1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
|
/*
* QEMU HAX support
*
* Copyright IBM, Corp. 2008
* Red Hat, Inc. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
* Glauber Costa <gcosta@redhat.com>
*
* Copyright (c) 2011 Intel Corporation
* Written by:
* Jiang Yunhong<yunhong.jiang@intel.com>
* Xin Xiaohui<xiaohui.xin@intel.com>
* Zhang Xiantao<xiantao.zhang@intel.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
/*
* HAX common code for both windows and darwin
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/address-spaces.h"
#include "qemu-common.h"
#include "hax-i386.h"
#include "sysemu/accel.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "hw/boards.h"
#include "hax-cpus.h"
#define DEBUG_HAX 0
#define DPRINTF(fmt, ...) \
do { \
if (DEBUG_HAX) { \
fprintf(stdout, fmt, ## __VA_ARGS__); \
} \
} while (0)
/* Current version */
const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
/* Minimum HAX kernel version */
const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
static bool hax_allowed;
struct hax_state hax_global;
static void hax_vcpu_sync_state(CPUArchState *env, int modified);
static int hax_arch_get_registers(CPUArchState *env);
int hax_enabled(void)
{
return hax_allowed;
}
int valid_hax_tunnel_size(uint16_t size)
{
return size >= sizeof(struct hax_tunnel);
}
hax_fd hax_vcpu_get_fd(CPUArchState *env)
{
struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
if (!vcpu) {
return HAX_INVALID_FD;
}
return vcpu->fd;
}
static int hax_get_capability(struct hax_state *hax)
{
int ret;
struct hax_capabilityinfo capinfo, *cap = &capinfo;
ret = hax_capability(hax, cap);
if (ret) {
return ret;
}
if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
if (cap->winfo & HAX_CAP_FAILREASON_VT) {
DPRINTF
("VTX feature is not enabled, HAX driver will not work.\n");
} else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
DPRINTF
("NX feature is not enabled, HAX driver will not work.\n");
}
return -ENXIO;
}
if (!(cap->winfo & HAX_CAP_UG)) {
fprintf(stderr, "UG mode is not supported by the hardware.\n");
return -ENOTSUP;
}
hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
if (cap->wstatus & HAX_CAP_MEMQUOTA) {
if (cap->mem_quota < hax->mem_quota) {
fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
return -ENOSPC;
}
}
return 0;
}
static int hax_version_support(struct hax_state *hax)
{
int ret;
struct hax_module_version version;
ret = hax_mod_version(hax, &version);
if (ret < 0) {
return 0;
}
if (hax_min_version > version.cur_version) {
fprintf(stderr, "Incompatible HAX module version %d,",
version.cur_version);
fprintf(stderr, "requires minimum version %d\n", hax_min_version);
return 0;
}
if (hax_cur_version < version.compat_version) {
fprintf(stderr, "Incompatible QEMU HAX API version %x,",
hax_cur_version);
fprintf(stderr, "requires minimum HAX API version %x\n",
version.compat_version);
return 0;
}
return 1;
}
int hax_vcpu_create(int id)
{
struct hax_vcpu_state *vcpu = NULL;
int ret;
if (!hax_global.vm) {
fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
return -1;
}
if (hax_global.vm->vcpus[id]) {
fprintf(stderr, "vcpu %x allocated already\n", id);
return 0;
}
vcpu = g_new0(struct hax_vcpu_state, 1);
ret = hax_host_create_vcpu(hax_global.vm->fd, id);
if (ret) {
fprintf(stderr, "Failed to create vcpu %x\n", id);
goto error;
}
vcpu->vcpu_id = id;
vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
if (hax_invalid_fd(vcpu->fd)) {
fprintf(stderr, "Failed to open the vcpu\n");
ret = -ENODEV;
goto error;
}
hax_global.vm->vcpus[id] = vcpu;
ret = hax_host_setup_vcpu_channel(vcpu);
if (ret) {
fprintf(stderr, "Invalid hax tunnel size\n");
ret = -EINVAL;
goto error;
}
return 0;
error:
/* vcpu and tunnel will be closed automatically */
if (vcpu && !hax_invalid_fd(vcpu->fd)) {
hax_close_fd(vcpu->fd);
}
hax_global.vm->vcpus[id] = NULL;
g_free(vcpu);
return -1;
}
int hax_vcpu_destroy(CPUState *cpu)
{
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
if (!hax_global.vm) {
fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
return -1;
}
if (!vcpu) {
return 0;
}
/*
* 1. The hax_tunnel is also destroyed when vcpu is destroyed
* 2. close fd will cause hax module vcpu be cleaned
*/
hax_close_fd(vcpu->fd);
hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
g_free(vcpu);
return 0;
}
int hax_init_vcpu(CPUState *cpu)
{
int ret;
ret = hax_vcpu_create(cpu->cpu_index);
if (ret < 0) {
fprintf(stderr, "Failed to create HAX vcpu\n");
exit(-1);
}
cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
cpu->vcpu_dirty = true;
qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
return ret;
}
struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus)
{
struct hax_vm *vm;
int vm_id = 0, ret, i;
if (hax_invalid_fd(hax->fd)) {
return NULL;
}
if (hax->vm) {
return hax->vm;
}
if (max_cpus > HAX_MAX_VCPU) {
fprintf(stderr, "Maximum VCPU number QEMU supported is %d\n", HAX_MAX_VCPU);
return NULL;
}
vm = g_new0(struct hax_vm, 1);
ret = hax_host_create_vm(hax, &vm_id);
if (ret) {
fprintf(stderr, "Failed to create vm %x\n", ret);
goto error;
}
vm->id = vm_id;
vm->fd = hax_host_open_vm(hax, vm_id);
if (hax_invalid_fd(vm->fd)) {
fprintf(stderr, "Failed to open vm %d\n", vm_id);
goto error;
}
vm->numvcpus = max_cpus;
vm->vcpus = g_new0(struct hax_vcpu_state *, vm->numvcpus);
for (i = 0; i < vm->numvcpus; i++) {
vm->vcpus[i] = NULL;
}
hax->vm = vm;
return vm;
error:
g_free(vm);
hax->vm = NULL;
return NULL;
}
int hax_vm_destroy(struct hax_vm *vm)
{
int i;
for (i = 0; i < vm->numvcpus; i++)
if (vm->vcpus[i]) {
fprintf(stderr, "VCPU should be cleaned before vm clean\n");
return -1;
}
hax_close_fd(vm->fd);
vm->numvcpus = 0;
g_free(vm->vcpus);
g_free(vm);
hax_global.vm = NULL;
return 0;
}
static void hax_handle_interrupt(CPUState *cpu, int mask)
{
cpu->interrupt_request |= mask;
if (!qemu_cpu_is_self(cpu)) {
qemu_cpu_kick(cpu);
}
}
static int hax_init(ram_addr_t ram_size, int max_cpus)
{
struct hax_state *hax = NULL;
struct hax_qemu_version qversion;
int ret;
hax = &hax_global;
memset(hax, 0, sizeof(struct hax_state));
hax->mem_quota = ram_size;
hax->fd = hax_mod_open();
if (hax_invalid_fd(hax->fd)) {
hax->fd = 0;
ret = -ENODEV;
goto error;
}
ret = hax_get_capability(hax);
if (ret) {
if (ret != -ENOSPC) {
ret = -EINVAL;
}
goto error;
}
if (!hax_version_support(hax)) {
ret = -EINVAL;
goto error;
}
hax->vm = hax_vm_create(hax, max_cpus);
if (!hax->vm) {
fprintf(stderr, "Failed to create HAX VM\n");
ret = -EINVAL;
goto error;
}
hax_memory_init();
qversion.cur_version = hax_cur_version;
qversion.min_version = hax_min_version;
hax_notify_qemu_version(hax->vm->fd, &qversion);
cpu_interrupt_handler = hax_handle_interrupt;
return ret;
error:
if (hax->vm) {
hax_vm_destroy(hax->vm);
}
if (hax->fd) {
hax_mod_close(hax);
}
return ret;
}
static int hax_accel_init(MachineState *ms)
{
int ret = hax_init(ms->ram_size, (int)ms->smp.max_cpus);
if (ret && (ret != -ENOSPC)) {
fprintf(stderr, "No accelerator found.\n");
} else {
fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
!ret ? "working" : "not working",
!ret ? "fast virt" : "emulation");
}
if (ret == 0) {
cpus_register_accel(&hax_cpus);
}
return ret;
}
static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
{
if (hft->direction < 2) {
cpu_physical_memory_rw(hft->gpa, &hft->value, hft->size,
hft->direction);
} else {
/*
* HAX API v4 supports transferring data between two MMIO addresses,
* hft->gpa and hft->gpa2 (instructions such as MOVS require this):
* hft->direction == 2: gpa ==> gpa2
*/
uint64_t value;
cpu_physical_memory_read(hft->gpa, &value, hft->size);
cpu_physical_memory_write(hft->gpa2, &value, hft->size);
}
return 0;
}
static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
int direction, int size, int count, void *buffer)
{
uint8_t *ptr;
int i;
MemTxAttrs attrs = { 0 };
if (!df) {
ptr = (uint8_t *) buffer;
} else {
ptr = buffer + size * count - size;
}
for (i = 0; i < count; i++) {
address_space_rw(&address_space_io, port, attrs,
ptr, size, direction == HAX_EXIT_IO_OUT);
if (!df) {
ptr += size;
} else {
ptr -= size;
}
}
return 0;
}
static int hax_vcpu_interrupt(CPUArchState *env)
{
CPUState *cpu = env_cpu(env);
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
struct hax_tunnel *ht = vcpu->tunnel;
/*
* Try to inject an interrupt if the guest can accept it
* Unlike KVM, HAX kernel check for the eflags, instead of qemu
*/
if (ht->ready_for_interrupt_injection &&
(cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
int irq;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
hax_inject_interrupt(env, irq);
cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
}
}
/* If we have an interrupt but the guest is not ready to receive an
* interrupt, request an interrupt window exit. This will
* cause a return to userspace as soon as the guest is ready to
* receive interrupts. */
if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
ht->request_interrupt_window = 1;
} else {
ht->request_interrupt_window = 0;
}
return 0;
}
void hax_raise_event(CPUState *cpu)
{
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
if (!vcpu) {
return;
}
vcpu->tunnel->user_event_pending = 1;
}
/*
* Ask hax kernel module to run the CPU for us till:
* 1. Guest crash or shutdown
* 2. Need QEMU's emulation like guest execute MMIO instruction
* 3. Guest execute HLT
* 4. QEMU have Signal/event pending
* 5. An unknown VMX exit happens
*/
static int hax_vcpu_hax_exec(CPUArchState *env)
{
int ret = 0;
CPUState *cpu = env_cpu(env);
X86CPU *x86_cpu = X86_CPU(cpu);
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
struct hax_tunnel *ht = vcpu->tunnel;
if (!hax_enabled()) {
DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
return 0;
}
if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
apic_poll_irq(x86_cpu->apic_state);
}
/* After a vcpu is halted (either because it is an AP and has just been
* reset, or because it has executed the HLT instruction), it will not be
* run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
* for events that may change the halted state of this vcpu:
* a) Maskable interrupt, when RFLAGS.IF is 1;
* Note: env->eflags may not reflect the current RFLAGS state, because
* it is not updated after each hax_vcpu_run(). We cannot afford
* to fail to recognize any unhalt-by-maskable-interrupt event
* (in which case the vcpu will halt forever), and yet we cannot
* afford the overhead of hax_vcpu_sync_state(). The current
* solution is to err on the side of caution and have the HLT
* handler (see case HAX_EXIT_HLT below) unconditionally set the
* IF_MASK bit in env->eflags, which, in effect, disables the
* RFLAGS.IF check.
* b) NMI;
* c) INIT signal;
* d) SIPI signal.
*/
if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
cpu->halted = 0;
}
if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
cpu->cpu_index);
do_cpu_init(x86_cpu);
hax_vcpu_sync_state(env, 1);
}
if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
cpu->cpu_index);
hax_vcpu_sync_state(env, 0);
do_cpu_sipi(x86_cpu);
hax_vcpu_sync_state(env, 1);
}
if (cpu->halted) {
/* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
* break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
* That way, this vcpu thread will be trapped in qemu_wait_io_event(),
* until the vcpu is unhalted.
*/
cpu->exception_index = EXCP_HLT;
return 0;
}
do {
int hax_ret;
if (cpu->exit_request) {
ret = 1;
break;
}
hax_vcpu_interrupt(env);
qemu_mutex_unlock_iothread();
cpu_exec_start(cpu);
hax_ret = hax_vcpu_run(vcpu);
cpu_exec_end(cpu);
qemu_mutex_lock_iothread();
/* Simply continue the vcpu_run if system call interrupted */
if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
DPRINTF("io window interrupted\n");
continue;
}
if (hax_ret < 0) {
fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
abort();
}
switch (ht->_exit_status) {
case HAX_EXIT_IO:
ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
ht->pio._direction,
ht->pio._size, ht->pio._count, vcpu->iobuf);
break;
case HAX_EXIT_FAST_MMIO:
ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
break;
/* Guest state changed, currently only for shutdown */
case HAX_EXIT_STATECHANGE:
fprintf(stdout, "VCPU shutdown request\n");
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
hax_vcpu_sync_state(env, 0);
ret = 1;
break;
case HAX_EXIT_UNKNOWN_VMEXIT:
fprintf(stderr, "Unknown VMX exit %x from guest\n",
ht->_exit_reason);
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
hax_vcpu_sync_state(env, 0);
cpu_dump_state(cpu, stderr, 0);
ret = -1;
break;
case HAX_EXIT_HLT:
if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
!(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
/* hlt instruction with interrupt disabled is shutdown */
env->eflags |= IF_MASK;
cpu->halted = 1;
cpu->exception_index = EXCP_HLT;
ret = 1;
}
break;
/* these situations will continue to hax module */
case HAX_EXIT_INTERRUPT:
case HAX_EXIT_PAUSED:
break;
case HAX_EXIT_MMIO:
/* Should not happen on UG system */
fprintf(stderr, "HAX: unsupported MMIO emulation\n");
ret = -1;
break;
case HAX_EXIT_REAL:
/* Should not happen on UG system */
fprintf(stderr, "HAX: unimplemented real mode emulation\n");
ret = -1;
break;
default:
fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
hax_vcpu_sync_state(env, 0);
cpu_dump_state(cpu, stderr, 0);
ret = 1;
break;
}
} while (!ret);
if (cpu->exit_request) {
cpu->exit_request = 0;
cpu->exception_index = EXCP_INTERRUPT;
}
return ret < 0;
}
static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
CPUArchState *env = cpu->env_ptr;
hax_arch_get_registers(env);
cpu->vcpu_dirty = true;
}
void hax_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->vcpu_dirty) {
run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
run_on_cpu_data arg)
{
CPUArchState *env = cpu->env_ptr;
hax_vcpu_sync_state(env, 1);
cpu->vcpu_dirty = false;
}
void hax_cpu_synchronize_post_reset(CPUState *cpu)
{
run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
}
static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
{
CPUArchState *env = cpu->env_ptr;
hax_vcpu_sync_state(env, 1);
cpu->vcpu_dirty = false;
}
void hax_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
}
static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
{
cpu->vcpu_dirty = true;
}
void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
}
int hax_smp_cpu_exec(CPUState *cpu)
{
CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
int fatal;
int ret;
while (1) {
if (cpu->exception_index >= EXCP_INTERRUPT) {
ret = cpu->exception_index;
cpu->exception_index = -1;
break;
}
fatal = hax_vcpu_hax_exec(env);
if (fatal) {
fprintf(stderr, "Unsupported HAX vcpu return\n");
abort();
}
}
return ret;
}
static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
{
memset(lhs, 0, sizeof(struct segment_desc_t));
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->operand_size = 0;
lhs->desc = 1;
lhs->long_mode = 0;
lhs->granularity = 0;
lhs->available = 0;
}
static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->operand_size << DESC_B_SHIFT)
| (rhs->desc * DESC_S_MASK)
| (rhs->long_mode << DESC_L_SHIFT)
| (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
}
static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
memset(lhs, 0, sizeof(struct segment_desc_t));
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
lhs->desc = (flags & DESC_S_MASK) != 0;
lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
lhs->granularity = (flags & DESC_G_MASK) != 0;
lhs->available = (flags & DESC_AVL_MASK) != 0;
}
static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
{
target_ulong reg = *hax_reg;
if (set) {
*hax_reg = *qemu_reg;
} else {
*qemu_reg = reg;
}
}
/* The sregs has been synced with HAX kernel already before this call */
static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
{
get_seg(&env->segs[R_CS], &sregs->_cs);
get_seg(&env->segs[R_DS], &sregs->_ds);
get_seg(&env->segs[R_ES], &sregs->_es);
get_seg(&env->segs[R_FS], &sregs->_fs);
get_seg(&env->segs[R_GS], &sregs->_gs);
get_seg(&env->segs[R_SS], &sregs->_ss);
get_seg(&env->tr, &sregs->_tr);
get_seg(&env->ldt, &sregs->_ldt);
env->idt.limit = sregs->_idt.limit;
env->idt.base = sregs->_idt.base;
env->gdt.limit = sregs->_gdt.limit;
env->gdt.base = sregs->_gdt.base;
return 0;
}
static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
{
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
} else {
set_seg(&sregs->_cs, &env->segs[R_CS]);
set_seg(&sregs->_ds, &env->segs[R_DS]);
set_seg(&sregs->_es, &env->segs[R_ES]);
set_seg(&sregs->_fs, &env->segs[R_FS]);
set_seg(&sregs->_gs, &env->segs[R_GS]);
set_seg(&sregs->_ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs->_ss.selector = (sregs->_ss.selector & ~3) |
(sregs->_cs.selector & 3);
sregs->_ss.dpl = sregs->_ss.selector & 3;
}
}
set_seg(&sregs->_tr, &env->tr);
set_seg(&sregs->_ldt, &env->ldt);
sregs->_idt.limit = env->idt.limit;
sregs->_idt.base = env->idt.base;
sregs->_gdt.limit = env->gdt.limit;
sregs->_gdt.base = env->gdt.base;
return 0;
}
static int hax_sync_vcpu_register(CPUArchState *env, int set)
{
struct vcpu_state_t regs;
int ret;
memset(®s, 0, sizeof(struct vcpu_state_t));
if (!set) {
ret = hax_sync_vcpu_state(env, ®s, 0);
if (ret < 0) {
return -1;
}
}
/* generic register */
hax_getput_reg(®s._rax, &env->regs[R_EAX], set);
hax_getput_reg(®s._rbx, &env->regs[R_EBX], set);
hax_getput_reg(®s._rcx, &env->regs[R_ECX], set);
hax_getput_reg(®s._rdx, &env->regs[R_EDX], set);
hax_getput_reg(®s._rsi, &env->regs[R_ESI], set);
hax_getput_reg(®s._rdi, &env->regs[R_EDI], set);
hax_getput_reg(®s._rsp, &env->regs[R_ESP], set);
hax_getput_reg(®s._rbp, &env->regs[R_EBP], set);
#ifdef TARGET_X86_64
hax_getput_reg(®s._r8, &env->regs[8], set);
hax_getput_reg(®s._r9, &env->regs[9], set);
hax_getput_reg(®s._r10, &env->regs[10], set);
hax_getput_reg(®s._r11, &env->regs[11], set);
hax_getput_reg(®s._r12, &env->regs[12], set);
hax_getput_reg(®s._r13, &env->regs[13], set);
hax_getput_reg(®s._r14, &env->regs[14], set);
hax_getput_reg(®s._r15, &env->regs[15], set);
#endif
hax_getput_reg(®s._rflags, &env->eflags, set);
hax_getput_reg(®s._rip, &env->eip, set);
if (set) {
regs._cr0 = env->cr[0];
regs._cr2 = env->cr[2];
regs._cr3 = env->cr[3];
regs._cr4 = env->cr[4];
hax_set_segments(env, ®s);
} else {
env->cr[0] = regs._cr0;
env->cr[2] = regs._cr2;
env->cr[3] = regs._cr3;
env->cr[4] = regs._cr4;
hax_get_segments(env, ®s);
}
if (set) {
ret = hax_sync_vcpu_state(env, ®s, 1);
if (ret < 0) {
return -1;
}
}
return 0;
}
static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
uint64_t value)
{
item->entry = index;
item->value = value;
}
static int hax_get_msrs(CPUArchState *env)
{
struct hax_msr_data md;
struct vmx_msr *msrs = md.entries;
int ret, i, n;
n = 0;
msrs[n++].entry = MSR_IA32_SYSENTER_CS;
msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
msrs[n++].entry = MSR_IA32_TSC;
#ifdef TARGET_X86_64
msrs[n++].entry = MSR_EFER;
msrs[n++].entry = MSR_STAR;
msrs[n++].entry = MSR_LSTAR;
msrs[n++].entry = MSR_CSTAR;
msrs[n++].entry = MSR_FMASK;
msrs[n++].entry = MSR_KERNELGSBASE;
#endif
md.nr_msr = n;
ret = hax_sync_msr(env, &md, 0);
if (ret < 0) {
return ret;
}
for (i = 0; i < md.done; i++) {
switch (msrs[i].entry) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = msrs[i].value;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = msrs[i].value;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = msrs[i].value;
break;
case MSR_IA32_TSC:
env->tsc = msrs[i].value;
break;
#ifdef TARGET_X86_64
case MSR_EFER:
env->efer = msrs[i].value;
break;
case MSR_STAR:
env->star = msrs[i].value;
break;
case MSR_LSTAR:
env->lstar = msrs[i].value;
break;
case MSR_CSTAR:
env->cstar = msrs[i].value;
break;
case MSR_FMASK:
env->fmask = msrs[i].value;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = msrs[i].value;
break;
#endif
}
}
return 0;
}
static int hax_set_msrs(CPUArchState *env)
{
struct hax_msr_data md;
struct vmx_msr *msrs;
msrs = md.entries;
int n = 0;
memset(&md, 0, sizeof(struct hax_msr_data));
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
#ifdef TARGET_X86_64
hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
#endif
md.nr_msr = n;
md.done = 0;
return hax_sync_msr(env, &md, 1);
}
static int hax_get_fpu(CPUArchState *env)
{
struct fx_layout fpu;
int i, ret;
ret = hax_sync_fpu(env, &fpu, 0);
if (ret < 0) {
return ret;
}
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
for (i = 0; i < 8; ++i) {
env->fptags[i] = !((fpu.ftw >> i) & 1);
}
memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
for (i = 0; i < 8; i++) {
env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
if (CPU_NB_REGS > 8) {
env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
}
}
env->mxcsr = fpu.mxcsr;
return 0;
}
static int hax_set_fpu(CPUArchState *env)
{
struct fx_layout fpu;
int i;
memset(&fpu, 0, sizeof(fpu));
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
for (i = 0; i < 8; ++i) {
fpu.ftw |= (!env->fptags[i]) << i;
}
memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
for (i = 0; i < 8; i++) {
stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
if (CPU_NB_REGS > 8) {
stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
}
}
fpu.mxcsr = env->mxcsr;
return hax_sync_fpu(env, &fpu, 1);
}
static int hax_arch_get_registers(CPUArchState *env)
{
int ret;
ret = hax_sync_vcpu_register(env, 0);
if (ret < 0) {
return ret;
}
ret = hax_get_fpu(env);
if (ret < 0) {
return ret;
}
ret = hax_get_msrs(env);
if (ret < 0) {
return ret;
}
x86_update_hflags(env);
return 0;
}
static int hax_arch_set_registers(CPUArchState *env)
{
int ret;
ret = hax_sync_vcpu_register(env, 1);
if (ret < 0) {
fprintf(stderr, "Failed to sync vcpu reg\n");
return ret;
}
ret = hax_set_fpu(env);
if (ret < 0) {
fprintf(stderr, "FPU failed\n");
return ret;
}
ret = hax_set_msrs(env);
if (ret < 0) {
fprintf(stderr, "MSR failed\n");
return ret;
}
return 0;
}
static void hax_vcpu_sync_state(CPUArchState *env, int modified)
{
if (hax_enabled()) {
if (modified) {
hax_arch_set_registers(env);
} else {
hax_arch_get_registers(env);
}
}
}
/*
* much simpler than kvm, at least in first stage because:
* We don't need consider the device pass-through, we don't need
* consider the framebuffer, and we may even remove the bios at all
*/
int hax_sync_vcpus(void)
{
if (hax_enabled()) {
CPUState *cpu;
cpu = first_cpu;
if (!cpu) {
return 0;
}
for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
int ret;
ret = hax_arch_set_registers(cpu->env_ptr);
if (ret < 0) {
return ret;
}
}
}
return 0;
}
void hax_reset_vcpu_state(void *opaque)
{
CPUState *cpu;
for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
cpu->hax_vcpu->tunnel->user_event_pending = 0;
cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
}
}
static void hax_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "HAX";
ac->init_machine = hax_accel_init;
ac->allowed = &hax_allowed;
}
static const TypeInfo hax_accel_type = {
.name = ACCEL_CLASS_NAME("hax"),
.parent = TYPE_ACCEL,
.class_init = hax_accel_class_init,
};
static void hax_type_init(void)
{
type_register_static(&hax_accel_type);
}
type_init(hax_type_init);
|