summaryrefslogtreecommitdiffstats
path: root/target/xtensa/mmu_helper.c
blob: fa66e8e8675141e51ca0f17e3f0a9c7fc1d23650 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
/*
 * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/qemu-print.h"
#include "qemu/units.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"

#define XTENSA_MPU_SEGMENT_MASK 0x0000001f
#define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
#define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
#define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
#define XTENSA_MPU_MEM_TYPE_SHIFT 12
#define XTENSA_MPU_ATTR_MASK 0x001fff00

#define XTENSA_MPU_PROBE_B 0x40000000
#define XTENSA_MPU_PROBE_V 0x80000000

#define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
#define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
#define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
#define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003

#define XTENSA_MPU_TYPE_SYS_C     0x0010
#define XTENSA_MPU_TYPE_SYS_W     0x0020
#define XTENSA_MPU_TYPE_SYS_R     0x0040
#define XTENSA_MPU_TYPE_CPU_C     0x0100
#define XTENSA_MPU_TYPE_CPU_W     0x0200
#define XTENSA_MPU_TYPE_CPU_R     0x0400
#define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
#define XTENSA_MPU_TYPE_B         0x1000
#define XTENSA_MPU_TYPE_INT       0x2000

void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
    /*
     * Probe the memory; we don't care about the result but
     * only the side-effects (ie any MMU or other exception)
     */
    probe_access(env, vaddr, 1, MMU_INST_FETCH,
                 cpu_mmu_index(env, true), GETPC());
}

void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
{
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
        tlb_flush(env_cpu(env));
    }
}

static uint32_t get_page_size(const CPUXtensaState *env,
                              bool dtlb, uint32_t way)
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
                                         bool dtlb, uint32_t way)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
                                     bool dtlb, uint32_t *vpn,
                                     uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
                                              unsigned wi, unsigned ei)
{
    return dtlb ?
        env->dtlb[wi] + ei :
        env->itlb[wi] + ei;
}

static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
                                     xtensa_tlb_entry *entry, bool dtlb,
                                     unsigned wi, unsigned ei, uint32_t vpn,
                                     uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
                                 unsigned wi, unsigned ei,
                                 uint32_t vpn, uint32_t pte)
{
    CPUState *cs = env_cpu(env);
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
                tlb_flush_page(cs, entry->vaddr);
            }
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
            tlb_flush_page(cs, entry->vaddr);
        } else {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "%s %d, %d, %d trying to set immutable entry\n",
                          __func__, dtlb, wi, ei);
        }
    } else {
        tlb_flush_page(cs, entry->vaddr);
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    XtensaCPU *cpu = XTENSA_CPU(cs);
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;

    if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
                &paddr, &page_size, &access) == 0) {
        return paddr;
    }
    if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
                &paddr, &page_size, &access) == 0) {
        return paddr;
    }
    return ~0;
}

static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
                                   const xtensa_tlb *tlb,
                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    unsigned wi, ei;

    for (wi = 0; wi < tlb->nways; ++wi) {
        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
            entry[wi][ei].asid = 0;
            entry[wi][ei].variable = true;
        }
    }
}

static void reset_tlb_mmu_ways56(CPUXtensaState *env,
                                 const xtensa_tlb *tlb,
                                 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    if (!tlb->varway56) {
        static const xtensa_tlb_entry way5[] = {
            {
                .vaddr = 0xd0000000,
                .paddr = 0,
                .asid = 1,
                .attr = 7,
                .variable = false,
            }, {
                .vaddr = 0xd8000000,
                .paddr = 0,
                .asid = 1,
                .attr = 3,
                .variable = false,
            }
        };
        static const xtensa_tlb_entry way6[] = {
            {
                .vaddr = 0xe0000000,
                .paddr = 0xf0000000,
                .asid = 1,
                .attr = 7,
                .variable = false,
            }, {
                .vaddr = 0xf0000000,
                .paddr = 0xf0000000,
                .asid = 1,
                .attr = 3,
                .variable = false,
            }
        };
        memcpy(entry[5], way5, sizeof(way5));
        memcpy(entry[6], way6, sizeof(way6));
    } else {
        uint32_t ei;
        for (ei = 0; ei < 8; ++ei) {
            entry[6][ei].vaddr = ei << 29;
            entry[6][ei].paddr = ei << 29;
            entry[6][ei].asid = 1;
            entry[6][ei].attr = 3;
        }
    }
}

static void reset_tlb_region_way0(CPUXtensaState *env,
                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    unsigned ei;

    for (ei = 0; ei < 8; ++ei) {
        entry[0][ei].vaddr = ei << 29;
        entry[0][ei].paddr = ei << 29;
        entry[0][ei].asid = 1;
        entry[0][ei].attr = 2;
        entry[0][ei].variable = true;
    }
}

void reset_mmu(CPUXtensaState *env)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        env->sregs[RASID] = 0x04030201;
        env->sregs[ITLBCFG] = 0;
        env->sregs[DTLBCFG] = 0;
        env->autorefill_idx = 0;
        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
        unsigned i;

        env->sregs[MPUENB] = 0;
        env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
        env->sregs[CACHEADRDIS] = 0;
        assert(env->config->n_mpu_bg_segments > 0 &&
               env->config->mpu_bg[0].vaddr == 0);
        for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
            assert(env->config->mpu_bg[i].vaddr >=
                   env->config->mpu_bg[i - 1].vaddr);
        }
    } else {
        env->sregs[CACHEATTR] = 0x22222222;
        reset_tlb_region_way0(env, env->itlb);
        reset_tlb_region_way0(env, env->dtlb);
    }
}

static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
{
    unsigned i;
    for (i = 0; i < 4; ++i) {
        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
            return i;
        }
    }
    return 0xff;
}

/*!
 * Lookup xtensa TLB for the given virtual address.
 * See ISA, 4.6.2.2
 *
 * \param pwi: [out] way index
 * \param pei: [out] entry index
 * \param pring: [out] access ring
 * \return 0 if ok, exception cause code otherwise
 */
static int xtensa_tlb_lookup(const CPUXtensaState *env,
                             uint32_t addr, bool dtlb,
                             uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
    const xtensa_tlb *tlb = dtlb ?
        &env->config->dtlb : &env->config->itlb;
    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
        env->dtlb : env->itlb;

    int nhits = 0;
    unsigned wi;

    for (wi = 0; wi < tlb->nways; ++wi) {
        uint32_t vpn;
        uint32_t ei;
        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
            unsigned ring = get_ring(env, entry[wi][ei].asid);
            if (ring < 4) {
                if (++nhits > 1) {
                    return dtlb ?
                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
                        INST_TLB_MULTI_HIT_CAUSE;
                }
                *pwi = wi;
                *pei = ei;
                *pring = ring;
            }
        }
    }
    return nhits ? 0 :
        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}

uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
    return entry->paddr | entry->attr;
}

void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
        if (entry->variable && entry->asid) {
            tlb_flush_page(env_cpu(env), entry->vaddr);
            entry->asid = 0;
        }
    }
}

uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}

/*!
 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, 4.6.5.10
 */
static unsigned mmu_attr_to_access(uint32_t attr)
{
    unsigned access = 0;

    if (attr < 12) {
        access |= PAGE_READ;
        if (attr & 0x1) {
            access |= PAGE_EXEC;
        }
        if (attr & 0x2) {
            access |= PAGE_WRITE;
        }

        switch (attr & 0xc) {
        case 0:
            access |= PAGE_CACHE_BYPASS;
            break;

        case 4:
            access |= PAGE_CACHE_WB;
            break;

        case 8:
            access |= PAGE_CACHE_WT;
            break;
        }
    } else if (attr == 13) {
        access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
    }
    return access;
}

/*!
 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, 4.6.3.3
 */
static unsigned region_attr_to_access(uint32_t attr)
{
    static const unsigned access[16] = {
         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
         [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    };

    return access[attr & 0xf];
}

/*!
 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, A.2.14 The Cache Attribute Register
 */
static unsigned cacheattr_attr_to_access(uint32_t attr)
{
    static const unsigned access[16] = {
         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    };

    return access[attr & 0xf];
}

struct attr_pattern {
    uint32_t mask;
    uint32_t value;
};

static int attr_pattern_match(uint32_t attr,
                              const struct attr_pattern *pattern,
                              size_t n)
{
    size_t i;

    for (i = 0; i < n; ++i) {
        if ((attr & pattern[i].mask) == pattern[i].value) {
            return 1;
        }
    }
    return 0;
}

static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
{
    static const struct attr_pattern cpu_c[] = {
        { .mask = 0x18f, .value = 0x089 },
        { .mask = 0x188, .value = 0x080 },
        { .mask = 0x180, .value = 0x180 },
    };

    unsigned type = 0;

    if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
        type |= XTENSA_MPU_TYPE_CPU_CACHE;
        if (attr & 0x10) {
            type |= XTENSA_MPU_TYPE_CPU_C;
        }
        if (attr & 0x20) {
            type |= XTENSA_MPU_TYPE_CPU_W;
        }
        if (attr & 0x40) {
            type |= XTENSA_MPU_TYPE_CPU_R;
        }
    }
    return type;
}

static unsigned mpu_attr_to_type(uint32_t attr)
{
    static const struct attr_pattern device_type[] = {
        { .mask = 0x1f6, .value = 0x000 },
        { .mask = 0x1f6, .value = 0x006 },
    };
    static const struct attr_pattern sys_nc_type[] = {
        { .mask = 0x1fe, .value = 0x018 },
        { .mask = 0x1fe, .value = 0x01e },
        { .mask = 0x18f, .value = 0x089 },
    };
    static const struct attr_pattern sys_c_type[] = {
        { .mask = 0x1f8, .value = 0x010 },
        { .mask = 0x188, .value = 0x080 },
        { .mask = 0x1f0, .value = 0x030 },
        { .mask = 0x180, .value = 0x180 },
    };
    static const struct attr_pattern b[] = {
        { .mask = 0x1f7, .value = 0x001 },
        { .mask = 0x1f7, .value = 0x007 },
        { .mask = 0x1ff, .value = 0x019 },
        { .mask = 0x1ff, .value = 0x01f },
    };

    unsigned type = 0;

    attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
    if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
        type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
        if (attr & 0x80) {
            type |= XTENSA_MPU_TYPE_INT;
        }
    }
    if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
        type |= XTENSA_MPU_SYSTEM_TYPE_NC;
    }
    if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
        type |= XTENSA_MPU_SYSTEM_TYPE_C;
        if (attr & 0x1) {
            type |= XTENSA_MPU_TYPE_SYS_C;
        }
        if (attr & 0x2) {
            type |= XTENSA_MPU_TYPE_SYS_W;
        }
        if (attr & 0x4) {
            type |= XTENSA_MPU_TYPE_SYS_R;
        }
    }
    if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
        type |= XTENSA_MPU_TYPE_B;
    }
    type |= mpu_attr_to_cpu_cache(attr);

    return type;
}

static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
{
    static const unsigned access[2][16] = {
        [0] = {
             [4] = PAGE_READ,
             [5] = PAGE_READ              | PAGE_EXEC,
             [6] = PAGE_READ | PAGE_WRITE,
             [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
             [8] =             PAGE_WRITE,
             [9] = PAGE_READ | PAGE_WRITE,
            [10] = PAGE_READ | PAGE_WRITE,
            [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
            [12] = PAGE_READ,
            [13] = PAGE_READ              | PAGE_EXEC,
            [14] = PAGE_READ | PAGE_WRITE,
            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
        },
        [1] = {
             [8] =             PAGE_WRITE,
             [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
            [10] = PAGE_READ,
            [11] = PAGE_READ              | PAGE_EXEC,
            [12] = PAGE_READ,
            [13] = PAGE_READ              | PAGE_EXEC,
            [14] = PAGE_READ | PAGE_WRITE,
            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
        },
    };
    unsigned rv;
    unsigned type;

    type = mpu_attr_to_cpu_cache(attr);
    rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
        XTENSA_MPU_ACC_RIGHTS_SHIFT];

    if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
        rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
    } else {
        rv |= PAGE_CACHE_BYPASS;
    }
    return rv;
}

static bool is_access_granted(unsigned access, int is_write)
{
    switch (is_write) {
    case 0:
        return access & PAGE_READ;

    case 1:
        return access & PAGE_WRITE;

    case 2:
        return access & PAGE_EXEC;

    default:
        return 0;
    }
}

static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);

static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
                                 uint32_t vaddr, int is_write, int mmu_idx,
                                 uint32_t *paddr, uint32_t *page_size,
                                 unsigned *access, bool may_lookup_pt)
{
    bool dtlb = is_write != 2;
    uint32_t wi;
    uint32_t ei;
    uint8_t ring;
    uint32_t vpn;
    uint32_t pte;
    const xtensa_tlb_entry *entry = NULL;
    xtensa_tlb_entry tmp_entry;
    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);

    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
        may_lookup_pt && get_pte(env, vaddr, &pte)) {
        ring = (pte >> 4) & 0x3;
        wi = 0;
        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);

        if (update_tlb) {
            wi = ++env->autorefill_idx & 0x3;
            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
            env->sregs[EXCVADDR] = vaddr;
            qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
                          __func__, vaddr, vpn, pte);
        } else {
            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
            entry = &tmp_entry;
        }
        ret = 0;
    }
    if (ret != 0) {
        return ret;
    }

    if (entry == NULL) {
        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
    }

    if (ring < mmu_idx) {
        return dtlb ?
            LOAD_STORE_PRIVILEGE_CAUSE :
            INST_FETCH_PRIVILEGE_CAUSE;
    }

    *access = mmu_attr_to_access(entry->attr) &
        ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
    if (!is_access_granted(*access, is_write)) {
        return dtlb ?
            (is_write ?
             STORE_PROHIBITED_CAUSE :
             LOAD_PROHIBITED_CAUSE) :
            INST_FETCH_PROHIBITED_CAUSE;
    }

    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;

    return 0;
}

static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
{
    CPUState *cs = env_cpu(env);
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    uint32_t pt_vaddr =
        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
                                    &paddr, &page_size, &access, false);

    if (ret == 0) {
        qemu_log_mask(CPU_LOG_MMU,
                      "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
                      __func__, vaddr, pt_vaddr, paddr);
    } else {
        qemu_log_mask(CPU_LOG_MMU,
                      "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
                      __func__, vaddr, pt_vaddr, ret);
    }

    if (ret == 0) {
        MemTxResult result;

        *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
                                 &result);
        if (result != MEMTX_OK) {
            qemu_log_mask(CPU_LOG_MMU,
                          "%s: couldn't load PTE: transaction failed (%u)\n",
                          __func__, (unsigned)result);
            ret = 1;
        }
    }
    return ret == 0;
}

static int get_physical_addr_region(CPUXtensaState *env,
                                    uint32_t vaddr, int is_write, int mmu_idx,
                                    uint32_t *paddr, uint32_t *page_size,
                                    unsigned *access)
{
    bool dtlb = is_write != 2;
    uint32_t wi = 0;
    uint32_t ei = (vaddr >> 29) & 0x7;
    const xtensa_tlb_entry *entry =
        xtensa_tlb_get_entry(env, dtlb, wi, ei);

    *access = region_attr_to_access(entry->attr);
    if (!is_access_granted(*access, is_write)) {
        return dtlb ?
            (is_write ?
             STORE_PROHIBITED_CAUSE :
             LOAD_PROHIBITED_CAUSE) :
            INST_FETCH_PROHIBITED_CAUSE;
    }

    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
    *page_size = ~REGION_PAGE_MASK + 1;

    return 0;
}

static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
                             uint32_t vaddr, unsigned *segment)
{
    unsigned nhits = 0;
    unsigned i;

    for (i = 0; i < n; ++i) {
        if (vaddr >= entry[i].vaddr &&
            (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
            if (nhits++) {
                break;
            }
            *segment = i;
        }
    }
    return nhits;
}

void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
{
    v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;

    if (v != env->sregs[MPUENB]) {
        env->sregs[MPUENB] = v;
        tlb_flush(env_cpu(env));
    }
}

void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
{
    unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;

    if (segment < env->config->n_mpu_fg_segments) {
        env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
        env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
        env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
        tlb_flush(env_cpu(env));
    }
}

uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
{
    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;

    if (segment < env->config->n_mpu_fg_segments) {
        return env->mpu_fg[segment].vaddr |
            extract32(env->sregs[MPUENB], segment, 1);
    } else {
        return 0;
    }
}

uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
{
    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;

    if (segment < env->config->n_mpu_fg_segments) {
        return env->mpu_fg[segment].attr;
    } else {
        return 0;
    }
}

uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
{
    unsigned nhits;
    unsigned segment = XTENSA_MPU_PROBE_B;
    unsigned bg_segment;

    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
                              v, &segment);
    if (nhits > 1) {
        HELPER(exception_cause_vaddr)(env, env->pc,
                                      LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
        return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
    } else {
        xtensa_mpu_lookup(env->config->mpu_bg,
                          env->config->n_mpu_bg_segments,
                          v, &bg_segment);
        return env->config->mpu_bg[bg_segment].attr | segment;
    }
}

static int get_physical_addr_mpu(CPUXtensaState *env,
                                 uint32_t vaddr, int is_write, int mmu_idx,
                                 uint32_t *paddr, uint32_t *page_size,
                                 unsigned *access)
{
    unsigned nhits;
    unsigned segment;
    uint32_t attr;

    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
                              vaddr, &segment);
    if (nhits > 1) {
        return is_write < 2 ?
            LOAD_STORE_TLB_MULTI_HIT_CAUSE :
            INST_TLB_MULTI_HIT_CAUSE;
    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
        attr = env->mpu_fg[segment].attr;
    } else {
        xtensa_mpu_lookup(env->config->mpu_bg,
                          env->config->n_mpu_bg_segments,
                          vaddr, &segment);
        attr = env->config->mpu_bg[segment].attr;
    }

    *access = mpu_attr_to_access(attr, mmu_idx);
    if (!is_access_granted(*access, is_write)) {
        return is_write < 2 ?
            (is_write ?
             STORE_PROHIBITED_CAUSE :
             LOAD_PROHIBITED_CAUSE) :
            INST_FETCH_PROHIBITED_CAUSE;
    }
    *paddr = vaddr;
    *page_size = env->config->mpu_align;
    return 0;
}

/*!
 * Convert virtual address to physical addr.
 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
 *
 * \return 0 if ok, exception cause code otherwise
 */
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
                             uint32_t vaddr, int is_write, int mmu_idx,
                             uint32_t *paddr, uint32_t *page_size,
                             unsigned *access)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        return get_physical_addr_mmu(env, update_tlb,
                                     vaddr, is_write, mmu_idx, paddr,
                                     page_size, access, true);
    } else if (xtensa_option_bits_enabled(env->config,
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
                                        paddr, page_size, access);
    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
        return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
                                     paddr, page_size, access);
    } else {
        *paddr = vaddr;
        *page_size = TARGET_PAGE_SIZE;
        *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
                                           ((vaddr & 0xe0000000) >> 27));
        return 0;
    }
}

static void dump_tlb(CPUXtensaState *env, bool dtlb)
{
    unsigned wi, ei;
    const xtensa_tlb *conf =
        dtlb ? &env->config->dtlb : &env->config->itlb;
    unsigned (*attr_to_access)(uint32_t) =
        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
        mmu_attr_to_access : region_attr_to_access;

    for (wi = 0; wi < conf->nways; ++wi) {
        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
        const char *sz_text;
        bool print_header = true;

        if (sz >= 0x100000) {
            sz /= MiB;
            sz_text = "MB";
        } else {
            sz /= KiB;
            sz_text = "KB";
        }

        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
            const xtensa_tlb_entry *entry =
                xtensa_tlb_get_entry(env, dtlb, wi, ei);

            if (entry->asid) {
                static const char * const cache_text[8] = {
                    [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
                    [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
                    [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
                    [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
                };
                unsigned access = attr_to_access(entry->attr);
                unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
                    PAGE_CACHE_SHIFT;

                if (print_header) {
                    print_header = false;
                    qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
                    qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
                                "\t----------  ----------  ----  ---- --- -------\n");
                }
                qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
                            entry->vaddr,
                            entry->paddr,
                            entry->asid,
                            entry->attr,
                            (access & PAGE_READ) ? 'R' : '-',
                            (access & PAGE_WRITE) ? 'W' : '-',
                            (access & PAGE_EXEC) ? 'X' : '-',
                            cache_text[cache_idx] ?
                            cache_text[cache_idx] : "Invalid");
            }
        }
    }
}

static void dump_mpu(CPUXtensaState *env,
                     const xtensa_mpu_entry *entry, unsigned n)
{
    unsigned i;

    qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
                "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
                env ? "En" : "  ",
                env ? "--" : "  ");

    for (i = 0; i < n; ++i) {
        uint32_t attr = entry[i].attr;
        unsigned access0 = mpu_attr_to_access(attr, 0);
        unsigned access1 = mpu_attr_to_access(attr, 1);
        unsigned type = mpu_attr_to_type(attr);
        char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';

        qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
                    env ?
                    ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
                    entry[i].vaddr, attr,
                    (access0 & PAGE_READ) ? 'R' : '-',
                    (access0 & PAGE_WRITE) ? 'W' : '-',
                    (access0 & PAGE_EXEC) ? 'X' : '-',
                    (access1 & PAGE_READ) ? 'R' : '-',
                    (access1 & PAGE_WRITE) ? 'W' : '-',
                    (access1 & PAGE_EXEC) ? 'X' : '-');

        switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
        case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
            qemu_printf("Device %cB %3s\n",
                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
                        (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
            break;
        case XTENSA_MPU_SYSTEM_TYPE_NC:
            qemu_printf("Sys NC %cB      %c%c%c\n",
                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
            break;
        case XTENSA_MPU_SYSTEM_TYPE_C:
            qemu_printf("Sys  C %c%c%c     %c%c%c\n",
                        (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
                        (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
                        (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
            break;
        default:
            qemu_printf("Unknown\n");
            break;
        }
    }
}

void dump_mmu(CPUXtensaState *env)
{
    if (xtensa_option_bits_enabled(env->config,
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {

        qemu_printf("ITLB:\n");
        dump_tlb(env, false);
        qemu_printf("\nDTLB:\n");
        dump_tlb(env, true);
    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
        qemu_printf("Foreground map:\n");
        dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
        qemu_printf("\nBackground map:\n");
        dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
    } else {
        qemu_printf("No TLB for this CPU core\n");
    }
}