summaryrefslogtreecommitdiffstats
path: root/target/ppc/mmu-radix64.c
blob: 67c38f065ba2f9cc0ac1c873b68aad99255cb6ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 *  PowerPC Radix MMU mulation helpers for QEMU.
 *
 *  Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "exec/log.h"
#include "internal.h"
#include "mmu-radix64.h"
#include "mmu-book3s-v3.h"

static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env,
                                                 vaddr eaddr,
                                                 uint64_t *lpid, uint64_t *pid)
{
    /* When EA(2:11) are nonzero, raise a segment interrupt */
    if (eaddr & ~R_EADDR_VALID_MASK) {
        return false;
    }

    if (msr_hv) { /* MSR[HV] -> Hypervisor/bare metal */
        switch (eaddr & R_EADDR_QUADRANT) {
        case R_EADDR_QUADRANT0:
            *lpid = 0;
            *pid = env->spr[SPR_BOOKS_PID];
            break;
        case R_EADDR_QUADRANT1:
            *lpid = env->spr[SPR_LPIDR];
            *pid = env->spr[SPR_BOOKS_PID];
            break;
        case R_EADDR_QUADRANT2:
            *lpid = env->spr[SPR_LPIDR];
            *pid = 0;
            break;
        case R_EADDR_QUADRANT3:
            *lpid = 0;
            *pid = 0;
            break;
        default:
            g_assert_not_reached();
        }
    } else {  /* !MSR[HV] -> Guest */
        switch (eaddr & R_EADDR_QUADRANT) {
        case R_EADDR_QUADRANT0: /* Guest application */
            *lpid = env->spr[SPR_LPIDR];
            *pid = env->spr[SPR_BOOKS_PID];
            break;
        case R_EADDR_QUADRANT1: /* Illegal */
        case R_EADDR_QUADRANT2:
            return false;
        case R_EADDR_QUADRANT3: /* Guest OS */
            *lpid = env->spr[SPR_LPIDR];
            *pid = 0; /* pid set to 0 -> addresses guest operating system */
            break;
        default:
            g_assert_not_reached();
        }
    }

    return true;
}

static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type,
                                   vaddr eaddr)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    switch (access_type) {
    case MMU_INST_FETCH:
        /* Instruction Segment Interrupt */
        cs->exception_index = POWERPC_EXCP_ISEG;
        break;
    case MMU_DATA_STORE:
    case MMU_DATA_LOAD:
        /* Data Segment Interrupt */
        cs->exception_index = POWERPC_EXCP_DSEG;
        env->spr[SPR_DAR] = eaddr;
        break;
    default:
        g_assert_not_reached();
    }
    env->error_code = 0;
}

static inline const char *access_str(MMUAccessType access_type)
{
    return access_type == MMU_DATA_LOAD ? "reading" :
        (access_type == MMU_DATA_STORE ? "writing" : "execute");
}

static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type,
                                 vaddr eaddr, uint32_t cause)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n",
                  __func__, access_str(access_type),
                  eaddr, cause);

    switch (access_type) {
    case MMU_INST_FETCH:
        /* Instruction Storage Interrupt */
        cs->exception_index = POWERPC_EXCP_ISI;
        env->error_code = cause;
        break;
    case MMU_DATA_STORE:
        cause |= DSISR_ISSTORE;
        /* fall through */
    case MMU_DATA_LOAD:
        /* Data Storage Interrupt */
        cs->exception_index = POWERPC_EXCP_DSI;
        env->spr[SPR_DSISR] = cause;
        env->spr[SPR_DAR] = eaddr;
        env->error_code = 0;
        break;
    default:
        g_assert_not_reached();
    }
}

static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
                                  vaddr eaddr, hwaddr g_raddr, uint32_t cause)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%"
                  HWADDR_PRIx" cause %08x\n",
                  __func__, access_str(access_type),
                  eaddr, g_raddr, cause);

    switch (access_type) {
    case MMU_INST_FETCH:
        /* H Instruction Storage Interrupt */
        cs->exception_index = POWERPC_EXCP_HISI;
        env->spr[SPR_ASDR] = g_raddr;
        env->error_code = cause;
        break;
    case MMU_DATA_STORE:
        cause |= DSISR_ISSTORE;
        /* fall through */
    case MMU_DATA_LOAD:
        /* H Data Storage Interrupt */
        cs->exception_index = POWERPC_EXCP_HDSI;
        env->spr[SPR_HDSISR] = cause;
        env->spr[SPR_HDAR] = eaddr;
        env->spr[SPR_ASDR] = g_raddr;
        env->error_code = 0;
        break;
    default:
        g_assert_not_reached();
    }
}

static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
                                   uint64_t pte, int *fault_cause, int *prot,
                                   int mmu_idx, bool partition_scoped)
{
    CPUPPCState *env = &cpu->env;
    int need_prot;

    /* Check Page Attributes (pte58:59) */
    if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) {
        /*
         * Radix PTE entries with the non-idempotent I/O attribute are treated
         * as guarded storage
         */
        *fault_cause |= SRR1_NOEXEC_GUARD;
        return true;
    }

    /* Determine permissions allowed by Encoded Access Authority */
    if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && msr_pr) {
        *prot = 0;
    } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
               partition_scoped) {
        *prot = ppc_radix64_get_prot_eaa(pte);
    } else { /* !msr_pr && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
        *prot = ppc_radix64_get_prot_eaa(pte);
        *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */
    }

    /* Check if requested access type is allowed */
    need_prot = prot_for_access_type(access_type);
    if (need_prot & ~*prot) { /* Page Protected for that Access */
        *fault_cause |= DSISR_PROTFAULT;
        return true;
    }

    return false;
}

static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type,
                               uint64_t pte, hwaddr pte_addr, int *prot)
{
    CPUState *cs = CPU(cpu);
    uint64_t npte;

    npte = pte | R_PTE_R; /* Always set reference bit */

    if (access_type == MMU_DATA_STORE) { /* Store/Write */
        npte |= R_PTE_C; /* Set change bit */
    } else {
        /*
         * Treat the page as read-only for now, so that a later write
         * will pass through this function again to set the C bit.
         */
        *prot &= ~PAGE_WRITE;
    }

    if (pte ^ npte) { /* If pte has changed then write it back */
        stq_phys(cs->as, pte_addr, npte);
    }
}

static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr,
                                  uint64_t *pte_addr, uint64_t *nls,
                                  int *psize, uint64_t *pte, int *fault_cause)
{
    uint64_t index, pde;

    if (*nls < 5) { /* Directory maps less than 2**5 entries */
        *fault_cause |= DSISR_R_BADCONFIG;
        return 1;
    }

    /* Read page <directory/table> entry from guest address space */
    pde = ldq_phys(as, *pte_addr);
    if (!(pde & R_PTE_VALID)) {         /* Invalid Entry */
        *fault_cause |= DSISR_NOPTE;
        return 1;
    }

    *pte = pde;
    *psize -= *nls;
    if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */
        *nls = pde & R_PDE_NLS;
        index = eaddr >> (*psize - *nls);       /* Shift */
        index &= ((1UL << *nls) - 1);           /* Mask */
        *pte_addr = (pde & R_PDE_NLB) + (index * sizeof(pde));
    }
    return 0;
}

static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr,
                                 uint64_t base_addr, uint64_t nls,
                                 hwaddr *raddr, int *psize, uint64_t *pte,
                                 int *fault_cause, hwaddr *pte_addr)
{
    uint64_t index, pde, rpn , mask;

    if (nls < 5) { /* Directory maps less than 2**5 entries */
        *fault_cause |= DSISR_R_BADCONFIG;
        return 1;
    }

    index = eaddr >> (*psize - nls);    /* Shift */
    index &= ((1UL << nls) - 1);       /* Mask */
    *pte_addr = base_addr + (index * sizeof(pde));
    do {
        int ret;

        ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde,
                                     fault_cause);
        if (ret) {
            return ret;
        }
    } while (!(pde & R_PTE_LEAF));

    *pte = pde;
    rpn = pde & R_PTE_RPN;
    mask = (1UL << *psize) - 1;

    /* Or high bits of rpn and low bits to ea to form whole real addr */
    *raddr = (rpn & ~mask) | (eaddr & mask);
    return 0;
}

static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate)
{
    CPUPPCState *env = &cpu->env;

    if (!(pate->dw0 & PATE0_HR)) {
        return false;
    }
    if (lpid == 0 && !msr_hv) {
        return false;
    }
    if ((pate->dw0 & PATE1_R_PRTS) < 5) {
        return false;
    }
    /* More checks ... */
    return true;
}

static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
                                              MMUAccessType access_type,
                                              vaddr eaddr, hwaddr g_raddr,
                                              ppc_v3_pate_t pate,
                                              hwaddr *h_raddr, int *h_prot,
                                              int *h_page_size, bool pde_addr,
                                              int mmu_idx, bool guest_visible)
{
    int fault_cause = 0;
    hwaddr pte_addr;
    uint64_t pte;

    qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
                  " mmu_idx %u 0x%"HWADDR_PRIx"\n",
                  __func__, access_str(access_type),
                  eaddr, mmu_idx, g_raddr);

    *h_page_size = PRTBE_R_GET_RTS(pate.dw0);
    /* No valid pte or access denied due to protection */
    if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
                              pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
                              &pte, &fault_cause, &pte_addr) ||
        ppc_radix64_check_prot(cpu, access_type, pte,
                               &fault_cause, h_prot, mmu_idx, true)) {
        if (pde_addr) { /* address being translated was that of a guest pde */
            fault_cause |= DSISR_PRTABLE_FAULT;
        }
        if (guest_visible) {
            ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause);
        }
        return 1;
    }

    if (guest_visible) {
        ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot);
    }

    return 0;
}

/*
 * The spapr vhc has a flat partition scope provided by qemu memory when
 * not nested.
 *
 * When running a nested guest, the addressing is 2-level radix on top of the
 * vhc memory, so it works practically identically to the bare metal 2-level
 * radix. So that code is selected directly. A cleaner and more flexible nested
 * hypervisor implementation would allow the vhc to provide a ->nested_xlate()
 * function but that is not required for the moment.
 */
static bool vhyp_flat_addressing(PowerPCCPU *cpu)
{
    if (cpu->vhyp) {
        return !vhyp_cpu_in_nested(cpu);
    }
    return false;
}

static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
                                            MMUAccessType access_type,
                                            vaddr eaddr, uint64_t pid,
                                            ppc_v3_pate_t pate, hwaddr *g_raddr,
                                            int *g_prot, int *g_page_size,
                                            int mmu_idx, bool guest_visible)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint64_t offset, size, prtbe_addr, prtbe0, base_addr, nls, index, pte;
    int fault_cause = 0, h_page_size, h_prot;
    hwaddr h_raddr, pte_addr;
    int ret;

    qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
                  " mmu_idx %u pid %"PRIu64"\n",
                  __func__, access_str(access_type),
                  eaddr, mmu_idx, pid);

    /* Index Process Table by PID to Find Corresponding Process Table Entry */
    offset = pid * sizeof(struct prtb_entry);
    size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12);
    if (offset >= size) {
        /* offset exceeds size of the process table */
        if (guest_visible) {
            ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
        }
        return 1;
    }
    prtbe_addr = (pate.dw1 & PATE1_R_PRTB) + offset;

    if (vhyp_flat_addressing(cpu)) {
        prtbe0 = ldq_phys(cs->as, prtbe_addr);
    } else {
        /*
         * Process table addresses are subject to partition-scoped
         * translation
         *
         * On a Radix host, the partition-scoped page table for LPID=0
         * is only used to translate the effective addresses of the
         * process table entries.
         */
        ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
                                                 pate, &h_raddr, &h_prot,
                                                 &h_page_size, true,
            /* mmu_idx is 5 because we're translating from hypervisor scope */
                                                 5, guest_visible);
        if (ret) {
            return ret;
        }
        prtbe0 = ldq_phys(cs->as, h_raddr);
    }

    /* Walk Radix Tree from Process Table Entry to Convert EA to RA */
    *g_page_size = PRTBE_R_GET_RTS(prtbe0);
    base_addr = prtbe0 & PRTBE_R_RPDB;
    nls = prtbe0 & PRTBE_R_RPDS;
    if (msr_hv || vhyp_flat_addressing(cpu)) {
        /*
         * Can treat process table addresses as real addresses
         */
        ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr,
                                    nls, g_raddr, g_page_size, &pte,
                                    &fault_cause, &pte_addr);
        if (ret) {
            /* No valid PTE */
            if (guest_visible) {
                ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
            }
            return ret;
        }
    } else {
        uint64_t rpn, mask;

        index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */
        index &= ((1UL << nls) - 1);                            /* Mask */
        pte_addr = base_addr + (index * sizeof(pte));

        /*
         * Each process table address is subject to a partition-scoped
         * translation
         */
        do {
            ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
                                                     pate, &h_raddr, &h_prot,
                                                     &h_page_size, true,
            /* mmu_idx is 5 because we're translating from hypervisor scope */
                                                     5, guest_visible);
            if (ret) {
                return ret;
            }

            ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, &h_raddr,
                                         &nls, g_page_size, &pte, &fault_cause);
            if (ret) {
                /* No valid pte */
                if (guest_visible) {
                    ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
                }
                return ret;
            }
            pte_addr = h_raddr;
        } while (!(pte & R_PTE_LEAF));

        rpn = pte & R_PTE_RPN;
        mask = (1UL << *g_page_size) - 1;

        /* Or high bits of rpn and low bits to ea to form whole real addr */
        *g_raddr = (rpn & ~mask) | (eaddr & mask);
    }

    if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
                               g_prot, mmu_idx, false)) {
        /* Access denied due to protection */
        if (guest_visible) {
            ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
        }
        return 1;
    }

    if (guest_visible) {
        ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot);
    }

    return 0;
}

/*
 * Radix tree translation is a 2 steps translation process:
 *
 * 1. Process-scoped translation:   Guest Eff Addr  -> Guest Real Addr
 * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr
 *
 *                                  MSR[HV]
 *              +-------------+----------------+---------------+
 *              |             |     HV = 0     |     HV = 1    |
 *              +-------------+----------------+---------------+
 *              | Relocation  |    Partition   |      No       |
 *              | = Off       |     Scoped     |  Translation  |
 *  Relocation  +-------------+----------------+---------------+
 *              | Relocation  |   Partition &  |    Process    |
 *              | = On        | Process Scoped |    Scoped     |
 *              +-------------+----------------+---------------+
 */
static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr,
                                   MMUAccessType access_type, hwaddr *raddr,
                                   int *psizep, int *protp, int mmu_idx,
                                   bool guest_visible)
{
    CPUPPCState *env = &cpu->env;
    uint64_t lpid, pid;
    ppc_v3_pate_t pate;
    int psize, prot;
    hwaddr g_raddr;
    bool relocation;

    assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));

    relocation = !mmuidx_real(mmu_idx);

    /* HV or virtual hypervisor Real Mode Access */
    if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) {
        /* In real mode top 4 effective addr bits (mostly) ignored */
        *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;

        /* In HV mode, add HRMOR if top EA bit is clear */
        if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
            if (!(eaddr >> 63)) {
                *raddr |= env->spr[SPR_HRMOR];
           }
        }
        *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        *psizep = TARGET_PAGE_BITS;
        return true;
    }

    /*
     * Check UPRT (we avoid the check in real mode to deal with
     * transitional states during kexec.
     */
    if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "LPCR:UPRT not set in radix mode ! LPCR="
                      TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
    }

    /* Virtual Mode Access - get the fully qualified address */
    if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
        if (guest_visible) {
            ppc_radix64_raise_segi(cpu, access_type, eaddr);
        }
        return false;
    }

    /* Get Process Table */
    if (cpu->vhyp) {
        PPCVirtualHypervisorClass *vhc;
        vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
        if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) {
            if (guest_visible) {
                ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
                                      DSISR_R_BADCONFIG);
            }
            return false;
        }
    } else {
        if (!ppc64_v3_get_pate(cpu, lpid, &pate)) {
            if (guest_visible) {
                ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
                                      DSISR_R_BADCONFIG);
            }
            return false;
        }
        if (!validate_pate(cpu, lpid, &pate)) {
            if (guest_visible) {
                ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
                                      DSISR_R_BADCONFIG);
            }
            return false;
        }
    }

    *psizep = INT_MAX;
    *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;

    /*
     * Perform process-scoped translation if relocation enabled.
     *
     * - Translates an effective address to a host real address in
     *   quadrants 0 and 3 when HV=1.
     *
     * - Translates an effective address to a guest real address.
     */
    if (relocation) {
        int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
                                                   pate, &g_raddr, &prot,
                                                   &psize, mmu_idx, guest_visible);
        if (ret) {
            return false;
        }
        *psizep = MIN(*psizep, psize);
        *protp &= prot;
    } else {
        g_raddr = eaddr & R_EADDR_MASK;
    }

    if (vhyp_flat_addressing(cpu)) {
        *raddr = g_raddr;
    } else {
        /*
         * Perform partition-scoped translation if !HV or HV access to
         * quadrants 1 or 2. Translates a guest real address to a host
         * real address.
         */
        if (lpid || !mmuidx_hv(mmu_idx)) {
            int ret;

            ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
                                                     g_raddr, pate, raddr,
                                                     &prot, &psize, false,
                                                     mmu_idx, guest_visible);
            if (ret) {
                return false;
            }
            *psizep = MIN(*psizep, psize);
            *protp &= prot;
        } else {
            *raddr = g_raddr;
        }
    }

    return true;
}

bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
                       hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
                       bool guest_visible)
{
    bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp,
                                      psizep, protp, mmu_idx, guest_visible);

    qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
                  " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n",
                  __func__, access_str(access_type),
                  eaddr, mmu_idx,
                  *protp & PAGE_READ ? 'r' : '-',
                  *protp & PAGE_WRITE ? 'w' : '-',
                  *protp & PAGE_EXEC ? 'x' : '-',
                  *raddrp);

    return ret;
}