summaryrefslogtreecommitdiffstats
path: root/src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java')
-rw-r--r--src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java1421
1 files changed, 1421 insertions, 0 deletions
diff --git a/src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java b/src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java
new file mode 100644
index 0000000..85f3273
--- /dev/null
+++ b/src/main/java/com/kitfox/svg/batik/MultipleGradientPaintContext.java
@@ -0,0 +1,1421 @@
+/*****************************************************************************
+ * Copyright (C) The Apache Software Foundation. All rights reserved. *
+ * ------------------------------------------------------------------------- *
+ * This software is published under the terms of the Apache Software License *
+ * version 1.1, a copy of which has been included with this distribution in *
+ * the LICENSE file. *
+ *****************************************************************************/
+
+package com.kitfox.svg.batik;
+
+import java.awt.Color;
+import java.awt.PaintContext;
+import java.awt.Rectangle;
+import java.awt.RenderingHints;
+import java.awt.color.ColorSpace;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.Rectangle2D;
+import java.awt.image.ColorModel;
+import java.awt.image.DataBuffer;
+import java.awt.image.DataBufferInt;
+import java.awt.image.DirectColorModel;
+import java.awt.image.Raster;
+import java.awt.image.SinglePixelPackedSampleModel;
+import java.awt.image.WritableRaster;
+import java.lang.ref.WeakReference;
+
+//import org.apache.batik.ext.awt.image.GraphicsUtil;
+
+/** This is the superclass for all PaintContexts which use a multiple color
+ * gradient to fill in their raster. It provides the actual color interpolation
+ * functionality. Subclasses only have to deal with using the gradient to fill
+ * pixels in a raster.
+ *
+ * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
+ * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a>
+ * @version $Id: MultipleGradientPaintContext.java,v 1.1 2004/09/06 19:35:39 kitfox Exp $
+ *
+ */
+abstract class MultipleGradientPaintContext implements PaintContext {
+
+ protected final static boolean DEBUG = false;
+
+ /**
+ * The color model data is generated in (always un premult).
+ */
+ protected ColorModel dataModel;
+ /**
+ * PaintContext's output ColorModel ARGB if colors are not all
+ * opaque, RGB otherwise. Linear and premult are matched to
+ * output ColorModel.
+ */
+ protected ColorModel model;
+
+ /** Color model used if gradient colors are all opaque */
+ private static ColorModel lrgbmodel_NA = new DirectColorModel
+ (ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
+ 24, 0xff0000, 0xFF00, 0xFF, 0x0,
+ false, DataBuffer.TYPE_INT);
+
+ private static ColorModel srgbmodel_NA = new DirectColorModel
+ (ColorSpace.getInstance(ColorSpace.CS_sRGB),
+ 24, 0xff0000, 0xFF00, 0xFF, 0x0,
+ false, DataBuffer.TYPE_INT);
+
+ /** Color model used if some gradient colors are transparent */
+ private static ColorModel lrgbmodel_A = new DirectColorModel
+ (ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB),
+ 32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
+ false, DataBuffer.TYPE_INT);
+
+ private static ColorModel srgbmodel_A = new DirectColorModel
+ (ColorSpace.getInstance(ColorSpace.CS_sRGB),
+ 32, 0xff0000, 0xFF00, 0xFF, 0xFF000000,
+ false, DataBuffer.TYPE_INT);
+
+ /** The cached colorModel */
+ protected static ColorModel cachedModel;
+
+ /** The cached raster, which is reusable among instances */
+ protected static WeakReference cached;
+
+ /** Raster is reused whenever possible */
+ protected WritableRaster saved;
+
+ /** The method to use when painting out of the gradient bounds. */
+ protected MultipleGradientPaint.CycleMethodEnum cycleMethod;
+
+ /** The colorSpace in which to perform the interpolation */
+ protected MultipleGradientPaint.ColorSpaceEnum colorSpace;
+
+ /** Elements of the inverse transform matrix. */
+ protected float a00, a01, a10, a11, a02, a12;
+
+ /** This boolean specifies wether we are in simple lookup mode, where an
+ * input value between 0 and 1 may be used to directly index into a single
+ * array of gradient colors. If this boolean value is false, then we have
+ * to use a 2-step process where we have to determine which gradient array
+ * we fall into, then determine the index into that array.
+ */
+ protected boolean isSimpleLookup = true;
+
+ /** This boolean indicates if the gradient appears to have sudden
+ * discontinuities in it, this may be because of multiple stops
+ * at the same location or use of the REPEATE mode.
+ */
+ protected boolean hasDiscontinuity = false;
+
+ /** Size of gradients array for scaling the 0-1 index when looking up
+ * colors the fast way. */
+ protected int fastGradientArraySize;
+
+ /**
+ * Array which contains the interpolated color values for each interval,
+ * used by calculateSingleArrayGradient(). It is protected for possible
+ * direct access by subclasses.
+ */
+ protected int[] gradient;
+
+ /** Array of gradient arrays, one array for each interval. Used by
+ * calculateMultipleArrayGradient().
+ */
+ protected int[][] gradients;
+
+ /** This holds the blend of all colors in the gradient.
+ * we use this at extreamly low resolutions to ensure we
+ * get a decent blend of the colors.
+ */
+ protected int gradientAverage;
+
+ /** This holds the color to use when we are off the bottom of the
+ * gradient */
+ protected int gradientUnderflow;
+
+ /** This holds the color to use when we are off the top of the
+ * gradient */
+ protected int gradientOverflow;
+
+ /** Length of the 2D slow lookup gradients array. */
+ protected int gradientsLength;
+
+ /** Normalized intervals array */
+ protected float[] normalizedIntervals;
+
+ /** fractions array */
+ protected float[] fractions;
+
+ /** Used to determine if gradient colors are all opaque */
+ private int transparencyTest;
+
+ /** Colorspace conversion lookup tables */
+ private static final int SRGBtoLinearRGB[] = new int[256];
+ private static final int LinearRGBtoSRGB[] = new int[256];
+
+ //build the tables
+ static{
+ for (int k = 0; k < 256; k++) {
+ SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
+ LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
+ }
+ }
+
+ /** Constant number of max colors between any 2 arbitrary colors.
+ * Used for creating and indexing gradients arrays.
+ */
+ protected static final int GRADIENT_SIZE = 256;
+ protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
+
+ /** Maximum length of the fast single-array. If the estimated array size
+ * is greater than this, switch over to the slow lookup method.
+ * No particular reason for choosing this number, but it seems to provide
+ * satisfactory performance for the common case (fast lookup).
+ */
+ private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
+
+ /** Constructor for superclass. Does some initialization, but leaves most
+ * of the heavy-duty math for calculateGradient(), so the subclass may do
+ * some other manipulation beforehand if necessary. This is not possible
+ * if this computation is done in the superclass constructor which always
+ * gets called first.
+ **/
+ public MultipleGradientPaintContext(ColorModel cm,
+ Rectangle deviceBounds,
+ Rectangle2D userBounds,
+ AffineTransform t,
+ RenderingHints hints,
+ float[] fractions,
+ Color[] colors,
+ MultipleGradientPaint.CycleMethodEnum
+ cycleMethod,
+ MultipleGradientPaint.ColorSpaceEnum
+ colorSpace)
+ throws NoninvertibleTransformException
+ {
+ //We have to deal with the cases where the 1st gradient stop is not
+ //equal to 0 and/or the last gradient stop is not equal to 1.
+ //In both cases, create a new point and replicate the previous
+ //extreme point's color.
+
+ boolean fixFirst = false;
+ boolean fixLast = false;
+ int len = fractions.length;
+
+ //if the first gradient stop is not equal to zero, fix this condition
+ if (fractions[0] != 0f) {
+ fixFirst = true;
+ len++;
+ }
+
+ //if the last gradient stop is not equal to one, fix this condition
+ if (fractions[fractions.length - 1] != 1f) {
+ fixLast = true;
+ len++;
+ }
+
+ for (int i=0; i<fractions.length-1; i++)
+ if (fractions[i] == fractions[i+1])
+ len--;
+
+ this.fractions = new float[len];
+ Color [] loColors = new Color[len-1];
+ Color [] hiColors = new Color[len-1];
+ normalizedIntervals = new float[len-1];
+
+ gradientUnderflow = colors[0].getRGB();
+ gradientOverflow = colors[colors.length-1].getRGB();
+
+ int idx = 0;
+ if (fixFirst) {
+ this.fractions[0] = 0;
+ loColors[0] = colors[0];
+ hiColors[0] = colors[0];
+ normalizedIntervals[0] = fractions[0];
+ idx++;
+ }
+
+ for (int i=0; i<fractions.length-1; i++) {
+ if (fractions[i] == fractions[i+1]) {
+ // System.out.println("EQ Fracts");
+ if (!colors[i].equals(colors[i+1])) {
+ hasDiscontinuity = true;
+ }
+ continue;
+ }
+ this.fractions[idx] = fractions[i];
+ loColors[idx] = colors[i];
+ hiColors[idx] = colors[i+1];
+ normalizedIntervals[idx] = fractions[i+1]-fractions[i];
+ idx++;
+ }
+
+ this.fractions[idx] = fractions[fractions.length-1];
+
+ if (fixLast) {
+ loColors[idx] = hiColors[idx] = colors[colors.length-1];
+ normalizedIntervals[idx] = 1-fractions[fractions.length-1];
+ idx++;
+ this.fractions[idx] = 1;
+ }
+
+ // The inverse transform is needed to from device to user space.
+ // Get all the components of the inverse transform matrix.
+ AffineTransform tInv = t.createInverse();
+
+ double m[] = new double[6];
+ tInv.getMatrix(m);
+ a00 = (float)m[0];
+ a10 = (float)m[1];
+ a01 = (float)m[2];
+ a11 = (float)m[3];
+ a02 = (float)m[4];
+ a12 = (float)m[5];
+
+ //copy some flags
+ this.cycleMethod = cycleMethod;
+ this.colorSpace = colorSpace;
+
+ // Setup an example Model, we may refine it later.
+ if (cm.getColorSpace() == lrgbmodel_A.getColorSpace())
+ dataModel = lrgbmodel_A;
+ else if (cm.getColorSpace() == srgbmodel_A.getColorSpace())
+ dataModel = srgbmodel_A;
+ else
+ throw new IllegalArgumentException
+ ("Unsupported ColorSpace for interpolation");
+
+ calculateGradientFractions(loColors, hiColors);
+
+ model = GraphicsUtil.coerceColorModel(dataModel,
+ cm.isAlphaPremultiplied());
+ }
+
+
+ /** This function is the meat of this class. It calculates an array of
+ * gradient colors based on an array of fractions and color values at those
+ * fractions.
+ */
+ protected final void calculateGradientFractions
+ (Color []loColors, Color []hiColors) {
+
+ //if interpolation should occur in Linear RGB space, convert the
+ //colors using the lookup table
+ if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
+ for (int i = 0; i < loColors.length; i++) {
+ loColors[i] =
+ new Color(SRGBtoLinearRGB[loColors[i].getRed()],
+ SRGBtoLinearRGB[loColors[i].getGreen()],
+ SRGBtoLinearRGB[loColors[i].getBlue()],
+ loColors[i].getAlpha());
+
+ hiColors[i] =
+ new Color(SRGBtoLinearRGB[hiColors[i].getRed()],
+ SRGBtoLinearRGB[hiColors[i].getGreen()],
+ SRGBtoLinearRGB[hiColors[i].getBlue()],
+ hiColors[i].getAlpha());
+ }
+ }
+
+ //initialize to be fully opaque for ANDing with colors
+ transparencyTest = 0xff000000;
+
+ //array of interpolation arrays
+ gradients = new int[fractions.length - 1][];
+ gradientsLength = gradients.length;
+
+ // Find smallest interval
+ int n = normalizedIntervals.length;
+
+ float Imin = 1;
+
+ for(int i = 0; i < n; i++) {
+ Imin = (Imin > normalizedIntervals[i]) ?
+ normalizedIntervals[i] : Imin;
+ }
+
+ //estimate the size of the entire gradients array.
+ //This is to prevent a tiny interval from causing the size of array to
+ //explode. If the estimated size is too large, break to using
+ //seperate arrays for each interval, and using an indexing scheme at
+ //look-up time.
+ int estimatedSize = 0;
+
+ if (Imin == 0) {
+ estimatedSize = Integer.MAX_VALUE;
+ hasDiscontinuity = true;
+ } else {
+ for (int i = 0; i < normalizedIntervals.length; i++) {
+ estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
+ }
+ }
+
+
+ if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
+ //slow method
+ calculateMultipleArrayGradient(loColors, hiColors);
+ if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
+ (gradients[0][0] !=
+ gradients[gradients.length-1][GRADIENT_SIZE_INDEX]))
+ hasDiscontinuity = true;
+ } else {
+ //fast method
+ calculateSingleArrayGradient(loColors, hiColors, Imin);
+ if ((cycleMethod == MultipleGradientPaint.REPEAT) &&
+ (gradient[0] != gradient[fastGradientArraySize]))
+ hasDiscontinuity = true;
+ }
+
+ // Use the most 'economical' model (no alpha).
+ if((transparencyTest >>> 24) == 0xff) {
+ if (dataModel.getColorSpace() == lrgbmodel_NA.getColorSpace())
+ dataModel = lrgbmodel_NA;
+ else if (dataModel.getColorSpace() == srgbmodel_NA.getColorSpace())
+ dataModel = srgbmodel_NA;
+ model = dataModel;
+ }
+ }
+
+
+ /**
+ * FAST LOOKUP METHOD
+ *
+ * This method calculates the gradient color values and places them in a
+ * single int array, gradient[]. It does this by allocating space for
+ * each interval based on its size relative to the smallest interval in
+ * the array. The smallest interval is allocated 255 interpolated values
+ * (the maximum number of unique in-between colors in a 24 bit color
+ * system), and all other intervals are allocated
+ * size = (255 * the ratio of their size to the smallest interval).
+ *
+ * This scheme expedites a speedy retrieval because the colors are
+ * distributed along the array according to their user-specified
+ * distribution. All that is needed is a relative index from 0 to 1.
+ *
+ * The only problem with this method is that the possibility exists for
+ * the array size to balloon in the case where there is a
+ * disproportionately small gradient interval. In this case the other
+ * intervals will be allocated huge space, but much of that data is
+ * redundant. We thus need to use the space conserving scheme below.
+ *
+ * @param Imin the size of the smallest interval
+ *
+ */
+ private void calculateSingleArrayGradient
+ (Color [] loColors, Color [] hiColors, float Imin) {
+
+ //set the flag so we know later it is a non-simple lookup
+ isSimpleLookup = true;
+
+ int rgb1; //2 colors to interpolate
+ int rgb2;
+
+ int gradientsTot = 1; //the eventual size of the single array
+
+ // These are fixed point 8.16 (start with 0.5)
+ int aveA = 0x008000;
+ int aveR = 0x008000;
+ int aveG = 0x008000;
+ int aveB = 0x008000;
+
+ //for every interval (transition between 2 colors)
+ for(int i=0; i < gradients.length; i++){
+
+ //create an array whose size is based on the ratio to the
+ //smallest interval.
+ int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
+ gradientsTot += nGradients;
+ gradients[i] = new int[nGradients];
+
+ //the the 2 colors (keyframes) to interpolate between
+ rgb1 = loColors[i].getRGB();
+ rgb2 = hiColors[i].getRGB();
+
+ //fill this array with the colors in between rgb1 and rgb2
+ interpolate(rgb1, rgb2, gradients[i]);
+
+ // Calculate Average of two colors...
+ int argb = gradients[i][GRADIENT_SIZE/2];
+ float norm = normalizedIntervals[i];
+ aveA += (int)(((argb>> 8)&0xFF0000)*norm);
+ aveR += (int)(((argb )&0xFF0000)*norm);
+ aveG += (int)(((argb<< 8)&0xFF0000)*norm);
+ aveB += (int)(((argb<<16)&0xFF0000)*norm);
+
+ //if the colors are opaque, transparency should still be 0xff000000
+ transparencyTest &= rgb1;
+ transparencyTest &= rgb2;
+ }
+
+ gradientAverage = (((aveA & 0xFF0000)<< 8) |
+ ((aveR & 0xFF0000) ) |
+ ((aveG & 0xFF0000)>> 8) |
+ ((aveB & 0xFF0000)>>16));
+
+ // Put all gradients in a single array
+ gradient = new int[gradientsTot];
+ int curOffset = 0;
+ for(int i = 0; i < gradients.length; i++){
+ System.arraycopy(gradients[i], 0, gradient,
+ curOffset, gradients[i].length);
+ curOffset += gradients[i].length;
+ }
+ gradient[gradient.length-1] = hiColors[hiColors.length-1].getRGB();
+
+ //if interpolation occurred in Linear RGB space, convert the
+ //gradients back to SRGB using the lookup table
+ if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
+ if (dataModel.getColorSpace() ==
+ ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
+ for (int i = 0; i < gradient.length; i++) {
+ gradient[i] =
+ convertEntireColorLinearRGBtoSRGB(gradient[i]);
+ }
+ gradientAverage =
+ convertEntireColorLinearRGBtoSRGB(gradientAverage);
+ }
+ } else {
+ if (dataModel.getColorSpace() ==
+ ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
+ for (int i = 0; i < gradient.length; i++) {
+ gradient[i] =
+ convertEntireColorSRGBtoLinearRGB(gradient[i]);
+ }
+ gradientAverage =
+ convertEntireColorSRGBtoLinearRGB(gradientAverage);
+ }
+ }
+
+ fastGradientArraySize = gradient.length - 1;
+ }
+
+
+ /**
+ * SLOW LOOKUP METHOD
+ *
+ * This method calculates the gradient color values for each interval and
+ * places each into its own 255 size array. The arrays are stored in
+ * gradients[][]. (255 is used because this is the maximum number of
+ * unique colors between 2 arbitrary colors in a 24 bit color system)
+ *
+ * This method uses the minimum amount of space (only 255 * number of
+ * intervals), but it aggravates the lookup procedure, because now we
+ * have to find out which interval to select, then calculate the index
+ * within that interval. This causes a significant performance hit,
+ * because it requires this calculation be done for every point in
+ * the rendering loop.
+ *
+ * For those of you who are interested, this is a classic example of the
+ * time-space tradeoff.
+ *
+ */
+ private void calculateMultipleArrayGradient
+ (Color [] loColors, Color [] hiColors) {
+
+ //set the flag so we know later it is a non-simple lookup
+ isSimpleLookup = false;
+
+ int rgb1; //2 colors to interpolate
+ int rgb2;
+
+ // These are fixed point 8.16 (start with 0.5)
+ int aveA = 0x008000;
+ int aveR = 0x008000;
+ int aveG = 0x008000;
+ int aveB = 0x008000;
+
+ //for every interval (transition between 2 colors)
+ for(int i=0; i < gradients.length; i++){
+
+ // This interval will never actually be used (zero size)
+ if (normalizedIntervals[i] == 0)
+ continue;
+
+ //create an array of the maximum theoretical size for each interval
+ gradients[i] = new int[GRADIENT_SIZE];
+
+ //get the the 2 colors
+ rgb1 = loColors[i].getRGB();
+ rgb2 = hiColors[i].getRGB();
+
+ //fill this array with the colors in between rgb1 and rgb2
+ interpolate(rgb1, rgb2, gradients[i]);
+
+ // Calculate Average of two colors...
+ int argb = gradients[i][GRADIENT_SIZE/2];
+ float norm = normalizedIntervals[i];
+ aveA += (int)(((argb>> 8)&0xFF0000)*norm);
+ aveR += (int)(((argb )&0xFF0000)*norm);
+ aveG += (int)(((argb<< 8)&0xFF0000)*norm);
+ aveB += (int)(((argb<<16)&0xFF0000)*norm);
+
+ //if the colors are opaque, transparency should still be 0xff000000
+ transparencyTest &= rgb1;
+ transparencyTest &= rgb2;
+ }
+
+ gradientAverage = (((aveA & 0xFF0000)<< 8) |
+ ((aveR & 0xFF0000) ) |
+ ((aveG & 0xFF0000)>> 8) |
+ ((aveB & 0xFF0000)>>16));
+
+ //if interpolation occurred in Linear RGB space, convert the
+ //gradients back to SRGB using the lookup table
+ if (colorSpace == LinearGradientPaint.LINEAR_RGB) {
+ if (dataModel.getColorSpace() ==
+ ColorSpace.getInstance(ColorSpace.CS_sRGB)) {
+ for (int j = 0; j < gradients.length; j++) {
+ for (int i = 0; i < gradients[j].length; i++) {
+ gradients[j][i] =
+ convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
+ }
+ }
+ gradientAverage =
+ convertEntireColorLinearRGBtoSRGB(gradientAverage);
+ }
+ } else {
+ if (dataModel.getColorSpace() ==
+ ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB)) {
+ for (int j = 0; j < gradients.length; j++) {
+ for (int i = 0; i < gradients[j].length; i++) {
+ gradients[j][i] =
+ convertEntireColorSRGBtoLinearRGB(gradients[j][i]);
+ }
+ }
+ gradientAverage =
+ convertEntireColorSRGBtoLinearRGB(gradientAverage);
+ }
+ }
+ }
+
+ /** Yet another helper function. This one linearly interpolates between
+ * 2 colors, filling up the output array.
+ *
+ * @param rgb1 the start color
+ * @param rgb2 the end color
+ * @param output the output array of colors... assuming this is not null.
+ *
+ */
+ private void interpolate(int rgb1, int rgb2, int[] output) {
+
+ int a1, r1, g1, b1, da, dr, dg, db; //color components
+
+ //step between interpolated values.
+ float stepSize = 1/(float)output.length;
+
+ //extract color components from packed integer
+ a1 = (rgb1 >> 24) & 0xff;
+ r1 = (rgb1 >> 16) & 0xff;
+ g1 = (rgb1 >> 8) & 0xff;
+ b1 = (rgb1 ) & 0xff;
+ //calculate the total change in alpha, red, green, blue
+ da = ((rgb2 >> 24) & 0xff) - a1;
+ dr = ((rgb2 >> 16) & 0xff) - r1;
+ dg = ((rgb2 >> 8) & 0xff) - g1;
+ db = ((rgb2 ) & 0xff) - b1;
+
+ //for each step in the interval calculate the in-between color by
+ //multiplying the normalized current position by the total color change
+ //(.5 is added to prevent truncation round-off error)
+ for (int i = 0; i < output.length; i++) {
+ output[i] =
+ (((int) ((a1 + i * da * stepSize) + .5) << 24)) |
+ (((int) ((r1 + i * dr * stepSize) + .5) << 16)) |
+ (((int) ((g1 + i * dg * stepSize) + .5) << 8)) |
+ (((int) ((b1 + i * db * stepSize) + .5) ));
+ }
+ }
+
+
+ /** Yet another helper function. This one extracts the color components
+ * of an integer RGB triple, converts them from LinearRGB to SRGB, then
+ * recompacts them into an int.
+ */
+ private int convertEntireColorLinearRGBtoSRGB(int rgb) {
+
+ int a1, r1, g1, b1; //color components
+
+ //extract red, green, blue components
+ a1 = (rgb >> 24) & 0xff;
+ r1 = (rgb >> 16) & 0xff;
+ g1 = (rgb >> 8) & 0xff;
+ b1 = rgb & 0xff;
+
+ //use the lookup table
+ r1 = LinearRGBtoSRGB[r1];
+ g1 = LinearRGBtoSRGB[g1];
+ b1 = LinearRGBtoSRGB[b1];
+
+ //re-compact the components
+ return ((a1 << 24) |
+ (r1 << 16) |
+ (g1 << 8) |
+ b1);
+ }
+
+ /** Yet another helper function. This one extracts the color components
+ * of an integer RGB triple, converts them from LinearRGB to SRGB, then
+ * recompacts them into an int.
+ */
+ private int convertEntireColorSRGBtoLinearRGB(int rgb) {
+
+ int a1, r1, g1, b1; //color components
+
+ //extract red, green, blue components
+ a1 = (rgb >> 24) & 0xff;
+ r1 = (rgb >> 16) & 0xff;
+ g1 = (rgb >> 8) & 0xff;
+ b1 = rgb & 0xff;
+
+ //use the lookup table
+ r1 = SRGBtoLinearRGB[r1];
+ g1 = SRGBtoLinearRGB[g1];
+ b1 = SRGBtoLinearRGB[b1];
+
+ //re-compact the components
+ return ((a1 << 24) |
+ (r1 << 16) |
+ (g1 << 8) |
+ b1);
+ }
+
+
+ /** Helper function to index into the gradients array. This is necessary
+ * because each interval has an array of colors with uniform size 255.
+ * However, the color intervals are not necessarily of uniform length, so
+ * a conversion is required.
+ *
+ * @param position the unmanipulated position. want to map this into the
+ * range 0 to 1
+ *
+ * @returns integer color to display
+ *
+ */
+ protected final int indexIntoGradientsArrays(float position) {
+
+ //first, manipulate position value depending on the cycle method.
+
+ if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {
+
+ if (position >= 1) { //upper bound is 1
+ return gradientOverflow;
+ }
+
+ else if (position <= 0) { //lower bound is 0
+ return gradientUnderflow;
+ }
+ }
+
+ else if (cycleMethod == MultipleGradientPaint.REPEAT) {
+ //get the fractional part
+ //(modulo behavior discards integer component)
+ position = position - (int)position;
+
+ //position now be between -1 and 1
+
+ if (position < 0) {
+ position = position + 1; //force it to be in the range 0-1
+ }
+
+ int w=0, c1=0, c2=0;
+ if (isSimpleLookup) {
+ position *= gradient.length;
+ int idx1 = (int)(position);
+ if (idx1+1 < gradient.length)
+ return gradient[idx1];
+
+ w = (int)((position-idx1)*(1<<16));
+ c1 = gradient[idx1];
+ c2 = gradient[0];
+ } else {
+ //for all the gradient interval arrays
+ for (int i = 0; i < gradientsLength; i++) {
+
+ if (position < fractions[i+1]) { //this is the array we want
+
+ float delta = position - fractions[i];
+
+ delta = ((delta / normalizedIntervals[i]) * GRADIENT_SIZE);
+ //this is the interval we want.
+ int index = (int)delta;
+ if ((index+1<gradients[i].length) ||
+ (i+1 < gradientsLength))
+ return gradients[i][index];
+
+ w = (int)((delta-index)*(1<<16));
+ c1 = gradients[i][index];
+ c2 = gradients[0][0];
+ break;
+ }
+ }
+ }
+
+ return
+ (((( ( (c1>> 8) &0xFF0000)+
+ ((((c2>>>24) )-((c1>>>24) ))*w))&0xFF0000)<< 8) |
+
+ ((( ( (c1 ) &0xFF0000)+
+ ((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w))&0xFF0000) ) |
+
+ ((( ( (c1<< 8) &0xFF0000)+
+ ((((c2>> 8)&0xFF)-((c1>> 8)&0xFF))*w))&0xFF0000)>> 8) |
+
+ ((( ( (c1<< 16) &0xFF0000)+
+ ((((c2 )&0xFF)-((c1 )&0xFF))*w))&0xFF0000)>>16));
+
+ // return c1 +
+ // ((( ((((c2>>>24) )-((c1>>>24) ))*w)&0xFF0000)<< 8) |
+ // (( ((((c2>> 16)&0xFF)-((c1>> 16)&0xFF))*w)&0xFF0000) ) |
+ // (( ((((c2>> 8)&0xFF)-((c1>> 8)&0xFF))*w)&0xFF0000)>> 8) |
+ // (( ((((c2 )&0xFF)-((c1 )&0xFF))*w)&0xFF0000)>>16));
+ }
+
+ else { //cycleMethod == MultipleGradientPaint.REFLECT
+
+ if (position < 0) {
+ position = -position; //take absolute value
+ }
+
+ int part = (int)position; //take the integer part
+
+ position = position - part; //get the fractional part
+
+ if ((part & 0x00000001) == 1) { //if integer part is odd
+ position = 1 - position; //want the reflected color instead
+ }
+ }
+
+ //now, get the color based on this 0-1 position:
+
+ if (isSimpleLookup) { //easy to compute: just scale index by array size
+ return gradient[(int)(position * fastGradientArraySize)];
+ }
+
+ else { //more complicated computation, to save space
+
+ //for all the gradient interval arrays
+ for (int i = 0; i < gradientsLength; i++) {
+
+ if (position < fractions[i+1]) { //this is the array we want
+
+ float delta = position - fractions[i];
+
+ //this is the interval we want.
+ int index = (int)((delta / normalizedIntervals[i])
+ * (GRADIENT_SIZE_INDEX));
+
+ return gradients[i][index];
+ }
+ }
+
+ }
+
+ return gradientOverflow;
+ }
+
+
+ /** Helper function to index into the gradients array. This is necessary
+ * because each interval has an array of colors with uniform size 255.
+ * However, the color intervals are not necessarily of uniform length, so
+ * a conversion is required. This version also does anti-aliasing by
+ * averaging the gradient over position+/-(sz/2).
+ *
+ * @param position the unmanipulated position. want to map this into the
+ * range 0 to 1
+ * @param sz the size in gradient space to average.
+ *
+ * @returns ARGB integer color to display
+ */
+ protected final int indexGradientAntiAlias(float position, float sz) {
+ //first, manipulate position value depending on the cycle method.
+ if (cycleMethod == MultipleGradientPaint.NO_CYCLE) {
+ if (DEBUG) System.out.println("NO_CYCLE");
+ float p1 = position-(sz/2);
+ float p2 = position+(sz/2);
+
+ if (p1 >= 1)
+ return gradientOverflow;
+
+ if (p2 <= 0)
+ return gradientUnderflow;
+
+ int interior;
+ float top_weight=0, bottom_weight=0, frac;
+ if (p2 >= 1) {
+ top_weight = (p2-1)/sz;
+ if (p1 <= 0) {
+ bottom_weight = -p1/sz;
+ frac=1;
+ interior = gradientAverage;
+ } else {
+ frac=1-p1;
+ interior = getAntiAlias(p1, true, 1, false, 1-p1, 1);
+ }
+ } else if (p1 <= 0) {
+ bottom_weight = -p1/sz;
+ frac = p2;
+ interior = getAntiAlias(0, true, p2, false, p2, 1);
+ } else
+ return getAntiAlias(p1, true, p2, false, sz, 1);
+
+ int norm = (int)((1<<16)*frac/sz);
+ int pA = (((interior>>>20)&0xFF0)*norm)>>16;
+ int pR = (((interior>> 12)&0xFF0)*norm)>>16;
+ int pG = (((interior>> 4)&0xFF0)*norm)>>16;
+ int pB = (((interior<< 4)&0xFF0)*norm)>>16;
+
+ if (bottom_weight != 0) {
+ int bPix = gradientUnderflow;
+ // System.out.println("ave: " + gradientAverage);
+ norm = (int)((1<<16)*bottom_weight);
+ pA += (((bPix>>>20) & 0xFF0)*norm)>>16;
+ pR += (((bPix>> 12) & 0xFF0)*norm)>>16;
+ pG += (((bPix>> 4) & 0xFF0)*norm)>>16;
+ pB += (((bPix<< 4) & 0xFF0)*norm)>>16;
+ }
+
+ if (top_weight != 0) {
+ int tPix = gradientOverflow;
+
+ norm = (int)((1<<16)*top_weight);
+ pA += (((tPix>>>20) & 0xFF0)*norm)>>16;
+ pR += (((tPix>> 12) & 0xFF0)*norm)>>16;
+ pG += (((tPix>> 4) & 0xFF0)*norm)>>16;
+ pB += (((tPix<< 4) & 0xFF0)*norm)>>16;
+ }
+
+ return (((pA&0xFF0)<<20) |
+ ((pR&0xFF0)<<12) |
+ ((pG&0xFF0)<< 4) |
+ ((pB&0xFF0)>> 4));
+ }
+
+ // See how many times we are going to "wrap around" the gradient,
+ // array.
+ int intSz = (int)sz;
+
+ float weight = 1f;
+ if (intSz != 0) {
+ // We need to make sure that sz is < 1.0 otherwise
+ // p1 and p2 my pass each other which will cause no end of
+ // trouble.
+ sz -= intSz;
+ weight = sz/(intSz+sz);
+ if (weight < 0.1)
+ // The part of the color from the location will be swamped
+ // by the averaged part of the gradient so just use the
+ // average color for the gradient.
+ return gradientAverage;
+ }
+
+ // So close to full gradient just use the average value...
+ if (sz > 0.99)
+ return gradientAverage;
+
+ // Go up and down from position by 1/2 sz.
+ float p1 = position-(sz/2);
+ float p2 = position+(sz/2);
+ if (DEBUG) System.out.println("P1: " + p1 + " P2: " + p2);
+
+ // These indicate the direction to go from p1 and p2 when
+ // averaging...
+ boolean p1_up=true;
+ boolean p2_up=false;
+
+ if (cycleMethod == MultipleGradientPaint.REPEAT) {
+ if (DEBUG) System.out.println("REPEAT");
+
+ // Get positions between -1 and 1
+ p1=p1-(int)p1;
+ p2=p2-(int)p2;
+
+ // force to be in rage 0-1.
+ if (p1 <0) p1 += 1;
+ if (p2 <0) p2 += 1;
+ }
+
+ else { //cycleMethod == MultipleGradientPaint.REFLECT
+ if (DEBUG) System.out.println("REFLECT");
+
+ //take absolute values
+ // Note when we reflect we change sense of p1/2_up.
+ if (p2 < 0) {
+ p1 = -p1; p1_up = !p1_up;
+ p2 = -p2; p2_up = !p2_up;
+ } else if (p1 < 0) {
+ p1 = -p1; p1_up = !p1_up;
+ }
+
+ int part1, part2;
+ part1 = (int)p1; // take the integer part
+ p1 = p1 - part1; // get the fractional part
+
+ part2 = (int)p2; // take the integer part
+ p2 = p2 - part2; // get the fractional part
+
+ // if integer part is odd we want the reflected color instead.
+ // Note when we reflect we change sense of p1/2_up.
+ if ((part1 & 0x01) == 1) {
+ p1 = 1-p1;
+ p1_up = !p1_up;
+ }
+
+ if ((part2 & 0x01) == 1) {
+ p2 = 1-p2;
+ p2_up = !p2_up;
+ }
+
+ // Check if in the end they just got switched around.
+ // this commonly happens if they both end up negative.
+ if ((p1 > p2) && !p1_up && p2_up) {
+ float t = p1;
+ p1 = p2;
+ p2 = t;
+ p1_up = true;
+ p2_up = false;
+ }
+ }
+
+ return getAntiAlias(p1, p1_up, p2, p2_up, sz, weight);
+ }
+
+
+ private final int getAntiAlias(float p1, boolean p1_up,
+ float p2, boolean p2_up,
+ float sz, float weight) {
+
+ // Until the last set of ops these are 28.4 fixed point values.
+ int ach=0, rch=0, gch=0, bch=0;
+ if (isSimpleLookup) {
+ p1 *= fastGradientArraySize;
+ p2 *= fastGradientArraySize;
+
+ int idx1 = (int)p1;
+ int idx2 = (int)p2;
+
+ int i, pix;
+
+ if (p1_up && !p2_up && (idx1 <= idx2)) {
+
+ if (idx1 == idx2)
+ return gradient[idx1];
+
+ // Sum between idx1 and idx2.
+ for (i=idx1+1; i<idx2; i++) {
+ pix = gradient[i];
+ ach += ((pix>>>20)&0xFF0);
+ rch += ((pix>>>12)&0xFF0);
+ gch += ((pix>>> 4)&0xFF0);
+ bch += ((pix<< 4)&0xFF0);
+ }
+ } else {
+ // Do the bulk of the work, all the whole gradient entries
+ // for idx1 and idx2.
+ if (p1_up) {
+ for (i=idx1+1; i<fastGradientArraySize; i++) {
+ pix = gradient[i];
+ ach += ((pix>>>20)&0xFF0);
+ rch += ((pix>>>12)&0xFF0);
+ gch += ((pix>>> 4)&0xFF0);
+ bch += ((pix<< 4)&0xFF0);
+ }
+ } else {
+ for (i=0; i<idx1; i++) {
+ pix = gradient[i];
+ ach += ((pix>>>20)&0xFF0);
+ rch += ((pix>>>12)&0xFF0);
+ gch += ((pix>>> 4)&0xFF0);
+ bch += ((pix<< 4)&0xFF0);
+ }
+ }
+
+ if (p2_up) {
+ for (i=idx2+1; i<fastGradientArraySize; i++) {
+ pix = gradient[i];
+ ach += ((pix>>>20)&0xFF0);
+ rch += ((pix>>>12)&0xFF0);
+ gch += ((pix>>> 4)&0xFF0);
+ bch += ((pix<< 4)&0xFF0);
+ }
+ } else {
+ for (i=0; i<idx2; i++) {
+ pix = gradient[i];
+ ach += ((pix>>>20)&0xFF0);
+ rch += ((pix>>>12)&0xFF0);
+ gch += ((pix>>> 4)&0xFF0);
+ bch += ((pix<< 4)&0xFF0);
+ }
+ }
+ }
+
+ int norm, isz;
+
+ // Normalize the summation so far...
+ isz = (int)((1<<16)/(sz*fastGradientArraySize));
+ ach = (ach*isz)>>16;
+ rch = (rch*isz)>>16;
+ gch = (gch*isz)>>16;
+ bch = (bch*isz)>>16;
+
+ // Clean up with the partial buckets at each end.
+ if (p1_up) norm = (int)((1-(p1-idx1))*isz);
+ else norm = (int)( (p1-idx1) *isz);
+ pix = gradient[idx1];
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+
+ if (p2_up) norm = (int)((1-(p2-idx2))*isz);
+ else norm = (int)( (p2-idx2) *isz);
+ pix = gradient[idx2];
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+
+ // Round and drop the 4bits frac.
+ ach = (ach+0x08)>>4;
+ rch = (rch+0x08)>>4;
+ gch = (gch+0x08)>>4;
+ bch = (bch+0x08)>>4;
+
+ } else {
+ int idx1=0, idx2=0;
+ int i1=-1, i2=-1;
+ float f1=0, f2=0;
+ // Find which gradient interval our points fall into.
+ for (int i = 0; i < gradientsLength; i++) {
+ if ((p1 < fractions[i+1]) && (i1 == -1)) {
+ //this is the array we want
+ i1 = i;
+ f1 = p1 - fractions[i];
+
+ f1 = ((f1/normalizedIntervals[i])
+ *GRADIENT_SIZE_INDEX);
+ //this is the interval we want.
+ idx1 = (int)f1;
+ if (i2 != -1) break;
+ }
+ if ((p2 < fractions[i+1]) && (i2 == -1)) {
+ //this is the array we want
+ i2 = i;
+ f2 = p2 - fractions[i];
+
+ f2 = ((f2/normalizedIntervals[i])
+ *GRADIENT_SIZE_INDEX);
+ //this is the interval we want.
+ idx2 = (int)f2;
+ if (i1 != -1) break;
+ }
+ }
+
+ if (i1 == -1) {
+ i1 = gradients.length - 1;
+ f1 = idx1 = GRADIENT_SIZE_INDEX;
+ }
+
+ if (i2 == -1) {
+ i2 = gradients.length - 1;
+ f2 = idx2 = GRADIENT_SIZE_INDEX;
+ }
+
+ if (DEBUG) System.out.println("I1: " + i1 + " Idx1: " + idx1 +
+ " I2: " + i2 + " Idx2: " + idx2);
+
+ // Simple case within one gradient array (so the average
+ // of the two idx gives us the true average of colors).
+ if ((i1 == i2) && (idx1 <= idx2) && p1_up && !p2_up)
+ return gradients[i1][(idx1+idx2+1)>>1];
+
+ // i1 != i2
+
+ int pix, norm;
+ int base = (int)((1<<16)/sz);
+ if ((i1 < i2) && p1_up && !p2_up) {
+ norm = (int)((base
+ *normalizedIntervals[i1]
+ *(GRADIENT_SIZE_INDEX-f1))
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+
+ for (int i=i1+1; i<i2; i++) {
+ norm = (int)(base*normalizedIntervals[i]);
+ pix = gradients[i][GRADIENT_SIZE>>1];
+
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ }
+
+ norm = (int)((base*normalizedIntervals[i2]*f2)
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i2][(idx2+1)>>1];
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ } else {
+ if (p1_up) {
+ norm = (int)((base
+ *normalizedIntervals[i1]
+ *(GRADIENT_SIZE_INDEX-f1))
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i1][(idx1+GRADIENT_SIZE)>>1];
+ } else {
+ norm = (int)((base*normalizedIntervals[i1]*f1)
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i1][(idx1+1)>>1];
+ }
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+
+ if (p2_up) {
+ norm = (int)((base
+ *normalizedIntervals[i2]
+ *(GRADIENT_SIZE_INDEX-f2))
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i2][(idx2+GRADIENT_SIZE)>>1];
+ } else {
+ norm = (int)((base*normalizedIntervals[i2]*f2)
+ /GRADIENT_SIZE_INDEX);
+ pix = gradients[i2][(idx2+1)>>1];
+ }
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+
+ if (p1_up) {
+ for (int i=i1+1; i<gradientsLength; i++) {
+ norm = (int)(base*normalizedIntervals[i]);
+ pix = gradients[i][GRADIENT_SIZE>>1];
+
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ }
+ } else {
+ for (int i=0; i<i1; i++) {
+ norm = (int)(base*normalizedIntervals[i]);
+ pix = gradients[i][GRADIENT_SIZE>>1];
+
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ }
+ }
+
+ if (p2_up) {
+ for (int i=i2+1; i<gradientsLength; i++) {
+ norm = (int)(base*normalizedIntervals[i]);
+ pix = gradients[i][GRADIENT_SIZE>>1];
+
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ }
+ } else {
+ for (int i=0; i<i2; i++) {
+ norm = (int)(base*normalizedIntervals[i]);
+ pix = gradients[i][GRADIENT_SIZE>>1];
+
+ ach += (((pix>>>20)&0xFF0) *norm)>>16;
+ rch += (((pix>>>12)&0xFF0) *norm)>>16;
+ gch += (((pix>>> 4)&0xFF0) *norm)>>16;
+ bch += (((pix<< 4)&0xFF0) *norm)>>16;
+ }
+ }
+
+ }
+ ach = (ach+0x08)>>4;
+ rch = (rch+0x08)>>4;
+ gch = (gch+0x08)>>4;
+ bch = (bch+0x08)>>4;
+ if (DEBUG) System.out.println("Pix: [" + ach + ", " + rch +
+ ", " + gch + ", " + bch + "]");
+ }
+
+ if (weight != 1) {
+ // System.out.println("ave: " + gradientAverage);
+ int aveW = (int)((1<<16)*(1-weight));
+ int aveA = ((gradientAverage>>>24) & 0xFF)*aveW;
+ int aveR = ((gradientAverage>> 16) & 0xFF)*aveW;
+ int aveG = ((gradientAverage>> 8) & 0xFF)*aveW;
+ int aveB = ((gradientAverage ) & 0xFF)*aveW;
+
+ int iw = (int)(weight*(1<<16));
+ ach = ((ach*iw)+aveA)>>16;
+ rch = ((rch*iw)+aveR)>>16;
+ gch = ((gch*iw)+aveG)>>16;
+ bch = ((bch*iw)+aveB)>>16;
+ }
+
+ return ((ach<<24) | (rch<<16) | (gch<<8) | bch);
+ }
+
+
+ /** Helper function to convert a color component in sRGB space to linear
+ * RGB space. Used to build a static lookup table.
+ */
+ private static int convertSRGBtoLinearRGB(int color) {
+
+ float input, output;
+
+ input = ((float) color) / 255.0f;
+ if (input <= 0.04045f) {
+ output = input / 12.92f;
+ }
+ else {
+ output = (float) Math.pow((input + 0.055) / 1.055, 2.4);
+ }
+ int o = Math.round(output * 255.0f);
+
+ return o;
+ }
+
+ /** Helper function to convert a color component in linear RGB space to
+ * SRGB space. Used to build a static lookup table.
+ */
+ private static int convertLinearRGBtoSRGB(int color) {
+
+ float input, output;
+
+ input = ((float) color) / 255.0f;
+
+ if (input <= 0.0031308) {
+ output = input * 12.92f;
+ }
+ else {
+ output = (1.055f *
+ ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
+ }
+
+ int o = Math.round(output * 255.0f);
+
+ return o;
+ }
+
+
+ /** Superclass getRaster... */
+ public final Raster getRaster(int x, int y, int w, int h) {
+ if (w == 0 || h == 0) {
+ return null;
+ }
+
+ //
+ // If working raster is big enough, reuse it. Otherwise,
+ // build a large enough new one.
+ //
+ WritableRaster raster = saved;
+ if (raster == null || raster.getWidth() < w || raster.getHeight() < h)
+ {
+ raster = getCachedRaster(dataModel, w, h);
+ saved = raster;
+ }
+
+ // Access raster internal int array. Because we use a DirectColorModel,
+ // we know the DataBuffer is of type DataBufferInt and the SampleModel
+ // is SinglePixelPackedSampleModel.
+ // Adjust for initial offset in DataBuffer and also for the scanline
+ // stride.
+ //
+ DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
+ int[] pixels = rasterDB.getBankData()[0];
+ int off = rasterDB.getOffset();
+ int scanlineStride = ((SinglePixelPackedSampleModel)
+ raster.getSampleModel()).getScanlineStride();
+ int adjust = scanlineStride - w;
+
+ fillRaster(pixels, off, adjust, x, y, w, h); //delegate to subclass.
+
+ GraphicsUtil.coerceData(raster, dataModel,
+ model.isAlphaPremultiplied());
+
+
+ return raster;
+ }
+
+ /** Subclasses should implement this. */
+ protected abstract void fillRaster(int pixels[], int off, int adjust,
+ int x, int y, int w, int h);
+
+
+ /** Took this cacheRaster code from GradientPaint. It appears to recycle
+ * rasters for use by any other instance, as long as they are sufficiently
+ * large.
+ */
+ protected final
+ static synchronized WritableRaster getCachedRaster
+ (ColorModel cm, int w, int h) {
+ if (cm == cachedModel) {
+ if (cached != null) {
+ WritableRaster ras = (WritableRaster) cached.get();
+ if (ras != null &&
+ ras.getWidth() >= w &&
+ ras.getHeight() >= h)
+ {
+ cached = null;
+ return ras;
+ }
+ }
+ }
+ // Don't create rediculously small rasters...
+ if (w<32) w=32;
+ if (h<32) h=32;
+ return cm.createCompatibleWritableRaster(w, h);
+ }
+
+ /** Took this cacheRaster code from GradientPaint. It appears to recycle
+ * rasters for use by any other instance, as long as they are sufficiently
+ * large.
+ */
+ protected final
+ static synchronized void putCachedRaster(ColorModel cm,
+ WritableRaster ras) {
+ if (cached != null) {
+ WritableRaster cras = (WritableRaster) cached.get();
+ if (cras != null) {
+ int cw = cras.getWidth();
+ int ch = cras.getHeight();
+ int iw = ras.getWidth();
+ int ih = ras.getHeight();
+ if (cw >= iw && ch >= ih) {
+ return;
+ }
+ if (cw * ch >= iw * ih) {
+ return;
+ }
+ }
+ }
+ cachedModel = cm;
+ cached = new WeakReference(ras);
+ }
+
+ /**
+ * Release the resources allocated for the operation.
+ */
+ public final void dispose() {
+ if (saved != null) {
+ putCachedRaster(model, saved);
+ saved = null;
+ }
+ }
+
+ /**
+ * Return the ColorModel of the output.
+ */
+ public final ColorModel getColorModel() {
+ return model;
+ }
+}
+