, s)) {
        return false;
    }
    return do_1op(s, a, fns[a->size]);
}

static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn)
{
    TCGv_ptr qd, qn, qm;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
        !fn) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    qn = mve_qreg_ptr(a->qn);
    qm = mve_qreg_ptr(a->qm);
    fn(cpu_env, qd, qn, qm);
    tcg_temp_free_ptr(qd);
    tcg_temp_free_ptr(qn);
    tcg_temp_free_ptr(qm);
    mve_update_eci(s);
    return true;
}

#define DO_LOGIC(INSN, HELPER)                                  \
    static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
    {                                                           \
        return do_2op(s, a, HELPER);                            \
    }

DO_LOGIC(VAND, gen_helper_mve_vand)
DO_LOGIC(VBIC, gen_helper_mve_vbic)
DO_LOGIC(VORR, gen_helper_mve_vorr)
DO_LOGIC(VORN, gen_helper_mve_vorn)
DO_LOGIC(VEOR, gen_helper_mve_veor)

#define DO_2OP(INSN, FN) \
    static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
    {                                                           \
        static MVEGenTwoOpFn * const fns[] = {                  \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
            gen_helper_mve_##FN##w,                             \
            NULL,                                               \
        };                                                      \
        return do_2op(s, a, fns[a->size]);                      \
    }

DO_2OP(VADD, vadd)
DO_2OP(VSUB, vsub)
DO_2OP(VMUL, vmul)
DO_2OP(VMULH_S, vmulhs)
DO_2OP(VMULH_U, vmulhu)
DO_2OP(VRMULH_S, vrmulhs)
DO_2OP(VRMULH_U, vrmulhu)
DO_2OP(VMAX_S, vmaxs)
DO_2OP(VMAX_U, vmaxu)
DO_2OP(VMIN_S, vmins)
DO_2OP(VMIN_U, vminu)
DO_2OP(VABD_S, vabds)
DO_2OP(VABD_U, vabdu)
DO_2OP(VHADD_S, vhadds)
DO_2OP(VHADD_U, vhaddu)
DO_2OP(VHSUB_S, vhsubs)
DO_2OP(VHSUB_U, vhsubu)
DO_2OP(VMULL_BS, vmullbs)
DO_2OP(VMULL_BU, vmullbu)
DO_2OP(VMULL_TS, vmullts)
DO_2OP(VMULL_TU, vmulltu)
DO_2OP(VQDMULH, vqdmulh)
DO_2OP(VQRDMULH, vqrdmulh)
DO_2OP(VQADD_S, vqadds)
DO_2OP(VQADD_U, vqaddu)
DO_2OP(VQSUB_S, vqsubs)
DO_2OP(VQSUB_U, vqsubu)
DO_2OP(VSHL_S, vshls)
DO_2OP(VSHL_U, vshlu)
DO_2OP(VRSHL_S, vrshls)
DO_2OP(VRSHL_U, vrshlu)
DO_2OP(VQSHL_S, vqshls)
DO_2OP(VQSHL_U, vqshlu)
DO_2OP(VQRSHL_S, vqrshls)
DO_2OP(VQRSHL_U, vqrshlu)
DO_2OP(VQDMLADH, vqdmladh)
DO_2OP(VQDMLADHX, vqdmladhx)
DO_2OP(VQRDMLADH, vqrdmladh)
DO_2OP(VQRDMLADHX, vqrdmladhx)
DO_2OP(VQDMLSDH, vqdmlsdh)
DO_2OP(VQDMLSDHX, vqdmlsdhx)
DO_2OP(VQRDMLSDH, vqrdmlsdh)
DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
DO_2OP(VRHADD_S, vrhadds)
DO_2OP(VRHADD_U, vrhaddu)
/*
 * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
 * so we can reuse the DO_2OP macro. (Our implementation calculates the
 * "expected" results in this case.) Similarly for VHCADD.
 */
DO_2OP(VCADD90, vcadd90)
DO_2OP(VCADD270, vcadd270)
DO_2OP(VHCADD90, vhcadd90)
DO_2OP(VHCADD270, vhcadd270)

static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
{
    static MVEGenTwoOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vqdmullbh,
        gen_helper_mve_vqdmullbw,
        NULL,
    };
    if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
        /* UNPREDICTABLE; we choose to undef */
        return false;
    }
    return do_2op(s, a, fns[a->size]);
}

static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
{
    static MVEGenTwoOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vqdmullth,
        gen_helper_mve_vqdmulltw,
        NULL,
    };
    if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
        /* UNPREDICTABLE; we choose to undef */
        return false;
    }
    return do_2op(s, a, fns[a->size]);
}

static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
{
    /*
     * Note that a->size indicates the output size, ie VMULL.P8
     * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
     * is the 16x16->32 operation and a->size is MO_32.
     */
    static MVEGenTwoOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vmullpbh,
        gen_helper_mve_vmullpbw,
        NULL,
    };
    return do_2op(s, a, fns[a->size]);
}

static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
{
    /* a->size is as for trans_VMULLP_B */
    static MVEGenTwoOpFn * const fns[] = {
        NULL,
        gen_helper_mve_vmullpth,
        gen_helper_mve_vmullptw,
        NULL,
    };
    return do_2op(s, a, fns[a->size]);
}

/*
 * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
 * of the 32-bit elements in each lane of the input vectors, where the
 * carry-out of each add is the carry-in of the next.  The initial carry
 * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
 * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
 * These insns are subject to beat-wise execution.  Partial execution
 * of an I=1 (initial carry input fixed) insn which does not
 * execute the first beat must start with the current FPSCR.NZCV
 * value, not the fixed constant input.
 */
static bool trans_VADC(DisasContext *s, arg_2op *a)
{
    return do_2op(s, a, gen_helper_mve_vadc);
}

static bool trans_VADCI(DisasContext *s, arg_2op *a)
{
    if (mve_skip_first_beat(s)) {
        return trans_VADC(s, a);
    }
    return do_2op(s, a, gen_helper_mve_vadci);
}

static bool trans_VSBC(DisasContext *s, arg_2op *a)
{
    return do_2op(s, a, gen_helper_mve_vsbc);
}

static bool trans_VSBCI(DisasContext *s, arg_2op *a)
{
    if (mve_skip_first_beat(s)) {
        return trans_VSBC(s, a);
    }
    return do_2op(s, a, gen_helper_mve_vsbci);
}

static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
                          MVEGenTwoOpScalarFn fn)
{
    TCGv_ptr qd, qn;
    TCGv_i32 rm;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd | a->qn) ||
        !fn) {
        return false;
    }
    if (a->rm == 13 || a->rm == 15) {
        /* UNPREDICTABLE */
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    qn = mve_qreg_ptr(a->qn);
    rm = load_reg(s, a->rm);
    fn(cpu_env, qd, qn, rm);
    tcg_temp_free_i32(rm);
    tcg_temp_free_ptr(qd);
    tcg_temp_free_ptr(qn);
    mve_update_eci(s);
    return true;
}

#define DO_2OP_SCALAR(INSN, FN) \
    static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
    {                                                           \
        static MVEGenTwoOpScalarFn * const fns[] = {            \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
            gen_helper_mve_##FN##w,                             \
            NULL,                                               \
        };                                                      \
        return do_2op_scalar(s, a, fns[a->size]);               \
    }

DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
DO_2OP_SCALAR(VBRSR, vbrsr)

static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
{
    static MVEGenTwoOpScalarFn * const fns[] = {
        NULL,
        gen_helper_mve_vqdmullb_scalarh,
        gen_helper_mve_vqdmullb_scalarw,
        NULL,
    };
    if (a->qd == a->qn && a->size == MO_32) {
        /* UNPREDICTABLE; we choose to undef */
        return false;
    }
    return do_2op_scalar(s, a, fns[a->size]);
}

static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
{
    static MVEGenTwoOpScalarFn * const fns[] = {
        NULL,
        gen_helper_mve_vqdmullt_scalarh,
        gen_helper_mve_vqdmullt_scalarw,
        NULL,
    };
    if (a->qd == a->qn && a->size == MO_32) {
        /* UNPREDICTABLE; we choose to undef */
        return false;
    }
    return do_2op_scalar(s, a, fns[a->size]);
}

static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
                             MVEGenDualAccOpFn *fn)
{
    TCGv_ptr qn, qm;
    TCGv_i64 rda;
    TCGv_i32 rdalo, rdahi;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qn | a->qm) ||
        !fn) {
        return false;
    }
    /*
     * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
     * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
     */
    if (a->rdahi == 13 || a->rdahi == 15) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qn = mve_qreg_ptr(a->qn);
    qm = mve_qreg_ptr(a->qm);

    /*
     * This insn is subject to beat-wise execution. Partial execution
     * of an A=0 (no-accumulate) insn which does not execute the first
     * beat must start with the current rda value, not 0.
     */
    if (a->a || mve_skip_first_beat(s)) {
        rda = tcg_temp_new_i64();
        rdalo = load_reg(s, a->rdalo);
        rdahi = load_reg(s, a->rdahi);
        tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
        tcg_temp_free_i32(rdalo);
        tcg_temp_free_i32(rdahi);
    } else {
        rda = tcg_const_i64(0);
    }

    fn(rda, cpu_env, qn, qm, rda);
    tcg_temp_free_ptr(qn);
    tcg_temp_free_ptr(qm);

    rdalo = tcg_temp_new_i32();
    rdahi = tcg_temp_new_i32();
    tcg_gen_extrl_i64_i32(rdalo, rda);
    tcg_gen_extrh_i64_i32(rdahi, rda);
    store_reg(s, a->rdalo, rdalo);
    store_reg(s, a->rdahi, rdahi);
    tcg_temp_free_i64(rda);
    mve_update_eci(s);
    return true;
}

static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[4][2] = {
        { NULL, NULL },
        { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
        { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
        { NULL, NULL },
    };
    return do_long_dual_acc(s, a, fns[a->size][a->x]);
}

static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[4][2] = {
        { NULL, NULL },
        { gen_helper_mve_vmlaldavuh, NULL },
        { gen_helper_mve_vmlaldavuw, NULL },
        { NULL, NULL },
    };
    return do_long_dual_acc(s, a, fns[a->size][a->x]);
}

static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[4][2] = {
        { NULL, NULL },
        { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
        { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
        { NULL, NULL },
    };
    return do_long_dual_acc(s, a, fns[a->size][a->x]);
}

static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[] = {
        gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
    };
    return do_long_dual_acc(s, a, fns[a->x]);
}

static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[] = {
        gen_helper_mve_vrmlaldavhuw, NULL,
    };
    return do_long_dual_acc(s, a, fns[a->x]);
}

static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
{
    static MVEGenDualAccOpFn * const fns[] = {
        gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
    };
    return do_long_dual_acc(s, a, fns[a->x]);
}

static bool trans_VPST(DisasContext *s, arg_VPST *a)
{
    TCGv_i32 vpr;

    /* mask == 0 is a "related encoding" */
    if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }
    /*
     * Set the VPR mask fields. We take advantage of MASK01 and MASK23
     * being adjacent fields in the register.
     *
     * This insn is not predicated, but it is subject to beat-wise
     * execution, and the mask is updated on the odd-numbered beats.
     * So if PSR.ECI says we should skip beat 1, we mustn't update the
     * 01 mask field.
     */
    vpr = load_cpu_field(v7m.vpr);
    switch (s->eci) {
    case ECI_NONE:
    case ECI_A0:
        /* Update both 01 and 23 fields */
        tcg_gen_deposit_i32(vpr, vpr,
                            tcg_constant_i32(a->mask | (a->mask << 4)),
                            R_V7M_VPR_MASK01_SHIFT,
                            R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
        break;
    case ECI_A0A1:
    case ECI_A0A1A2:
    case ECI_A0A1A2B0:
        /* Update only the 23 mask field */
        tcg_gen_deposit_i32(vpr, vpr,
                            tcg_constant_i32(a->mask),
                            R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
        break;
    default:
        g_assert_not_reached();
    }
    store_cpu_field(vpr, v7m.vpr);
    mve_update_and_store_eci(s);
    return true;
}

static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
{
    /* VADDV: vector add across vector */
    static MVEGenVADDVFn * const fns[4][2] = {
        { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
        { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
        { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
        { NULL, NULL }
    };
    TCGv_ptr qm;
    TCGv_i32 rda;

    if (!dc_isar_feature(aa32_mve, s) ||
        a->size == 3) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    /*
     * This insn is subject to beat-wise execution. Partial execution
     * of an A=0 (no-accumulate) insn which does not execute the first
     * beat must start with the current value of Rda, not zero.
     */
    if (a->a || mve_skip_first_beat(s)) {
        /* Accumulate input from Rda */
        rda = load_reg(s, a->rda);
    } else {
        /* Accumulate starting at zero */
        rda = tcg_const_i32(0);
    }

    qm = mve_qreg_ptr(a->qm);
    fns[a->size][a->u](rda, cpu_env, qm, rda);
    store_reg(s, a->rda, rda);
    tcg_temp_free_ptr(qm);

    mve_update_eci(s);
    return true;
}

static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
{
    /*
     * Vector Add Long Across Vector: accumulate the 32-bit
     * elements of the vector into a 64-bit result stored in
     * a pair of general-purpose registers.
     * No need to check Qm's bank: it is only 3 bits in decode.
     */
    TCGv_ptr qm;
    TCGv_i64 rda;
    TCGv_i32 rdalo, rdahi;

    if (!dc_isar_feature(aa32_mve, s)) {
        return false;
    }
    /*
     * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
     * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
     */
    if (a->rdahi == 13 || a->rdahi == 15) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    /*
     * This insn is subject to beat-wise execution. Partial execution
     * of an A=0 (no-accumulate) insn which does not execute the first
     * beat must start with the current value of RdaHi:RdaLo, not zero.
     */
    if (a->a || mve_skip_first_beat(s)) {
        /* Accumulate input from RdaHi:RdaLo */
        rda = tcg_temp_new_i64();
        rdalo = load_reg(s, a->rdalo);
        rdahi = load_reg(s, a->rdahi);
        tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
        tcg_temp_free_i32(rdalo);
        tcg_temp_free_i32(rdahi);
    } else {
        /* Accumulate starting at zero */
        rda = tcg_const_i64(0);
    }

    qm = mve_qreg_ptr(a->qm);
    if (a->u) {
        gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
    } else {
        gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
    }
    tcg_temp_free_ptr(qm);

    rdalo = tcg_temp_new_i32();
    rdahi = tcg_temp_new_i32();
    tcg_gen_extrl_i64_i32(rdalo, rda);
    tcg_gen_extrh_i64_i32(rdahi, rda);
    store_reg(s, a->rdalo, rdalo);
    store_reg(s, a->rdahi, rdahi);
    tcg_temp_free_i64(rda);
    mve_update_eci(s);
    return true;
}

static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn)
{
    TCGv_ptr qd;
    uint64_t imm;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd) ||
        !fn) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    imm = asimd_imm_const(a->imm, a->cmode, a->op);

    qd = mve_qreg_ptr(a->qd);
    fn(cpu_env, qd, tcg_constant_i64(imm));
    tcg_temp_free_ptr(qd);
    mve_update_eci(s);
    return true;
}

static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
{
    /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
    MVEGenOneOpImmFn *fn;

    if ((a->cmode & 1) && a->cmode < 12) {
        if (a->op) {
            /*
             * For op=1, the immediate will be inverted by asimd_imm_const(),
             * so the VBIC becomes a logical AND operation.
             */
            fn = gen_helper_mve_vandi;
        } else {
            fn = gen_helper_mve_vorri;
        }
    } else {
        /* There is one unallocated cmode/op combination in this space */
        if (a->cmode == 15 && a->op == 1) {
            return false;
        }
        /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
        fn = gen_helper_mve_vmovi;
    }
    return do_1imm(s, a, fn);
}

static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
                      bool negateshift)
{
    TCGv_ptr qd, qm;
    int shift = a->shift;

    if (!dc_isar_feature(aa32_mve, s) ||
        !mve_check_qreg_bank(s, a->qd | a->qm) ||
        !fn) {
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    /*
     * When we handle a right shift insn using a left-shift helper
     * which permits a negative shift count to indicate a right-shift,
     * we must negate the shift count.
     */
    if (negateshift) {
        shift = -shift;
    }

    qd = mve_qreg_ptr(a->qd);
    qm = mve_qreg_ptr(a->qm);
    fn(cpu_env, qd, qm, tcg_constant_i32(shift));
    tcg_temp_free_ptr(qd);
    tcg_temp_free_ptr(qm);
    mve_update_eci(s);
    return true;
}

#define DO_2SHIFT(INSN, FN, NEGATESHIFT)                         \
    static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
    {                                                           \
        static MVEGenTwoOpShiftFn * const fns[] = {             \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
            gen_helper_mve_##FN##w,                             \
            NULL,                                               \
        };                                                      \
        return do_2shift(s, a, fns[a->size], NEGATESHIFT);      \
    }

DO_2SHIFT(VSHLI, vshli_u, false)
DO_2SHIFT(VQSHLI_S, vqshli_s, false)
DO_2SHIFT(VQSHLI_U, vqshli_u, false)
DO_2SHIFT(VQSHLUI, vqshlui_s, false)
/* These right shifts use a left-shift helper with negated shift count */
DO_2SHIFT(VSHRI_S, vshli_s, true)
DO_2SHIFT(VSHRI_U, vshli_u, true)
DO_2SHIFT(VRSHRI_S, vrshli_s, true)
DO_2SHIFT(VRSHRI_U, vrshli_u, true)

DO_2SHIFT(VSRI, vsri, false)
DO_2SHIFT(VSLI, vsli, false)

#define DO_VSHLL(INSN, FN)                                      \
    static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
    {                                                           \
        static MVEGenTwoOpShiftFn * const fns[] = {             \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
        };                                                      \
        return do_2shift(s, a, fns[a->size], false);            \
    }

DO_VSHLL(VSHLL_BS, vshllbs)
DO_VSHLL(VSHLL_BU, vshllbu)
DO_VSHLL(VSHLL_TS, vshllts)
DO_VSHLL(VSHLL_TU, vshlltu)

#define DO_2SHIFT_N(INSN, FN)                                   \
    static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
    {                                                           \
        static MVEGenTwoOpShiftFn * const fns[] = {             \
            gen_helper_mve_##FN##b,                             \
            gen_helper_mve_##FN##h,                             \
        };                                                      \
        return do_2shift(s, a, fns[a->size], false);            \
    }

DO_2SHIFT_N(VSHRNB, vshrnb)
DO_2SHIFT_N(VSHRNT, vshrnt)
DO_2SHIFT_N(VRSHRNB, vrshrnb)
DO_2SHIFT_N(VRSHRNT, vrshrnt)
DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
DO_2SHIFT_N(VQSHRUNB, vqshrunb)
DO_2SHIFT_N(VQSHRUNT, vqshrunt)
DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)

static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
{
    /*
     * Whole Vector Left Shift with Carry. The carry is taken
     * from a general purpose register and written back there.
     * An imm of 0 means "shift by 32".
     */
    TCGv_ptr qd;
    TCGv_i32 rdm;

    if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
        return false;
    }
    if (a->rdm == 13 || a->rdm == 15) {
        /* CONSTRAINED UNPREDICTABLE: we UNDEF */
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    rdm = load_reg(s, a->rdm);
    gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
    store_reg(s, a->rdm, rdm);
    tcg_temp_free_ptr(qd);
    mve_update_eci(s);
    return true;
}

static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
{
    TCGv_ptr qd;
    TCGv_i32 rn;

    /*
     * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
     * This fills the vector with elements of successively increasing
     * or decreasing values, starting from Rn.
     */
    if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
        return false;
    }
    if (a->size == MO_64) {
        /* size 0b11 is another encoding */
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    rn = load_reg(s, a->rn);
    fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm));
    store_reg(s, a->rn, rn);
    tcg_temp_free_ptr(qd);
    mve_update_eci(s);
    return true;
}

static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
{
    TCGv_ptr qd;
    TCGv_i32 rn, rm;

    /*
     * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
     * This fills the vector with elements of successively increasing
     * or decreasing values, starting from Rn. Rm specifies a point where
     * the count wraps back around to 0. The updated offset is written back
     * to Rn.
     */
    if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
        return false;
    }
    if (!fn || a->rm == 13 || a->rm == 15) {
        /*
         * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
         * Rm == 13 is VIWDUP, VDWDUP.
         */
        return false;
    }
    if (!mve_eci_check(s) || !vfp_access_check(s)) {
        return true;
    }

    qd = mve_qreg_ptr(a->qd);
    rn = load_reg(s, a->rn);
    rm = load_reg(s, a->rm);
    fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm));
    store_reg(s, a->rn, rn);
    tcg_temp_free_ptr(qd);
    tcg_temp_free_i32(rm);
    mve_update_eci(s);
    return true;
}

static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
{
    static MVEGenVIDUPFn * const fns[] = {
        gen_helper_mve_vidupb,
        gen_helper_mve_viduph,
        gen_helper_mve_vidupw,
        NULL,
    };
    return do_vidup(s, a, fns[a->size]);
}

static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
{
    static MVEGenVIDUPFn * const fns[] = {
        gen_helper_mve_vidupb,
        gen_helper_mve_viduph,
        gen_helper_mve_vidupw,
        NULL,
    };
    /* VDDUP is just like VIDUP but with a negative immediate */
    a->imm = -a->imm;
    return do_vidup(s, a, fns[a->size]);
}

static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
{
    static MVEGenVIWDUPFn * const fns[] = {
        gen_helper_mve_viwdupb,
        gen_helper_mve_viwduph,
        gen_helper_mve_viwdupw,
        NULL,
    };
    return do_viwdup(s, a, fns[a->size]);
}

static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
{
    static MVEGenVIWDUPFn * const fns[] = {
        gen_helper_mve_vdwdupb,
        gen_helper_mve_vdwduph,
        gen_helper_mve_vdwdupw,
        NULL,
    };
    return do_viwdup(s, a, fns[a->size]);
}