summaryrefslogtreecommitdiffstats
path: root/target/hppa/int_helper.c
blob: 462747baf8621d9cfcd6620fe3a9e44be37d9866 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
 *  HPPA interrupt helper routines
 *
 *  Copyright (c) 2017 Richard Henderson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"

#ifndef CONFIG_USER_ONLY
static void eval_interrupt(HPPACPU *cpu)
{
    CPUState *cs = CPU(cpu);
    if (cpu->env.cr[CR_EIRR] & cpu->env.cr[CR_EIEM]) {
        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
    } else {
        cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
    }
}

/* Each CPU has a word mapped into the GSC bus.  Anything on the GSC bus
 * can write to this word to raise an external interrupt on the target CPU.
 * This includes the system controler (DINO) for regular devices, or
 * another CPU for SMP interprocessor interrupts.
 */
static uint64_t io_eir_read(void *opaque, hwaddr addr, unsigned size)
{
    HPPACPU *cpu = opaque;

    /* ??? What does a read of this register over the GSC bus do?  */
    return cpu->env.cr[CR_EIRR];
}

static void io_eir_write(void *opaque, hwaddr addr,
                         uint64_t data, unsigned size)
{
    HPPACPU *cpu = opaque;
    int le_bit = ~data & (TARGET_REGISTER_BITS - 1);

    cpu->env.cr[CR_EIRR] |= (target_ureg)1 << le_bit;
    eval_interrupt(cpu);
}

const MemoryRegionOps hppa_io_eir_ops = {
    .read = io_eir_read,
    .write = io_eir_write,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
    .impl.min_access_size = 4,
    .impl.max_access_size = 4,
};

void hppa_cpu_alarm_timer(void *opaque)
{
    /* Raise interrupt 0.  */
    io_eir_write(opaque, 0, 0, 4);
}

void HELPER(write_eirr)(CPUHPPAState *env, target_ureg val)
{
    env->cr[CR_EIRR] &= ~val;
    qemu_mutex_lock_iothread();
    eval_interrupt(env_archcpu(env));
    qemu_mutex_unlock_iothread();
}

void HELPER(write_eiem)(CPUHPPAState *env, target_ureg val)
{
    env->cr[CR_EIEM] = val;
    qemu_mutex_lock_iothread();
    eval_interrupt(env_archcpu(env));
    qemu_mutex_unlock_iothread();
}
#endif /* !CONFIG_USER_ONLY */

void hppa_cpu_do_interrupt(CPUState *cs)
{
    HPPACPU *cpu = HPPA_CPU(cs);
    CPUHPPAState *env = &cpu->env;
    int i = cs->exception_index;
    target_ureg iaoq_f = env->iaoq_f;
    target_ureg iaoq_b = env->iaoq_b;
    uint64_t iasq_f = env->iasq_f;
    uint64_t iasq_b = env->iasq_b;

#ifndef CONFIG_USER_ONLY
    target_ureg old_psw;

    /* As documented in pa2.0 -- interruption handling.  */
    /* step 1 */
    env->cr[CR_IPSW] = old_psw = cpu_hppa_get_psw(env);

    /* step 2 -- note PSW_W == 0 for !HPPA64.  */
    cpu_hppa_put_psw(env, PSW_W | (i == EXCP_HPMC ? PSW_M : 0));

    /* step 3 */
    env->cr[CR_IIASQ] = iasq_f >> 32;
    env->cr_back[0] = iasq_b >> 32;
    env->cr[CR_IIAOQ] = iaoq_f;
    env->cr_back[1] = iaoq_b;

    if (old_psw & PSW_Q) {
        /* step 5 */
        /* ISR and IOR will be set elsewhere.  */
        switch (i) {
        case EXCP_ILL:
        case EXCP_BREAK:
        case EXCP_PRIV_REG:
        case EXCP_PRIV_OPR:
            /* IIR set via translate.c.  */
            break;

        case EXCP_OVERFLOW:
        case EXCP_COND:
        case EXCP_ASSIST:
        case EXCP_DTLB_MISS:
        case EXCP_NA_ITLB_MISS:
        case EXCP_NA_DTLB_MISS:
        case EXCP_DMAR:
        case EXCP_DMPI:
        case EXCP_UNALIGN:
        case EXCP_DMP:
        case EXCP_DMB:
        case EXCP_TLB_DIRTY:
        case EXCP_PAGE_REF:
        case EXCP_ASSIST_EMU:
            {
                /* Avoid reading directly from the virtual address, lest we
                   raise another exception from some sort of TLB issue.  */
                /* ??? An alternate fool-proof method would be to store the
                   instruction data into the unwind info.  That's probably
                   a bit too much in the way of extra storage required.  */
                vaddr vaddr;
                hwaddr paddr;

                paddr = vaddr = iaoq_f & -4;
                if (old_psw & PSW_C) {
                    int prot, t;

                    vaddr = hppa_form_gva_psw(old_psw, iasq_f, vaddr);
                    t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX,
                                                  0, &paddr, &prot);
                    if (t >= 0) {
                        /* We can't re-load the instruction.  */
                        env->cr[CR_IIR] = 0;
                        break;
                    }
                }
                env->cr[CR_IIR] = ldl_phys(cs->as, paddr);
            }
            break;

        default:
            /* Other exceptions do not set IIR.  */
            break;
        }

        /* step 6 */
        env->shadow[0] = env->gr[1];
        env->shadow[1] = env->gr[8];
        env->shadow[2] = env->gr[9];
        env->shadow[3] = env->gr[16];
        env->shadow[4] = env->gr[17];
        env->shadow[5] = env->gr[24];
        env->shadow[6] = env->gr[25];
    }

    /* step 7 */
    env->iaoq_f = env->cr[CR_IVA] + 32 * i;
    env->iaoq_b = env->iaoq_f + 4;
    env->iasq_f = 0;
    env->iasq_b = 0;
#endif

    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        static const char * const names[] = {
            [EXCP_HPMC]          = "high priority machine check",
            [EXCP_POWER_FAIL]    = "power fail interrupt",
            [EXCP_RC]            = "recovery counter trap",
            [EXCP_EXT_INTERRUPT] = "external interrupt",
            [EXCP_LPMC]          = "low priority machine check",
            [EXCP_ITLB_MISS]     = "instruction tlb miss fault",
            [EXCP_IMP]           = "instruction memory protection trap",
            [EXCP_ILL]           = "illegal instruction trap",
            [EXCP_BREAK]         = "break instruction trap",
            [EXCP_PRIV_OPR]      = "privileged operation trap",
            [EXCP_PRIV_REG]      = "privileged register trap",
            [EXCP_OVERFLOW]      = "overflow trap",
            [EXCP_COND]          = "conditional trap",
            [EXCP_ASSIST]        = "assist exception trap",
            [EXCP_DTLB_MISS]     = "data tlb miss fault",
            [EXCP_NA_ITLB_MISS]  = "non-access instruction tlb miss",
            [EXCP_NA_DTLB_MISS]  = "non-access data tlb miss",
            [EXCP_DMP]           = "data memory protection trap",
            [EXCP_DMB]           = "data memory break trap",
            [EXCP_TLB_DIRTY]     = "tlb dirty bit trap",
            [EXCP_PAGE_REF]      = "page reference trap",
            [EXCP_ASSIST_EMU]    = "assist emulation trap",
            [EXCP_HPT]           = "high-privilege transfer trap",
            [EXCP_LPT]           = "low-privilege transfer trap",
            [EXCP_TB]            = "taken branch trap",
            [EXCP_DMAR]          = "data memory access rights trap",
            [EXCP_DMPI]          = "data memory protection id trap",
            [EXCP_UNALIGN]       = "unaligned data reference trap",
            [EXCP_PER_INTERRUPT] = "performance monitor interrupt",
            [EXCP_SYSCALL]       = "syscall",
            [EXCP_SYSCALL_LWS]   = "syscall-lws",
        };
        static int count;
        const char *name = NULL;
        char unknown[16];

        if (i >= 0 && i < ARRAY_SIZE(names)) {
            name = names[i];
        }
        if (!name) {
            snprintf(unknown, sizeof(unknown), "unknown %d", i);
            name = unknown;
        }
        qemu_log("INT %6d: %s @ " TARGET_FMT_lx "," TARGET_FMT_lx
                 " -> " TREG_FMT_lx " " TARGET_FMT_lx "\n",
                 ++count, name,
                 hppa_form_gva(env, iasq_f, iaoq_f),
                 hppa_form_gva(env, iasq_b, iaoq_b),
                 env->iaoq_f,
                 hppa_form_gva(env, (uint64_t)env->cr[CR_ISR] << 32,
                               env->cr[CR_IOR]));
    }
    cs->exception_index = -1;
}

bool hppa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
#ifndef CONFIG_USER_ONLY
    HPPACPU *cpu = HPPA_CPU(cs);
    CPUHPPAState *env = &cpu->env;

    /* If interrupts are requested and enabled, raise them.  */
    if ((env->psw & PSW_I) && (interrupt_request & CPU_INTERRUPT_HARD)) {
        cs->exception_index = EXCP_EXT_INTERRUPT;
        hppa_cpu_do_interrupt(cs);
        return true;
    }
#endif
    return false;
}