summaryrefslogblamecommitdiffstats
path: root/src/drivers/net/etherfabric.c
blob: 125dfa54945769f46898338962ecc33db20d78ee (plain) (tree)
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661



















                                                                           
                     

                         










                                                                           












































































































































                                                                               












                                                                
 




                                         













































































































































































































































































































                                                                              
                                                       
                         
                      
 

                                                    


                                                             















                                                                     




































                                                                         
                                                                               



























































































































































































                                                                             





                          
























                               






                                   

                           


                         

                            



                                     



                                  










































































































                                                                 
                                



















                                  





                                         
























































                                                                              










































                                                                              
































                                                                              
                                                                         




















                                                             













                                                                            

                                                          


                                                    





                                                              
                                                      
                                                         



                                                               


















                                                                        










                                                                      






                                                             

                                 
 


                                    







                                                         


                                                          

                                                                               


















                                                                    
              


































                                                                      
              














































                                                                        






                                                                      
                

                                                                       


































































































































































































































































































































































































































































































































































































































































































































































































                                                                               
                                 























































































































































































































































































































































































































































































































































































































                                                                               













































                                                                            




























                                                                             







                                                                      





















                                                                            













                                                                          

                                                                     
           
                      






                                                                            
                                                     




























                                                                            






                                                       


                                                                            
                                                                          










                                                                   
                                            



































                                                                               
                                            
                                              



                 
                                                  



                                                        



                                                                  







                     
/**************************************************************************
 *
 * Etherboot driver for Level 5 Etherfabric network cards
 *
 * Written by Michael Brown <mbrown@fensystems.co.uk>
 *
 * Copyright Fen Systems Ltd. 2005
 * Copyright Level 5 Networks Inc. 2005
 *
 * This software may be used and distributed according to the terms of
 * the GNU General Public License (GPL), incorporated herein by
 * reference.  Drivers based on or derived from this code fall under
 * the GPL and must retain the authorship, copyright and license
 * notice.
 *
 **************************************************************************
 */

#include "etherboot.h"
#include "nic.h"
#include <gpxe/pci.h>
#include <gpxe/bitbash.h>
#include <gpxe/i2c.h>
#include "timer.h"
#define dma_addr_t unsigned long
#include "etherfabric.h"

/**************************************************************************
 *
 * Constants and macros
 *
 **************************************************************************
 */

#define EFAB_ASSERT(x)                                                        \
        do {                                                                  \
                if ( ! (x) ) {                                                \
                        DBG ( "ASSERT(%s) failed at %s line %d [%s]\n", #x,   \
                              __FILE__, __LINE__, __FUNCTION__ );             \
                }                                                             \
        } while (0)

#define EFAB_TRACE(...)

#define EFAB_REGDUMP(...)

#define FALCON_USE_IO_BAR 1

/*
 * EtherFabric constants 
 *
 */

/* PCI Definitions */
#define EFAB_VENDID_LEVEL5	0x1924
#define FALCON_P_DEVID		0x0703  /* Temporary PCI ID */
#define EF1002_DEVID		0xC101

/**************************************************************************
 *
 * Data structures
 *
 **************************************************************************
 */

/*
 * Buffers used for TX, RX and event queue
 *
 */
#define EFAB_BUF_ALIGN		4096
#define EFAB_DATA_BUF_SIZE	2048
#define EFAB_RX_BUFS		16
#define EFAB_RXD_SIZE		512
#define EFAB_TXD_SIZE		512
#define EFAB_EVQ_SIZE		512
struct efab_buffers {
	uint8_t eventq[4096];
	uint8_t rxd[4096];
	uint8_t txd[4096];
	uint8_t tx_buf[EFAB_DATA_BUF_SIZE];
	uint8_t rx_buf[EFAB_RX_BUFS][EFAB_DATA_BUF_SIZE];
	uint8_t padding[EFAB_BUF_ALIGN-1];
};
static struct efab_buffers efab_buffers;

/** An RX buffer */
struct efab_rx_buf {
	uint8_t *addr;
	unsigned int len;
	int id;
};

/** A TX buffer */
struct efab_tx_buf {
	uint8_t *addr;
	unsigned int len;
	int id;
};

/** Etherfabric event type */
enum efab_event_type {
	EFAB_EV_NONE = 0,
	EFAB_EV_TX,
	EFAB_EV_RX,
};

/** Etherfabric event */
struct efab_event {
	/** Event type */
	enum efab_event_type type;
	/** RX buffer ID */
	int rx_id;
	/** RX length */
	unsigned int rx_len;
};

/*
 * Etherfabric abstraction layer
 *
 */
struct efab_nic;
struct efab_operations {
	void ( * get_membase ) ( struct efab_nic *efab );
	int ( * reset ) ( struct efab_nic *efab );
	int ( * init_nic ) ( struct efab_nic *efab );
	int ( * read_eeprom ) ( struct efab_nic *efab );
	void ( * build_rx_desc ) ( struct efab_nic *efab,
				   struct efab_rx_buf *rx_buf );
	void ( * notify_rx_desc ) ( struct efab_nic *efab );
	void ( * build_tx_desc ) ( struct efab_nic *efab,
				   struct efab_tx_buf *tx_buf );
	void ( * notify_tx_desc ) ( struct efab_nic *efab );
	int ( * fetch_event ) ( struct efab_nic *efab,
				struct efab_event *event );
	void ( * mask_irq ) ( struct efab_nic *efab, int enabled );
	void ( * generate_irq ) ( struct efab_nic *efab );
	void ( * mac_writel ) ( struct efab_nic *efab, efab_dword_t *value,
				unsigned int mac_reg );
	void ( * mac_readl ) ( struct efab_nic *efab, efab_dword_t *value,
			       unsigned int mac_reg );
	int ( * init_mac ) ( struct efab_nic *efab );
	void ( * mdio_write ) ( struct efab_nic *efab, int location,
				int value );
	int ( * mdio_read ) ( struct efab_nic *efab, int location );
};

/*
 * Driver private data structure
 *
 */
struct efab_nic {

	/** PCI device */
	struct pci_device *pci;

	/** Operations table */
	struct efab_operations *op;

	/** Memory base */
	void *membase;

	/** I/O base */
	unsigned int iobase;

	/** Buffers */
	uint8_t *eventq;		/* Falcon only */
	uint8_t *txd;			/* Falcon only */
	uint8_t *rxd;			/* Falcon only */
	struct efab_tx_buf tx_buf;
	struct efab_rx_buf rx_bufs[EFAB_RX_BUFS];

	/** Buffer pointers */
	unsigned int eventq_read_ptr;	/* Falcon only */
	unsigned int tx_write_ptr;
	unsigned int rx_write_ptr;

	/** Port 0/1 on the NIC */
	int port;

	/** MAC address */
	uint8_t mac_addr[ETH_ALEN];
	/** GMII link options */
	unsigned int link_options;
	/** Link status */
	int link_up;

	/** INT_REG_KER for Falcon */
	efab_oword_t int_ker __attribute__ (( aligned ( 16 ) ));

	/** EEPROM access */
	struct i2c_bit_basher ef1002_i2c;
	unsigned long ef1002_i2c_outputs;
	struct i2c_device ef1002_eeprom;
};

/**************************************************************************
 *
 * GMII routines
 *
 **************************************************************************
 */

/* GMII registers */
#define MII_BMSR		0x01	/* Basic mode status register  */
#define MII_ADVERTISE		0x04	/* Advertisement control register */
#define MII_LPA			0x05	/* Link partner ability register*/
#define GMII_GTCR		0x09	/* 1000BASE-T control register */
#define GMII_GTSR		0x0a	/* 1000BASE-T status register */
#define GMII_PSSR		0x11	/* PHY-specific status register */

/* Basic mode status register. */
#define BMSR_LSTATUS		0x0004	/* Link status                 */

/* Link partner ability register. */
#define LPA_10HALF              0x0020  /* Can do 10mbps half-duplex   */
#define LPA_10FULL              0x0040  /* Can do 10mbps full-duplex   */
#define LPA_100HALF             0x0080  /* Can do 100mbps half-duplex  */
#define LPA_100FULL             0x0100  /* Can do 100mbps full-duplex  */
#define LPA_100BASE4            0x0200  /* Can do 100mbps 4k packets   */
#define LPA_PAUSE		0x0400	/* Bit 10 - MAC pause */

/* Pseudo extensions to the link partner ability register */
#define LPA_1000FULL		0x00020000
#define LPA_1000HALF		0x00010000

#define LPA_100			(LPA_100FULL | LPA_100HALF | LPA_100BASE4)
#define LPA_1000		( LPA_1000FULL | LPA_1000HALF )
#define LPA_DUPLEX		( LPA_10FULL | LPA_100FULL | LPA_1000FULL )

/* Mask of bits not associated with speed or duplexity. */
#define LPA_OTHER		~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
				   LPA_100HALF | LPA_1000FULL | LPA_1000HALF )

/* PHY-specific status register */
#define PSSR_LSTATUS		0x0400	/* Bit 10 - link status */

/**
 * Retrieve GMII autonegotiation advertised abilities
 *
 */
static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) {
	unsigned int mii_advertise;
	unsigned int gmii_advertise;
	
	/* Extended bits are in bits 8 and 9 of GMII_GTCR */
	mii_advertise = efab->op->mdio_read ( efab, MII_ADVERTISE );
	gmii_advertise = ( ( efab->op->mdio_read ( efab, GMII_GTCR ) >> 8 )
			   & 0x03 );
	return ( ( gmii_advertise << 16 ) | mii_advertise );
}

/**
 * Retrieve GMII autonegotiation link partner abilities
 *
 */
static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) {
	unsigned int mii_lpa;
	unsigned int gmii_lpa;
	
	/* Extended bits are in bits 10 and 11 of GMII_GTSR */
	mii_lpa = efab->op->mdio_read ( efab, MII_LPA );
	gmii_lpa = ( efab->op->mdio_read ( efab, GMII_GTSR ) >> 10 ) & 0x03;
	return ( ( gmii_lpa << 16 ) | mii_lpa );
}

/**
 * Calculate GMII autonegotiated link technology
 *
 */
static unsigned int gmii_nway_result ( unsigned int negotiated ) {
	unsigned int other_bits;

	/* Mask out the speed and duplexity bits */
	other_bits = negotiated & LPA_OTHER;

	if ( negotiated & LPA_1000FULL )
		return ( other_bits | LPA_1000FULL );
	else if ( negotiated & LPA_1000HALF )
		return ( other_bits | LPA_1000HALF );
	else if ( negotiated & LPA_100FULL )
		return ( other_bits | LPA_100FULL );
	else if ( negotiated & LPA_100BASE4 )
		return ( other_bits | LPA_100BASE4 );
	else if ( negotiated & LPA_100HALF )
		return ( other_bits | LPA_100HALF );
	else if ( negotiated & LPA_10FULL )
		return ( other_bits | LPA_10FULL );
	else return ( other_bits | LPA_10HALF );
}

/**
 * Check GMII PHY link status
 *
 */
static int gmii_link_ok ( struct efab_nic *efab ) {
	int status;
	int phy_status;
	
	/* BMSR is latching - it returns "link down" if the link has
	 * been down at any point since the last read.  To get a
	 * real-time status, we therefore read the register twice and
	 * use the result of the second read.
	 */
	efab->op->mdio_read ( efab, MII_BMSR );
	status = efab->op->mdio_read ( efab, MII_BMSR );

	/* Read the PHY-specific Status Register.  This is
	 * non-latching, so we need do only a single read.
	 */
	phy_status = efab->op->mdio_read ( efab, GMII_PSSR );

	return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
}

/**************************************************************************
 *
 * Alaska PHY
 *
 **************************************************************************
 */

/**
 * Initialise Alaska PHY
 *
 */
static void alaska_init ( struct efab_nic *efab ) {
	unsigned int advertised, lpa;

	/* Read link up status */
	efab->link_up = gmii_link_ok ( efab );

	if ( ! efab->link_up )
		return;

	/* Determine link options from PHY. */
	advertised = gmii_autoneg_advertised ( efab );
	lpa = gmii_autoneg_lpa ( efab );
	efab->link_options = gmii_nway_result ( advertised & lpa );

	printf ( "%dMbps %s-duplex (%04x,%04x)\n",
		 ( efab->link_options & LPA_1000 ? 1000 :
		   ( efab->link_options & LPA_100 ? 100 : 10 ) ),
		 ( efab->link_options & LPA_DUPLEX ? "full" : "half" ),
		 advertised, lpa );
}

/**************************************************************************
 *
 * Mentor MAC
 *
 **************************************************************************
 */

/* GMAC configuration register 1 */
#define GM_CFG1_REG_MAC 0x00
#define GM_SW_RST_LBN 31
#define GM_SW_RST_WIDTH 1
#define GM_RX_FC_EN_LBN 5
#define GM_RX_FC_EN_WIDTH 1
#define GM_TX_FC_EN_LBN 4
#define GM_TX_FC_EN_WIDTH 1
#define GM_RX_EN_LBN 2
#define GM_RX_EN_WIDTH 1
#define GM_TX_EN_LBN 0
#define GM_TX_EN_WIDTH 1

/* GMAC configuration register 2 */
#define GM_CFG2_REG_MAC 0x01
#define GM_PAMBL_LEN_LBN 12
#define GM_PAMBL_LEN_WIDTH 4
#define GM_IF_MODE_LBN 8
#define GM_IF_MODE_WIDTH 2
#define GM_PAD_CRC_EN_LBN 2
#define GM_PAD_CRC_EN_WIDTH 1
#define GM_FD_LBN 0
#define GM_FD_WIDTH 1

/* GMAC maximum frame length register */
#define GM_MAX_FLEN_REG_MAC 0x04
#define GM_MAX_FLEN_LBN 0
#define GM_MAX_FLEN_WIDTH 16

/* GMAC MII management configuration register */
#define GM_MII_MGMT_CFG_REG_MAC 0x08
#define GM_MGMT_CLK_SEL_LBN 0
#define GM_MGMT_CLK_SEL_WIDTH 3

/* GMAC MII management command register */
#define GM_MII_MGMT_CMD_REG_MAC 0x09
#define GM_MGMT_SCAN_CYC_LBN 1
#define GM_MGMT_SCAN_CYC_WIDTH 1
#define GM_MGMT_RD_CYC_LBN 0
#define GM_MGMT_RD_CYC_WIDTH 1

/* GMAC MII management address register */
#define GM_MII_MGMT_ADR_REG_MAC 0x0a
#define GM_MGMT_PHY_ADDR_LBN 8
#define GM_MGMT_PHY_ADDR_WIDTH 5
#define GM_MGMT_REG_ADDR_LBN 0
#define GM_MGMT_REG_ADDR_WIDTH 5

/* GMAC MII management control register */
#define GM_MII_MGMT_CTL_REG_MAC 0x0b
#define GM_MGMT_CTL_LBN 0
#define GM_MGMT_CTL_WIDTH 16

/* GMAC MII management status register */
#define GM_MII_MGMT_STAT_REG_MAC 0x0c
#define GM_MGMT_STAT_LBN 0
#define GM_MGMT_STAT_WIDTH 16

/* GMAC MII management indicators register */
#define GM_MII_MGMT_IND_REG_MAC 0x0d
#define GM_MGMT_BUSY_LBN 0
#define GM_MGMT_BUSY_WIDTH 1

/* GMAC station address register 1 */
#define GM_ADR1_REG_MAC 0x10
#define GM_HWADDR_5_LBN 24
#define GM_HWADDR_5_WIDTH 8
#define GM_HWADDR_4_LBN 16
#define GM_HWADDR_4_WIDTH 8
#define GM_HWADDR_3_LBN 8
#define GM_HWADDR_3_WIDTH 8
#define GM_HWADDR_2_LBN 0
#define GM_HWADDR_2_WIDTH 8

/* GMAC station address register 2 */
#define GM_ADR2_REG_MAC 0x11
#define GM_HWADDR_1_LBN 24
#define GM_HWADDR_1_WIDTH 8
#define GM_HWADDR_0_LBN 16
#define GM_HWADDR_0_WIDTH 8

/* GMAC FIFO configuration register 0 */
#define GMF_CFG0_REG_MAC 0x12
#define GMF_FTFENREQ_LBN 12
#define GMF_FTFENREQ_WIDTH 1
#define GMF_STFENREQ_LBN 11
#define GMF_STFENREQ_WIDTH 1
#define GMF_FRFENREQ_LBN 10
#define GMF_FRFENREQ_WIDTH 1
#define GMF_SRFENREQ_LBN 9
#define GMF_SRFENREQ_WIDTH 1
#define GMF_WTMENREQ_LBN 8
#define GMF_WTMENREQ_WIDTH 1

/* GMAC FIFO configuration register 1 */
#define GMF_CFG1_REG_MAC 0x13
#define GMF_CFGFRTH_LBN 16
#define GMF_CFGFRTH_WIDTH 5
#define GMF_CFGXOFFRTX_LBN 0
#define GMF_CFGXOFFRTX_WIDTH 16

/* GMAC FIFO configuration register 2 */
#define GMF_CFG2_REG_MAC 0x14
#define GMF_CFGHWM_LBN 16
#define GMF_CFGHWM_WIDTH 6
#define GMF_CFGLWM_LBN 0
#define GMF_CFGLWM_WIDTH 6

/* GMAC FIFO configuration register 3 */
#define GMF_CFG3_REG_MAC 0x15
#define GMF_CFGHWMFT_LBN 16
#define GMF_CFGHWMFT_WIDTH 6
#define GMF_CFGFTTH_LBN 0
#define GMF_CFGFTTH_WIDTH 6

/* GMAC FIFO configuration register 4 */
#define GMF_CFG4_REG_MAC 0x16
#define GMF_HSTFLTRFRM_PAUSE_LBN 12
#define GMF_HSTFLTRFRM_PAUSE_WIDTH 12

/* GMAC FIFO configuration register 5 */
#define GMF_CFG5_REG_MAC 0x17
#define GMF_CFGHDPLX_LBN 22
#define GMF_CFGHDPLX_WIDTH 1
#define GMF_CFGBYTMODE_LBN 19
#define GMF_CFGBYTMODE_WIDTH 1
#define GMF_HSTDRPLT64_LBN 18
#define GMF_HSTDRPLT64_WIDTH 1
#define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
#define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1

struct efab_mentormac_parameters {
	int gmf_cfgfrth;
	int gmf_cfgftth;
	int gmf_cfghwmft;
	int gmf_cfghwm;
	int gmf_cfglwm;
};

/**
 * Reset Mentor MAC
 *
 */
static void mentormac_reset ( struct efab_nic *efab ) {
	efab_dword_t reg;
	int save_port;

	/* Take into reset */
	EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 );
	efab->op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 1000 );

	/* Take out of reset */
	EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 );
	efab->op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 1000 );

	/* Mentor MAC connects both PHYs to MAC 0 */
	save_port = efab->port;
	efab->port = 0;
	/* Configure GMII interface so PHY is accessible.  Note that
	 * GMII interface is connected only to port 0, and that on
	 * Falcon this is a no-op.
	 */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CFG_REG_MAC );
	udelay ( 10 );
	efab->port = save_port;
}

/**
 * Initialise Mentor MAC
 *
 */
static void mentormac_init ( struct efab_nic *efab,
			     struct efab_mentormac_parameters *params ) {
	int pause, if_mode, full_duplex, bytemode, half_duplex;
	efab_dword_t reg;

	/* Configuration register 1 */
	pause = ( efab->link_options & LPA_PAUSE ) ? 1 : 0;
	if ( ! ( efab->link_options & LPA_DUPLEX ) ) {
		/* Half-duplex operation requires TX flow control */
		pause = 1;
	}
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_TX_EN, 1,
				GM_TX_FC_EN, pause,
				GM_RX_EN, 1,
				GM_RX_FC_EN, 1 );
	efab->op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 10 );

	/* Configuration register 2 */
	if_mode = ( efab->link_options & LPA_1000 ) ? 2 : 1;
	full_duplex = ( efab->link_options & LPA_DUPLEX ) ? 1 : 0;
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_IF_MODE, if_mode,
				GM_PAD_CRC_EN, 1,
				GM_FD, full_duplex,
				GM_PAMBL_LEN, 0x7 /* ? */ );
	efab->op->mac_writel ( efab, &reg, GM_CFG2_REG_MAC );
	udelay ( 10 );

	/* Max frame len register */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, ETH_FRAME_LEN + 4 /* FCS */);
	efab->op->mac_writel ( efab, &reg, GM_MAX_FLEN_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 0 */
	EFAB_POPULATE_DWORD_5 ( reg,
				GMF_FTFENREQ, 1,
				GMF_STFENREQ, 1,
				GMF_FRFENREQ, 1,
				GMF_SRFENREQ, 1,
				GMF_WTMENREQ, 1 );
	efab->op->mac_writel ( efab, &reg, GMF_CFG0_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 1 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGFRTH, params->gmf_cfgfrth,
				GMF_CFGXOFFRTX, 0xffff );
	efab->op->mac_writel ( efab, &reg, GMF_CFG1_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 2 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGHWM, params->gmf_cfghwm,
				GMF_CFGLWM, params->gmf_cfglwm );
	efab->op->mac_writel ( efab, &reg, GMF_CFG2_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 3 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGHWMFT, params->gmf_cfghwmft,
				GMF_CFGFTTH, params->gmf_cfgftth );
	efab->op->mac_writel ( efab, &reg, GMF_CFG3_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 4 */
	EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
	efab->op->mac_writel ( efab, &reg, GMF_CFG4_REG_MAC );
	udelay ( 10 );
	
	/* FIFO configuration register 5 */
	bytemode = ( efab->link_options & LPA_1000 ) ? 1 : 0;
	half_duplex = ( efab->link_options & LPA_DUPLEX ) ? 0 : 1;
	efab->op->mac_readl ( efab, &reg, GMF_CFG5_REG_MAC );
	EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
	EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
	EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
	EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
	efab->op->mac_writel ( efab, &reg, GMF_CFG5_REG_MAC );
	udelay ( 10 );
	
	/* MAC address */
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_HWADDR_5, efab->mac_addr[5],
				GM_HWADDR_4, efab->mac_addr[4],
				GM_HWADDR_3, efab->mac_addr[3],
				GM_HWADDR_2, efab->mac_addr[2] );
	efab->op->mac_writel ( efab, &reg, GM_ADR1_REG_MAC );
	udelay ( 10 );
	EFAB_POPULATE_DWORD_2 ( reg,
				GM_HWADDR_1, efab->mac_addr[1],
				GM_HWADDR_0, efab->mac_addr[0] );
	efab->op->mac_writel ( efab, &reg, GM_ADR2_REG_MAC );
	udelay ( 10 );
}

/**
 * Wait for GMII access to complete
 *
 */
static int mentormac_gmii_wait ( struct efab_nic *efab ) {
	int count;
	efab_dword_t indicator;

	for ( count = 0 ; count < 1000 ; count++ ) {
		udelay ( 10 );
		efab->op->mac_readl ( efab, &indicator,
				      GM_MII_MGMT_IND_REG_MAC );
		if ( EFAB_DWORD_FIELD ( indicator, GM_MGMT_BUSY ) == 0 )
			return 1;
	}
	printf ( "Timed out waiting for GMII\n" );
	return 0;
}

/**
 * Write a GMII register
 *
 */
static void mentormac_mdio_write ( struct efab_nic *efab, int phy_id,
				   int location, int value ) {
	efab_dword_t reg;
	int save_port;

	EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id,
		     location, value );

	/* Mentor MAC connects both PHYs to MAC 0 */
	save_port = efab->port;
	efab->port = 0;

	/* Check MII not currently being accessed */
	if ( ! mentormac_gmii_wait ( efab ) )
		goto out;

	/* Write the address register */
	EFAB_POPULATE_DWORD_2 ( reg,
				GM_MGMT_PHY_ADDR, phy_id,
				GM_MGMT_REG_ADDR, location );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
	udelay ( 10 );

	/* Write data */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CTL, value );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CTL_REG_MAC );

	/* Wait for data to be written */
	mentormac_gmii_wait ( efab );

 out:
	/* Restore efab->port */
	efab->port = save_port;
}

/**
 * Read a GMII register
 *
 */
static int mentormac_mdio_read ( struct efab_nic *efab, int phy_id,
				 int location ) {
	efab_dword_t reg;
	int value = 0xffff;
	int save_port;

	/* Mentor MAC connects both PHYs to MAC 0 */
	save_port = efab->port;
	efab->port = 0;

	/* Check MII not currently being accessed */
	if ( ! mentormac_gmii_wait ( efab ) )
		goto out;

	/* Write the address register */
	EFAB_POPULATE_DWORD_2 ( reg,
				GM_MGMT_PHY_ADDR, phy_id,
				GM_MGMT_REG_ADDR, location );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
	udelay ( 10 );

	/* Request data to be read */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_RD_CYC, 1 );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );

	/* Wait for data to be become available */
	if ( mentormac_gmii_wait ( efab ) ) {
		/* Read data */
		efab->op->mac_readl ( efab, &reg, GM_MII_MGMT_STAT_REG_MAC );
		value = EFAB_DWORD_FIELD ( reg, GM_MGMT_STAT );
		EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
			     phy_id, location, value );
	}

	/* Signal completion */
	EFAB_ZERO_DWORD ( reg );
	efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );
	udelay ( 10 );

 out:
	/* Restore efab->port */
	efab->port = save_port;

	return value;
}

/**************************************************************************
 *
 * EF1002 routines
 *
 **************************************************************************
 */

/** Control and General Status */
#define EF1_CTR_GEN_STATUS0_REG 0x0
#define EF1_MASTER_EVENTS_LBN 12
#define EF1_MASTER_EVENTS_WIDTH 1
#define EF1_TX_ENGINE_EN_LBN 19
#define EF1_TX_ENGINE_EN_WIDTH 1
#define EF1_RX_ENGINE_EN_LBN 18
#define EF1_RX_ENGINE_EN_WIDTH 1
#define EF1_TURBO2_LBN 17
#define EF1_TURBO2_WIDTH 1
#define EF1_TURBO1_LBN 16
#define EF1_TURBO1_WIDTH 1
#define EF1_TURBO3_LBN 14
#define EF1_TURBO3_WIDTH 1
#define EF1_LB_RESET_LBN 3
#define EF1_LB_RESET_WIDTH 1
#define EF1_MAC_RESET_LBN 2
#define EF1_MAC_RESET_WIDTH 1
#define EF1_CAM_ENABLE_LBN 1
#define EF1_CAM_ENABLE_WIDTH 1

/** IRQ sources */
#define EF1_IRQ_SRC_REG 0x0008

/** IRQ mask */
#define EF1_IRQ_MASK_REG 0x000c
#define EF1_IRQ_PHY1_LBN 11
#define EF1_IRQ_PHY1_WIDTH 1
#define EF1_IRQ_PHY0_LBN 10
#define EF1_IRQ_PHY0_WIDTH 1
#define EF1_IRQ_SERR_LBN 7
#define EF1_IRQ_SERR_WIDTH 1
#define EF1_IRQ_EVQ_LBN 3
#define EF1_IRQ_EVQ_WIDTH 1

/** Event generation */
#define EF1_EVT3_REG 0x38

/** EEPROM access */
#define EF1_EEPROM_REG 0x40
#define EF1_EEPROM_SDA_LBN 31
#define EF1_EEPROM_SDA_WIDTH 1
#define EF1_EEPROM_SCL_LBN 30
#define EF1_EEPROM_SCL_WIDTH 1
#define EF1_JTAG_DISCONNECT_LBN 17
#define EF1_JTAG_DISCONNECT_WIDTH 1
#define EF1_EEPROM_LBN 0
#define EF1_EEPROM_WIDTH 32

/** Control register 2 */
#define EF1_CTL2_REG 0x4c
#define EF1_PLL_TRAP_LBN 31
#define EF1_PLL_TRAP_WIDTH 1
#define EF1_MEM_MAP_4MB_LBN 11
#define EF1_MEM_MAP_4MB_WIDTH 1
#define EF1_EV_INTR_CLR_WRITE_LBN 6
#define EF1_EV_INTR_CLR_WRITE_WIDTH 1
#define EF1_BURST_MERGE_LBN 5
#define EF1_BURST_MERGE_WIDTH 1
#define EF1_CLEAR_NULL_PAD_LBN 4
#define EF1_CLEAR_NULL_PAD_WIDTH 1
#define EF1_SW_RESET_LBN 2
#define EF1_SW_RESET_WIDTH 1
#define EF1_INTR_AFTER_EVENT_LBN 1
#define EF1_INTR_AFTER_EVENT_WIDTH 1

/** Event FIFO */
#define EF1_EVENT_FIFO_REG 0x50

/** Event FIFO count */
#define EF1_EVENT_FIFO_COUNT_REG 0x5c
#define EF1_EV_COUNT_LBN 0
#define EF1_EV_COUNT_WIDTH 16

/** TX DMA control and status */
#define EF1_DMA_TX_CSR_REG 0x80
#define EF1_DMA_TX_CSR_CHAIN_EN_LBN 8
#define EF1_DMA_TX_CSR_CHAIN_EN_WIDTH 1
#define EF1_DMA_TX_CSR_ENABLE_LBN 4
#define EF1_DMA_TX_CSR_ENABLE_WIDTH 1
#define EF1_DMA_TX_CSR_INT_EN_LBN 0
#define EF1_DMA_TX_CSR_INT_EN_WIDTH 1

/** RX DMA control and status */
#define EF1_DMA_RX_CSR_REG 0xa0
#define EF1_DMA_RX_ABOVE_1GB_EN_LBN 6
#define EF1_DMA_RX_ABOVE_1GB_EN_WIDTH 1
#define EF1_DMA_RX_BELOW_1MB_EN_LBN 5
#define EF1_DMA_RX_BELOW_1MB_EN_WIDTH 1 
#define EF1_DMA_RX_CSR_ENABLE_LBN 0
#define EF1_DMA_RX_CSR_ENABLE_WIDTH 1

/** Level 5 watermark register (in MAC space) */
#define EF1_GMF_L5WM_REG_MAC 0x20
#define EF1_L5WM_LBN 0
#define EF1_L5WM_WIDTH 32

/** MAC clock */
#define EF1_GM_MAC_CLK_REG 0x112000
#define EF1_GM_PORT0_MAC_CLK_LBN 0
#define EF1_GM_PORT0_MAC_CLK_WIDTH 1
#define EF1_GM_PORT1_MAC_CLK_LBN 1
#define EF1_GM_PORT1_MAC_CLK_WIDTH 1

/** TX descriptor FIFO */
#define EF1_TX_DESC_FIFO 0x141000
#define EF1_TX_KER_EVQ_LBN 80
#define EF1_TX_KER_EVQ_WIDTH 12
#define EF1_TX_KER_IDX_LBN 64
#define EF1_TX_KER_IDX_WIDTH 16
#define EF1_TX_KER_MODE_LBN 63
#define EF1_TX_KER_MODE_WIDTH 1
#define EF1_TX_KER_PORT_LBN 60
#define EF1_TX_KER_PORT_WIDTH 1
#define EF1_TX_KER_CONT_LBN 56
#define EF1_TX_KER_CONT_WIDTH 1
#define EF1_TX_KER_BYTE_CNT_LBN 32
#define EF1_TX_KER_BYTE_CNT_WIDTH 24
#define EF1_TX_KER_BUF_ADR_LBN 0
#define EF1_TX_KER_BUF_ADR_WIDTH 32

/** TX descriptor FIFO flush */
#define EF1_TX_DESC_FIFO_FLUSH 0x141ffc

/** RX descriptor FIFO */
#define EF1_RX_DESC_FIFO 0x145000
#define EF1_RX_KER_EVQ_LBN 48
#define EF1_RX_KER_EVQ_WIDTH 12
#define EF1_RX_KER_IDX_LBN 32
#define EF1_RX_KER_IDX_WIDTH 16
#define EF1_RX_KER_BUF_ADR_LBN 0
#define EF1_RX_KER_BUF_ADR_WIDTH 32

/** RX descriptor FIFO flush */
#define EF1_RX_DESC_FIFO_FLUSH 0x145ffc 

/** CAM */
#define EF1_CAM_BASE 0x1c0000
#define EF1_CAM_WTF_DOES_THIS_DO_LBN 0
#define EF1_CAM_WTF_DOES_THIS_DO_WIDTH 32

/** Event queue pointers */
#define EF1_EVQ_PTR_BASE 0x260000
#define EF1_EVQ_SIZE_LBN 29
#define EF1_EVQ_SIZE_WIDTH 2
#define EF1_EVQ_SIZE_4K 3
#define EF1_EVQ_SIZE_2K 2
#define EF1_EVQ_SIZE_1K 1
#define EF1_EVQ_SIZE_512 0
#define EF1_EVQ_BUF_BASE_ID_LBN 0
#define EF1_EVQ_BUF_BASE_ID_WIDTH 29

/* MAC registers */
#define EF1002_MAC_REGBANK 0x110000
#define EF1002_MAC_REGBANK_SIZE 0x1000
#define EF1002_MAC_REG_SIZE 0x08

/** Offset of a MAC register within EF1002 */
#define EF1002_MAC_REG( efab, mac_reg )				\
	( EF1002_MAC_REGBANK +					\
	  ( (efab)->port * EF1002_MAC_REGBANK_SIZE ) +		\
	  ( (mac_reg) * EF1002_MAC_REG_SIZE ) )

/* Event queue entries */
#define EF1_EV_CODE_LBN 20
#define EF1_EV_CODE_WIDTH 8
#define EF1_RX_EV_DECODE 0x01
#define EF1_TX_EV_DECODE 0x02
#define EF1_TIMER_EV_DECODE 0x0b
#define EF1_DRV_GEN_EV_DECODE 0x0f

/* Receive events */
#define EF1_RX_EV_LEN_LBN 48
#define EF1_RX_EV_LEN_WIDTH 16
#define EF1_RX_EV_PORT_LBN 17
#define EF1_RX_EV_PORT_WIDTH 3
#define EF1_RX_EV_OK_LBN 16
#define EF1_RX_EV_OK_WIDTH 1
#define EF1_RX_EV_IDX_LBN 0
#define EF1_RX_EV_IDX_WIDTH 16

/* Transmit events */
#define EF1_TX_EV_PORT_LBN 17
#define EF1_TX_EV_PORT_WIDTH 3
#define EF1_TX_EV_OK_LBN 16
#define EF1_TX_EV_OK_WIDTH 1
#define EF1_TX_EV_IDX_LBN 0
#define EF1_TX_EV_IDX_WIDTH 16

/* I2C ID of the EEPROM */
#define EF1_EEPROM_I2C_ID 0x50

/* Offset of MAC address within EEPROM */
#define EF1_EEPROM_HWADDR_OFFSET 0x0

/**
 * Write dword to EF1002 register
 *
 */
static inline void ef1002_writel ( struct efab_nic *efab, efab_dword_t *value,
				   unsigned int reg ) {
	EFAB_REGDUMP ( "Writing register %x with " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
	writel ( value->u32[0], efab->membase + reg );
}

/**
 * Read dword from an EF1002 register
 *
 */
static inline void ef1002_readl ( struct efab_nic *efab, efab_dword_t *value,
				  unsigned int reg ) {
	value->u32[0] = readl ( efab->membase + reg );
	EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
}

/**
 * Read dword from an EF1002 register, silently
 *
 */
static inline void ef1002_readl_silent ( struct efab_nic *efab,
					 efab_dword_t *value,
					 unsigned int reg ) {
	value->u32[0] = readl ( efab->membase + reg );
}

/**
 * Get memory base
 *
 */
static void ef1002_get_membase ( struct efab_nic *efab ) {
	unsigned long membase_phys;

	membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_0 );
	efab->membase = ioremap ( membase_phys, 0x800000 );
}

/** PCI registers to backup/restore over a device reset */
static const unsigned int efab_pci_reg_addr[] = {
	PCI_COMMAND, 0x0c /* PCI_CACHE_LINE_SIZE */,
	PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
	PCI_BASE_ADDRESS_3, PCI_ROM_ADDRESS, PCI_INTERRUPT_LINE,
};
/** Number of registers in efab_pci_reg_addr */
#define EFAB_NUM_PCI_REG \
	( sizeof ( efab_pci_reg_addr ) / sizeof ( efab_pci_reg_addr[0] ) )
/** PCI configuration space backup */
struct efab_pci_reg {
	uint32_t reg[EFAB_NUM_PCI_REG];
};

/*
 * I2C interface and EEPROM
 *
 */

static unsigned long ef1002_i2c_bits[] = {
	[I2C_BIT_SCL] = ( 1 << 30 ),
	[I2C_BIT_SDA] = ( 1 << 31 ),
};

static void ef1002_i2c_write_bit ( struct bit_basher *basher,
				   unsigned int bit_id, unsigned long data ) {
	struct efab_nic *efab = container_of ( basher, struct efab_nic,
					       ef1002_i2c.basher );
	unsigned long mask;
	efab_dword_t reg;

	mask = ef1002_i2c_bits[bit_id];
	efab->ef1002_i2c_outputs &= ~mask;
	efab->ef1002_i2c_outputs |= ( data & mask );
	EFAB_POPULATE_DWORD_1 ( reg, EF1_EEPROM, efab->ef1002_i2c_outputs );
	ef1002_writel ( efab, &reg, EF1_EEPROM_REG );
}

static int ef1002_i2c_read_bit ( struct bit_basher *basher,
				 unsigned int bit_id ) {
	struct efab_nic *efab = container_of ( basher, struct efab_nic,
					       ef1002_i2c.basher );
	unsigned long mask;
	efab_dword_t reg;

	mask = ef1002_i2c_bits[bit_id];
	ef1002_readl ( efab, &reg, EF1_EEPROM_REG );
	return ( EFAB_DWORD_FIELD ( reg, EF1_EEPROM ) & mask );
}

static void ef1002_init_eeprom ( struct efab_nic *efab ) {
	efab->ef1002_i2c.basher.write = ef1002_i2c_write_bit;
	efab->ef1002_i2c.basher.read = ef1002_i2c_read_bit;
	init_i2c_bit_basher ( &efab->ef1002_i2c );
	efab->ef1002_eeprom.address = EF1_EEPROM_I2C_ID;
}

/**
 * Reset device
 *
 */
static int ef1002_reset ( struct efab_nic *efab ) {
	struct efab_pci_reg pci_reg;
	struct pci_device *pci_dev = efab->pci;
	efab_dword_t reg;
	unsigned int i;
	uint32_t tmp;

	/* Back up PCI configuration registers */
	for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
		pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i],
					&pci_reg.reg[i] );
	}

	/* Reset the whole device. */
	EFAB_POPULATE_DWORD_1 ( reg, EF1_SW_RESET, 1 );
	ef1002_writel ( efab, &reg, EF1_CTL2_REG );
	mdelay ( 200 );
	
	/* Restore PCI configuration space */
	for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
		pci_write_config_dword ( pci_dev, efab_pci_reg_addr[i],
					 pci_reg.reg[i] );
	}

	/* Verify PCI configuration space */
	for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
		pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &tmp );
		if ( tmp != pci_reg.reg[i] ) {
			printf ( "PCI restore failed on register %02x "
				 "(is %08lx, should be %08lx); reboot\n",
				 i, tmp, pci_reg.reg[i] );
			return 0;
		}
	}

	/* Verify device reset complete */
	ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
	if ( EFAB_DWORD_IS_ALL_ONES ( reg ) ) {
		printf ( "Reset failed\n" );
		return 0;
	}

	return 1;
}

/**
 * Initialise NIC
 *
 */
static int ef1002_init_nic ( struct efab_nic *efab ) {
	efab_dword_t reg;

	/* No idea what CAM is, but the 'datasheet' says that we have
	 * to write these values in at start of day
	 */
	EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x6 );
	ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x20018 );
	udelay ( 1000 );
	EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x01000000 );
	ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x00018 );
	udelay ( 1000 );

	/* General control register 0 */
	ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
	EFAB_SET_DWORD_FIELD ( reg, EF1_MASTER_EVENTS, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_TX_ENGINE_EN, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_RX_ENGINE_EN, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO2, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO1, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO3, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_CAM_ENABLE, 1 );
	ef1002_writel ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
	udelay ( 1000 );

	/* General control register 2 */
	ef1002_readl ( efab, &reg, EF1_CTL2_REG );
	EFAB_SET_DWORD_FIELD ( reg, EF1_PLL_TRAP, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_MEM_MAP_4MB, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_EV_INTR_CLR_WRITE, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_BURST_MERGE, 0 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_CLEAR_NULL_PAD, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_INTR_AFTER_EVENT, 1 );
	ef1002_writel ( efab, &reg, EF1_CTL2_REG );
	udelay ( 1000 );

	/* Enable RX DMA */
	ef1002_readl ( efab, &reg, EF1_DMA_RX_CSR_REG );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_CSR_ENABLE, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_BELOW_1MB_EN, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_ABOVE_1GB_EN, 1 );
	ef1002_writel ( efab, &reg, EF1_DMA_RX_CSR_REG );
	udelay ( 1000 );

	/* Enable TX DMA */
	ef1002_readl ( efab, &reg, EF1_DMA_TX_CSR_REG );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_CHAIN_EN, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_ENABLE, 0 /* ?? */ );
	EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_INT_EN, 0 /* ?? */ );
	ef1002_writel ( efab, &reg, EF1_DMA_TX_CSR_REG );
	udelay ( 1000 );

	/* Disconnect the JTAG chain.  Read-modify-write is impossible
	 * on the I2C control bits, since reading gives the state of
	 * the line inputs rather than the last written state.
	 */
	ef1002_readl ( efab, &reg, EF1_EEPROM_REG );
	EFAB_SET_DWORD_FIELD ( reg, EF1_EEPROM_SDA, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_EEPROM_SCL, 1 );
	EFAB_SET_DWORD_FIELD ( reg, EF1_JTAG_DISCONNECT, 1 );
	ef1002_writel ( efab, &reg, EF1_EEPROM_REG );
	udelay ( 10 );

	/* Flush descriptor queues */
	EFAB_ZERO_DWORD ( reg );
	ef1002_writel ( efab, &reg, EF1_RX_DESC_FIFO_FLUSH );
	ef1002_writel ( efab, &reg, EF1_TX_DESC_FIFO_FLUSH );
	wmb();
	udelay ( 10000 );

	/* Reset MAC */
	mentormac_reset ( efab );

	/* Attach I2C bus */
	ef1002_init_eeprom ( efab );

	return 1;
}

/**
 * Read MAC address from EEPROM
 *
 */
static int ef1002_read_eeprom ( struct efab_nic *efab ) {
	struct i2c_interface *i2c = &efab->ef1002_i2c.i2c;
	struct i2c_device *i2cdev = &efab->ef1002_eeprom;

	return ( i2c->read ( i2c, i2cdev, EF1_EEPROM_HWADDR_OFFSET,
			     efab->mac_addr, sizeof ( efab->mac_addr ) ) == 0);
}

/** RX descriptor */
typedef efab_qword_t ef1002_rx_desc_t;

/**
 * Build RX descriptor
 *
 */
static void ef1002_build_rx_desc ( struct efab_nic *efab,
				   struct efab_rx_buf *rx_buf ) {
	ef1002_rx_desc_t rxd;

	EFAB_POPULATE_QWORD_3 ( rxd,
				EF1_RX_KER_EVQ, 0,
				EF1_RX_KER_IDX, rx_buf->id,
				EF1_RX_KER_BUF_ADR,
				virt_to_bus ( rx_buf->addr ) );
	ef1002_writel ( efab, &rxd.dword[0], EF1_RX_DESC_FIFO + 0 );
	wmb();
	ef1002_writel ( efab, &rxd.dword[1], EF1_RX_DESC_FIFO + 4 );
	udelay ( 10 );
}

/**
 * Update RX descriptor write pointer
 *
 */
static void ef1002_notify_rx_desc ( struct efab_nic *efab __unused ) {
	/* Nothing to do */
}

/** TX descriptor */
typedef efab_oword_t ef1002_tx_desc_t;

/**
 * Build TX descriptor
 *
 */
static void ef1002_build_tx_desc ( struct efab_nic *efab,
				   struct efab_tx_buf *tx_buf ) {
	ef1002_tx_desc_t txd;

	EFAB_POPULATE_OWORD_7 ( txd,
				EF1_TX_KER_EVQ, 0,
				EF1_TX_KER_IDX, tx_buf->id,
				EF1_TX_KER_MODE, 0 /* IP mode */,
				EF1_TX_KER_PORT, efab->port,
				EF1_TX_KER_CONT, 0,
				EF1_TX_KER_BYTE_CNT, tx_buf->len,
				EF1_TX_KER_BUF_ADR,
				virt_to_bus ( tx_buf->addr ) );

	ef1002_writel ( efab, &txd.dword[0], EF1_TX_DESC_FIFO + 0 );
	ef1002_writel ( efab, &txd.dword[1], EF1_TX_DESC_FIFO + 4 );
	wmb();
	ef1002_writel ( efab, &txd.dword[2], EF1_TX_DESC_FIFO + 8 );
	udelay ( 10 );
}

/**
 * Update TX descriptor write pointer
 *
 */
static void ef1002_notify_tx_desc ( struct efab_nic *efab __unused ) {
	/* Nothing to do */
}

/** An event */
typedef efab_qword_t ef1002_event_t;

/**
 * Retrieve event from event queue
 *
 */
static int ef1002_fetch_event ( struct efab_nic *efab,
				struct efab_event *event ) {
	efab_dword_t reg;
	int ev_code;
	int words;

	/* Check event FIFO depth */
	ef1002_readl_silent ( efab, &reg, EF1_EVENT_FIFO_COUNT_REG );
	words = EFAB_DWORD_FIELD ( reg, EF1_EV_COUNT );
	if ( ! words )
		return 0;

	/* Read event data */
	ef1002_readl ( efab, &reg, EF1_EVENT_FIFO_REG );
	DBG ( "Event is " EFAB_DWORD_FMT "\n", EFAB_DWORD_VAL ( reg ) );

	/* Decode event */
	ev_code = EFAB_DWORD_FIELD ( reg, EF1_EV_CODE );
	switch ( ev_code ) {
	case EF1_TX_EV_DECODE:
		event->type = EFAB_EV_TX;
		break;
	case EF1_RX_EV_DECODE:
		event->type = EFAB_EV_RX;
		event->rx_id = EFAB_DWORD_FIELD ( reg, EF1_RX_EV_IDX );
		/* RX len not available via event FIFO */
		event->rx_len = ETH_FRAME_LEN;
		break;
	case EF1_TIMER_EV_DECODE:
		/* These are safe to ignore.  We seem to get some at
		 * start of day, presumably due to the timers starting
		 * up with random contents.
		 */
		event->type = EFAB_EV_NONE;
		break;
	default:
		printf ( "Unknown event type %d data %08lx\n", ev_code,
			 EFAB_DWORD_FIELD ( reg, EFAB_DWORD_0 ) );
		event->type = EFAB_EV_NONE;
	}

	/* Clear any pending interrupts */
	ef1002_readl ( efab, &reg, EF1_IRQ_SRC_REG );

	return 1;
}

/**
 * Enable/disable interrupts
 *
 */
static void ef1002_mask_irq ( struct efab_nic *efab, int enabled ) {
	efab_dword_t irq_mask;

	EFAB_POPULATE_DWORD_2 ( irq_mask,
				EF1_IRQ_SERR, enabled,
				EF1_IRQ_EVQ, enabled );
	ef1002_writel ( efab, &irq_mask, EF1_IRQ_MASK_REG );
}

/**
 * Generate interrupt
 *
 */
static void ef1002_generate_irq ( struct efab_nic *efab ) {
	ef1002_event_t test_event;

	EFAB_POPULATE_QWORD_1 ( test_event,
				EF1_EV_CODE, EF1_DRV_GEN_EV_DECODE );
	ef1002_writel ( efab, &test_event.dword[0], EF1_EVT3_REG );
}

/**
 * Write dword to an EF1002 MAC register
 *
 */
static void ef1002_mac_writel ( struct efab_nic *efab,
				efab_dword_t *value, unsigned int mac_reg ) {
	ef1002_writel ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}

/**
 * Read dword from an EF1002 MAC register
 *
 */
static void ef1002_mac_readl ( struct efab_nic *efab,
			       efab_dword_t *value, unsigned int mac_reg ) {
	ef1002_readl ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}

/**
 * Initialise MAC
 *
 */
static int ef1002_init_mac ( struct efab_nic *efab ) {
	static struct efab_mentormac_parameters ef1002_mentormac_params = {
		.gmf_cfgfrth = 0x13,
		.gmf_cfgftth = 0x10,
		.gmf_cfghwmft = 0x555,
		.gmf_cfghwm = 0x2a,
		.gmf_cfglwm = 0x15,
	};
	efab_dword_t reg;
	unsigned int mac_clk;

	/* Initialise PHY */
	alaska_init ( efab );

	/* Initialise MAC */
	mentormac_init ( efab, &ef1002_mentormac_params );

	/* Write Level 5 watermark register */
	EFAB_POPULATE_DWORD_1 ( reg, EF1_L5WM, 0x10040000 );
	efab->op->mac_writel ( efab, &reg, EF1_GMF_L5WM_REG_MAC );
	udelay ( 10 );

	/* Set MAC clock speed */
	ef1002_readl ( efab, &reg, EF1_GM_MAC_CLK_REG );
	mac_clk = ( efab->link_options & LPA_1000 ) ? 0 : 1;
	if ( efab->port == 0 ) {
		EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT0_MAC_CLK, mac_clk );
	} else {
		EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT1_MAC_CLK, mac_clk );
	}
	ef1002_writel ( efab, &reg, EF1_GM_MAC_CLK_REG );
	udelay ( 10 );

	return 1;
}

/** MDIO write */
static void ef1002_mdio_write ( struct efab_nic *efab, int location,
				int value ) {
	mentormac_mdio_write ( efab, efab->port + 2, location, value );
}

/** MDIO read */
static int ef1002_mdio_read ( struct efab_nic *efab, int location ) {
	return mentormac_mdio_read ( efab, efab->port + 2, location );
}

static struct efab_operations ef1002_operations = {
	.get_membase		= ef1002_get_membase,
	.reset			= ef1002_reset,
	.init_nic		= ef1002_init_nic,
	.read_eeprom		= ef1002_read_eeprom,
	.build_rx_desc		= ef1002_build_rx_desc,
	.notify_rx_desc		= ef1002_notify_rx_desc,
	.build_tx_desc		= ef1002_build_tx_desc,
	.notify_tx_desc		= ef1002_notify_tx_desc,
	.fetch_event		= ef1002_fetch_event,
	.mask_irq		= ef1002_mask_irq,
	.generate_irq		= ef1002_generate_irq,
	.mac_writel		= ef1002_mac_writel,
	.mac_readl		= ef1002_mac_readl,
	.init_mac		= ef1002_init_mac,
	.mdio_write		= ef1002_mdio_write,
	.mdio_read		= ef1002_mdio_read,
};

/**************************************************************************
 *
 * Falcon routines
 *
 **************************************************************************
 */

/* I/O BAR address register */
#define FCN_IOM_IND_ADR_REG 0x0

/* I/O BAR data register */
#define FCN_IOM_IND_DAT_REG 0x4

/* Interrupt enable register */
#define FCN_INT_EN_REG_KER 0x0010
#define FCN_MEM_PERR_INT_EN_KER_LBN 5
#define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
#define FCN_KER_INT_CHAR_LBN 4
#define FCN_KER_INT_CHAR_WIDTH 1
#define FCN_KER_INT_KER_LBN 3
#define FCN_KER_INT_KER_WIDTH 1
#define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
#define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
#define FCN_SRM_PERR_INT_EN_KER_LBN 1
#define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
#define FCN_DRV_INT_EN_KER_LBN 0
#define FCN_DRV_INT_EN_KER_WIDTH 1

/* Interrupt status register */
#define FCN_INT_ADR_REG_KER	0x0030
#define FCN_INT_ADR_KER_LBN 0
#define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )

/* Interrupt acknowledge register */
#define FCN_INT_ACK_KER_REG 0x0050

/* SPI host command register */
#define FCN_EE_SPI_HCMD_REG_KER 0x0100
#define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
#define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
#define FCN_EE_WR_TIMER_ACTIVE_LBN 28
#define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
#define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
#define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
#define FCN_EE_SPI_EEPROM 0
#define FCN_EE_SPI_FLASH 1
#define FCN_EE_SPI_HCMD_DABCNT_LBN 16
#define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
#define FCN_EE_SPI_HCMD_READ_LBN 15
#define FCN_EE_SPI_HCMD_READ_WIDTH 1
#define FCN_EE_SPI_READ 1
#define FCN_EE_SPI_WRITE 0
#define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
#define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
#define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ENC_LBN 0
#define FCN_EE_SPI_HCMD_ENC_WIDTH 8

/* SPI host address register */
#define FCN_EE_SPI_HADR_REG_KER 0x0110
#define FCN_EE_SPI_HADR_DUBYTE_LBN 24
#define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
#define FCN_EE_SPI_HADR_ADR_LBN 0
#define FCN_EE_SPI_HADR_ADR_WIDTH 24

/* SPI host data register */
#define FCN_EE_SPI_HDATA_REG_KER 0x0120
#define FCN_EE_SPI_HDATA3_LBN 96
#define FCN_EE_SPI_HDATA3_WIDTH 32
#define FCN_EE_SPI_HDATA2_LBN 64
#define FCN_EE_SPI_HDATA2_WIDTH 32
#define FCN_EE_SPI_HDATA1_LBN 32
#define FCN_EE_SPI_HDATA1_WIDTH 32
#define FCN_EE_SPI_HDATA0_LBN 0
#define FCN_EE_SPI_HDATA0_WIDTH 32

/* GPIO control register */
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_FLASH_PRESENT_LBN 7
#define FCN_FLASH_PRESENT_WIDTH 1
#define FCN_EEPROM_PRESENT_LBN 6
#define FCN_EEPROM_PRESENT_WIDTH 1

/* Global control register */
#define FCN_GLB_CTL_REG_KER	0x0220
#define FCN_EXT_PHY_RST_CTL_LBN 63
#define FCN_EXT_PHY_RST_CTL_WIDTH 1
#define FCN_PCIE_SD_RST_CTL_LBN 61
#define FCN_PCIE_SD_RST_CTL_WIDTH 1
#define FCN_PCIX_RST_CTL_LBN 60
#define FCN_PCIX_RST_CTL_WIDTH 1
#define FCN_RST_EXT_PHY_LBN 31
#define FCN_RST_EXT_PHY_WIDTH 1
#define FCN_INT_RST_DUR_LBN 4
#define FCN_INT_RST_DUR_WIDTH 3
#define FCN_EXT_PHY_RST_DUR_LBN 1
#define FCN_EXT_PHY_RST_DUR_WIDTH 3
#define FCN_SWRST_LBN 0
#define FCN_SWRST_WIDTH 1
#define FCN_INCLUDE_IN_RESET 0
#define FCN_EXCLUDE_FROM_RESET 1

/* Timer table for kernel access */
#define FCN_TIMER_CMD_REG_KER 0x420
#define FCN_TIMER_MODE_LBN 12
#define FCN_TIMER_MODE_WIDTH 2
#define FCN_TIMER_MODE_DIS 0
#define FCN_TIMER_MODE_INT_HLDOFF 1
#define FCN_TIMER_VAL_LBN 0
#define FCN_TIMER_VAL_WIDTH 12

/* SRAM receive descriptor cache configuration register */
#define FCN_SRM_RX_DC_CFG_REG_KER 0x610
#define FCN_SRM_RX_DC_BASE_ADR_LBN 0
#define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21

/* SRAM transmit descriptor cache configuration register */
#define FCN_SRM_TX_DC_CFG_REG_KER 0x620
#define FCN_SRM_TX_DC_BASE_ADR_LBN 0
#define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21

/* Receive filter control register */
#define FCN_RX_FILTER_CTL_REG_KER 0x810
#define FCN_NUM_KER_LBN 24
#define FCN_NUM_KER_WIDTH 2

/* Receive descriptor update register */
#define FCN_RX_DESC_UPD_REG_KER 0x0830
#define FCN_RX_DESC_WPTR_LBN 96
#define FCN_RX_DESC_WPTR_WIDTH 12
#define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
#define FCN_RX_DESC_WPTR_DWORD_LBN 0
#define FCN_RX_DESC_WPTR_DWORD_WIDTH 12

/* Receive descriptor cache configuration register */
#define FCN_RX_DC_CFG_REG_KER 0x840
#define FCN_RX_DC_SIZE_LBN 0
#define FCN_RX_DC_SIZE_WIDTH 2

/* Transmit descriptor update register */
#define FCN_TX_DESC_UPD_REG_KER 0x0a10
#define FCN_TX_DESC_WPTR_LBN 96
#define FCN_TX_DESC_WPTR_WIDTH 12
#define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
#define FCN_TX_DESC_WPTR_DWORD_LBN 0
#define FCN_TX_DESC_WPTR_DWORD_WIDTH 12

/* Transmit descriptor cache configuration register */
#define FCN_TX_DC_CFG_REG_KER 0xa20
#define FCN_TX_DC_SIZE_LBN 0
#define FCN_TX_DC_SIZE_WIDTH 2

/* PHY management transmit data register */
#define FCN_MD_TXD_REG_KER 0xc00
#define FCN_MD_TXD_LBN 0
#define FCN_MD_TXD_WIDTH 16

/* PHY management receive data register */
#define FCN_MD_RXD_REG_KER 0xc10
#define FCN_MD_RXD_LBN 0
#define FCN_MD_RXD_WIDTH 16

/* PHY management configuration & status register */
#define FCN_MD_CS_REG_KER 0xc20
#define FCN_MD_GC_LBN 4
#define FCN_MD_GC_WIDTH 1
#define FCN_MD_RIC_LBN 2
#define FCN_MD_RIC_WIDTH 1
#define FCN_MD_WRC_LBN 0
#define FCN_MD_WRC_WIDTH 1

/* PHY management PHY address register */
#define FCN_MD_PHY_ADR_REG_KER 0xc30
#define FCN_MD_PHY_ADR_LBN 0
#define FCN_MD_PHY_ADR_WIDTH 16

/* PHY management ID register */
#define FCN_MD_ID_REG_KER 0xc40
#define FCN_MD_PRT_ADR_LBN 11
#define FCN_MD_PRT_ADR_WIDTH 5
#define FCN_MD_DEV_ADR_LBN 6
#define FCN_MD_DEV_ADR_WIDTH 5

/* PHY management status & mask register */
#define FCN_MD_STAT_REG_KER 0xc50
#define FCN_MD_BSY_LBN 0
#define FCN_MD_BSY_WIDTH 1

/* Port 0 and 1 MAC control registers */
#define FCN_MAC0_CTRL_REG_KER 0xc80
#define FCN_MAC1_CTRL_REG_KER 0xc90
#define FCN_MAC_XOFF_VAL_LBN 16
#define FCN_MAC_XOFF_VAL_WIDTH 16
#define FCN_MAC_BCAD_ACPT_LBN 4
#define FCN_MAC_BCAD_ACPT_WIDTH 1
#define FCN_MAC_UC_PROM_LBN 3
#define FCN_MAC_UC_PROM_WIDTH 1
#define FCN_MAC_LINK_STATUS_LBN 2
#define FCN_MAC_LINK_STATUS_WIDTH 1
#define FCN_MAC_SPEED_LBN 0
#define FCN_MAC_SPEED_WIDTH 2

/* XGMAC global configuration - port 0*/
#define FCN_XM_GLB_CFG_REG_P0_KER 0x1220
#define FCN_XM_RX_STAT_EN_LBN 11
#define FCN_XM_RX_STAT_EN_WIDTH 1
#define FCN_XM_TX_STAT_EN_LBN 10
#define FCN_XM_TX_STAT_EN_WIDTH 1
#define FCN_XM_CUT_THRU_MODE_LBN 7
#define FCN_XM_CUT_THRU_MODE_WIDTH 1
#define FCN_XM_RX_JUMBO_MODE_LBN 6
#define FCN_XM_RX_JUMBO_MODE_WIDTH 1

/* XGMAC transmit configuration - port 0 */
#define FCN_XM_TX_CFG_REG_P0_KER 0x1230
#define FCN_XM_IPG_LBN 16
#define FCN_XM_IPG_WIDTH 4
#define FCN_XM_WTF_DOES_THIS_DO_LBN 9
#define FCN_XM_WTF_DOES_THIS_DO_WIDTH 1
#define FCN_XM_TXCRC_LBN 8
#define FCN_XM_TXCRC_WIDTH 1
#define FCN_XM_AUTO_PAD_LBN 5
#define FCN_XM_AUTO_PAD_WIDTH 1
#define FCN_XM_TX_PRMBL_LBN 2
#define FCN_XM_TX_PRMBL_WIDTH 1
#define FCN_XM_TXEN_LBN 1
#define FCN_XM_TXEN_WIDTH 1

/* XGMAC receive configuration - port 0 */
#define FCN_XM_RX_CFG_REG_P0_KER 0x1240
#define FCN_XM_PASS_CRC_ERR_LBN 25
#define FCN_XM_PASS_CRC_ERR_WIDTH 1
#define FCN_XM_AUTO_DEPAD_LBN 8
#define FCN_XM_AUTO_DEPAD_WIDTH 1
#define FCN_XM_RXEN_LBN 1
#define FCN_XM_RXEN_WIDTH 1

/* Receive descriptor pointer table */
#define FCN_RX_DESC_PTR_TBL_KER 0x11800
#define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_RX_DESCQ_EVQ_ID_LBN 24
#define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_RX_DESCQ_OWNER_ID_LBN 10
#define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_RX_DESCQ_SIZE_LBN 3
#define FCN_RX_DESCQ_SIZE_WIDTH 2
#define FCN_RX_DESCQ_SIZE_4K 3
#define FCN_RX_DESCQ_SIZE_2K 2
#define FCN_RX_DESCQ_SIZE_1K 1
#define FCN_RX_DESCQ_SIZE_512 0
#define FCN_RX_DESCQ_TYPE_LBN 2
#define FCN_RX_DESCQ_TYPE_WIDTH 1
#define FCN_RX_DESCQ_JUMBO_LBN 1
#define FCN_RX_DESCQ_JUMBO_WIDTH 1
#define FCN_RX_DESCQ_EN_LBN 0
#define FCN_RX_DESCQ_EN_WIDTH 1

/* Transmit descriptor pointer table */
#define FCN_TX_DESC_PTR_TBL_KER 0x11900
#define FCN_TX_DESCQ_EN_LBN 88
#define FCN_TX_DESCQ_EN_WIDTH 1
#define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_TX_DESCQ_EVQ_ID_LBN 24
#define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_TX_DESCQ_OWNER_ID_LBN 10
#define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_TX_DESCQ_SIZE_LBN 3
#define FCN_TX_DESCQ_SIZE_WIDTH 2
#define FCN_TX_DESCQ_SIZE_4K 3
#define FCN_TX_DESCQ_SIZE_2K 2
#define FCN_TX_DESCQ_SIZE_1K 1
#define FCN_TX_DESCQ_SIZE_512 0
#define FCN_TX_DESCQ_TYPE_LBN 1
#define FCN_TX_DESCQ_TYPE_WIDTH 2
#define FCN_TX_DESCQ_FLUSH_LBN 0
#define FCN_TX_DESCQ_FLUSH_WIDTH 1

/* Event queue pointer */
#define FCN_EVQ_PTR_TBL_KER 0x11a00
#define FCN_EVQ_EN_LBN 23
#define FCN_EVQ_EN_WIDTH 1
#define FCN_EVQ_SIZE_LBN 20
#define FCN_EVQ_SIZE_WIDTH 3
#define FCN_EVQ_SIZE_32K 6
#define FCN_EVQ_SIZE_16K 5
#define FCN_EVQ_SIZE_8K 4
#define FCN_EVQ_SIZE_4K 3
#define FCN_EVQ_SIZE_2K 2
#define FCN_EVQ_SIZE_1K 1
#define FCN_EVQ_SIZE_512 0
#define FCN_EVQ_BUF_BASE_ID_LBN 0
#define FCN_EVQ_BUF_BASE_ID_WIDTH 20

/* Event queue read pointer */
#define FCN_EVQ_RPTR_REG_KER 0x11b00
#define FCN_EVQ_RPTR_LBN 0
#define FCN_EVQ_RPTR_WIDTH 14
#define FCN_EVQ_RPTR_REG_KER_DWORD ( FCN_EVQ_RPTR_REG_KER + 0 )
#define FCN_EVQ_RPTR_DWORD_LBN 0
#define FCN_EVQ_RPTR_DWORD_WIDTH 14

/* Special buffer descriptors */
#define FCN_BUF_FULL_TBL_KER 0x18000
#define FCN_IP_DAT_BUF_SIZE_LBN 50
#define FCN_IP_DAT_BUF_SIZE_WIDTH 1
#define FCN_IP_DAT_BUF_SIZE_8K 1
#define FCN_IP_DAT_BUF_SIZE_4K 0
#define FCN_BUF_ADR_FBUF_LBN 14
#define FCN_BUF_ADR_FBUF_WIDTH 34
#define FCN_BUF_OWNER_ID_FBUF_LBN 0
#define FCN_BUF_OWNER_ID_FBUF_WIDTH 14

/* MAC registers */
#define FALCON_MAC_REGBANK 0xe00
#define FALCON_MAC_REGBANK_SIZE 0x200
#define FALCON_MAC_REG_SIZE 0x10

/** Offset of a MAC register within Falcon */
#define FALCON_MAC_REG( efab, mac_reg )				\
	( FALCON_MAC_REGBANK +					\
	  ( (efab)->port * FALCON_MAC_REGBANK_SIZE ) +		\
	  ( (mac_reg) * FALCON_MAC_REG_SIZE ) )
#define FCN_MAC_DATA_LBN 0
#define FCN_MAC_DATA_WIDTH 32

/* Transmit descriptor */
#define FCN_TX_KER_PORT_LBN 63
#define FCN_TX_KER_PORT_WIDTH 1
#define FCN_TX_KER_BYTE_CNT_LBN 48
#define FCN_TX_KER_BYTE_CNT_WIDTH 14
#define FCN_TX_KER_BUF_ADR_LBN 0
#define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )

/* Receive descriptor */
#define FCN_RX_KER_BUF_SIZE_LBN 48
#define FCN_RX_KER_BUF_SIZE_WIDTH 14
#define FCN_RX_KER_BUF_ADR_LBN 0
#define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )

/* Event queue entries */
#define FCN_EV_CODE_LBN 60
#define FCN_EV_CODE_WIDTH 4
#define FCN_RX_IP_EV_DECODE 0
#define FCN_TX_IP_EV_DECODE 2
#define FCN_DRIVER_EV_DECODE 5

/* Receive events */
#define FCN_RX_PORT_LBN 30
#define FCN_RX_PORT_WIDTH 1
#define FCN_RX_EV_BYTE_CNT_LBN 16
#define FCN_RX_EV_BYTE_CNT_WIDTH 14
#define FCN_RX_EV_DESC_PTR_LBN 0
#define FCN_RX_EV_DESC_PTR_WIDTH 12

/* Transmit events */
#define FCN_TX_EV_DESC_PTR_LBN 0
#define FCN_TX_EV_DESC_PTR_WIDTH 12

/* Fixed special buffer numbers to use */
#define FALCON_EVQ_ID 0
#define FALCON_TXD_ID 1
#define FALCON_RXD_ID 2

#if FALCON_USE_IO_BAR

/* Write dword via the I/O BAR */
static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
				    unsigned int reg ) {
	outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
	outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
}

/* Read dword via the I/O BAR */
static inline uint32_t _falcon_readl ( struct efab_nic *efab,
				       unsigned int reg ) {
	outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
	return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
}

#else /* FALCON_USE_IO_BAR */

#define _falcon_writel( efab, value, reg ) \
	writel ( (value), (efab)->membase + (reg) )
#define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )

#endif /* FALCON_USE_IO_BAR */

/**
 * Write to a Falcon register
 *
 */
static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value,
				  unsigned int reg ) {

	EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
		       reg, EFAB_OWORD_VAL ( *value ) );

	_falcon_writel ( efab, value->u32[0], reg + 0  );
	_falcon_writel ( efab, value->u32[1], reg + 4  );
	_falcon_writel ( efab, value->u32[2], reg + 8  );
	_falcon_writel ( efab, value->u32[3], reg + 12 );
	wmb();
}

/**
 * Write to Falcon SRAM
 *
 */
static inline void falcon_write_sram ( struct efab_nic *efab,
				       efab_qword_t *value,
				       unsigned int index ) {
	unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
			     ( index * sizeof ( *value ) ) );

	EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
		       reg, EFAB_QWORD_VAL ( *value ) );

	_falcon_writel ( efab, value->u32[0], reg + 0  );
	_falcon_writel ( efab, value->u32[1], reg + 4  );
	wmb();
}

/**
 * Write dword to Falcon register that allows partial writes
 *
 */
static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value,
				   unsigned int reg ) {
	EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
	_falcon_writel ( efab, value->u32[0], reg );
}

/**
 * Read from a Falcon register
 *
 */
static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value,
				 unsigned int reg ) {
	value->u32[0] = _falcon_readl ( efab, reg + 0  );
	value->u32[1] = _falcon_readl ( efab, reg + 4  );
	value->u32[2] = _falcon_readl ( efab, reg + 8  );
	value->u32[3] = _falcon_readl ( efab, reg + 12 );

	EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
		       reg, EFAB_OWORD_VAL ( *value ) );
}

/** 
 * Read from Falcon SRAM
 *
 */
static inline void falcon_read_sram ( struct efab_nic *efab,
				      efab_qword_t *value,
				      unsigned int index ) {
	unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
			     ( index * sizeof ( *value ) ) );

	value->u32[0] = _falcon_readl ( efab, reg + 0 );
	value->u32[1] = _falcon_readl ( efab, reg + 4 );
	EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
		       reg, EFAB_QWORD_VAL ( *value ) );
}

/**
 * Read dword from a portion of a Falcon register
 *
 */
static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value,
				  unsigned int reg ) {
	value->u32[0] = _falcon_readl ( efab, reg );
	EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
}

/**
 * Verified write to Falcon SRAM
 *
 */
static inline void falcon_write_sram_verify ( struct efab_nic *efab,
					     efab_qword_t *value,
					     unsigned int index ) {
	efab_qword_t verify;
	
	falcon_write_sram ( efab, value, index );
	udelay ( 1000 );
	falcon_read_sram ( efab, &verify, index );
	if ( memcmp ( &verify, value, sizeof ( verify ) ) != 0 ) {
		printf ( "SRAM index %x failure: wrote " EFAB_QWORD_FMT
			 " got " EFAB_QWORD_FMT "\n", index,
			 EFAB_QWORD_VAL ( *value ),
			 EFAB_QWORD_VAL ( verify ) );
	}
}

/**
 * Get memory base
 *
 */
static void falcon_get_membase ( struct efab_nic *efab ) {
	unsigned long membase_phys;

	membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_2 );
	efab->membase = ioremap ( membase_phys, 0x20000 );
}

#define FCN_DUMP_REG( efab, _reg ) do {				\
		efab_oword_t reg;				\
		falcon_read ( efab, &reg, _reg );		\
		printf ( #_reg " = " EFAB_OWORD_FMT "\n",	\
			 EFAB_OWORD_VAL ( reg ) );		\
	} while ( 0 );

#define FCN_DUMP_MAC_REG( efab, _mac_reg ) do {			\
		efab_dword_t reg;				\
		efab->op->mac_readl ( efab, &reg, _mac_reg );	\
		printf ( #_mac_reg " = " EFAB_DWORD_FMT "\n",	\
			 EFAB_DWORD_VAL ( reg ) );		\
	} while ( 0 );

/**
 * Dump register contents (for debugging)
 *
 * Marked as static inline so that it will not be compiled in if not
 * used.
 */
static inline void falcon_dump_regs ( struct efab_nic *efab ) {
	FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
	FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
	FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
	FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_XM_GLB_CFG_REG_P0_KER );
	FCN_DUMP_REG ( efab, FCN_XM_TX_CFG_REG_P0_KER );
	FCN_DUMP_REG ( efab, FCN_XM_RX_CFG_REG_P0_KER );
	FCN_DUMP_REG ( efab, FCN_RX_DESC_PTR_TBL_KER );
	FCN_DUMP_REG ( efab, FCN_TX_DESC_PTR_TBL_KER );
	FCN_DUMP_REG ( efab, FCN_EVQ_PTR_TBL_KER );
	FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
}

/**
 * Create special buffer
 *
 */
static void falcon_create_special_buffer ( struct efab_nic *efab,
					   void *addr, unsigned int index ) {
	efab_qword_t buf_desc;
	unsigned long dma_addr;

	memset ( addr, 0, 4096 );
	dma_addr = virt_to_bus ( addr );
	EFAB_ASSERT ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
	EFAB_POPULATE_QWORD_3 ( buf_desc,
				FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
				FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
				FCN_BUF_OWNER_ID_FBUF, 0 );
	falcon_write_sram_verify ( efab, &buf_desc, index );
}

/**
 * Update event queue read pointer
 *
 */
static void falcon_eventq_read_ack ( struct efab_nic *efab ) {
	efab_dword_t reg;

	EFAB_ASSERT ( efab->eventq_read_ptr < EFAB_EVQ_SIZE );

	EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD,
				efab->eventq_read_ptr );
	falcon_writel ( efab, &reg, FCN_EVQ_RPTR_REG_KER_DWORD );
}

/**
 * Reset device
 *
 */
static int falcon_reset ( struct efab_nic *efab ) {
	efab_oword_t glb_ctl_reg_ker;

	/* Initiate software reset */
	EFAB_POPULATE_OWORD_5 ( glb_ctl_reg_ker,
				FCN_EXT_PHY_RST_CTL, FCN_EXCLUDE_FROM_RESET,
				FCN_PCIE_SD_RST_CTL, FCN_EXCLUDE_FROM_RESET,
				FCN_PCIX_RST_CTL, FCN_EXCLUDE_FROM_RESET,
				FCN_INT_RST_DUR, 0x7 /* datasheet */,
				FCN_SWRST, 1 );
	falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );

	/* Allow 20ms for reset */
	mdelay ( 20 );

	/* Check for device reset complete */
	falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
	if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
		printf ( "Reset failed\n" );
		return 0;
	}

	return 1;
}

/**
 * Initialise NIC
 *
 */
static int falcon_init_nic ( struct efab_nic *efab ) {
	efab_oword_t reg;
	efab_dword_t timer_cmd;

	/* Set up TX and RX descriptor caches in SRAM */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR,
				0x130000 /* recommended in datasheet */ );
	falcon_write ( efab, &reg, FCN_SRM_TX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 2 /* 32 descriptors */ );
	falcon_write ( efab, &reg, FCN_TX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR,
				0x100000 /* recommended in datasheet */ );
	falcon_write ( efab, &reg, FCN_SRM_RX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
	falcon_write ( efab, &reg, FCN_RX_DC_CFG_REG_KER );
	
	/* Set number of RSS CPUs */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_NUM_KER, 0 );
	falcon_write ( efab, &reg, FCN_RX_FILTER_CTL_REG_KER );
	udelay ( 1000 );
	
	/* Reset the MAC */
	mentormac_reset ( efab );

	/* Set up event queue */
	falcon_create_special_buffer ( efab, efab->eventq, FALCON_EVQ_ID );
	EFAB_POPULATE_OWORD_3 ( reg,
				FCN_EVQ_EN, 1,
				FCN_EVQ_SIZE, FCN_EVQ_SIZE_512,
				FCN_EVQ_BUF_BASE_ID, FALCON_EVQ_ID );
	falcon_write ( efab, &reg, FCN_EVQ_PTR_TBL_KER );
	udelay ( 1000 );

	/* Set timer register */
	EFAB_POPULATE_DWORD_2 ( timer_cmd,
				FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
				FCN_TIMER_VAL, 0 );
	falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
	udelay ( 1000 );

	/* Initialise event queue read pointer */
	falcon_eventq_read_ack ( efab );
	
	/* Set up TX descriptor ring */
	falcon_create_special_buffer ( efab, efab->txd, FALCON_TXD_ID );
	EFAB_POPULATE_OWORD_5 ( reg,
				FCN_TX_DESCQ_EN, 1,
				FCN_TX_DESCQ_BUF_BASE_ID, FALCON_TXD_ID,
				FCN_TX_DESCQ_EVQ_ID, 0,
				FCN_TX_DESCQ_SIZE, FCN_TX_DESCQ_SIZE_512,
				FCN_TX_DESCQ_TYPE, 0 /* kernel queue */ );
	falcon_write ( efab, &reg, FCN_TX_DESC_PTR_TBL_KER );

	/* Set up RX descriptor ring */
	falcon_create_special_buffer ( efab, efab->rxd, FALCON_RXD_ID );
	EFAB_POPULATE_OWORD_6 ( reg,
				FCN_RX_DESCQ_BUF_BASE_ID, FALCON_RXD_ID,
				FCN_RX_DESCQ_EVQ_ID, 0,
				FCN_RX_DESCQ_SIZE, FCN_RX_DESCQ_SIZE_512,
				FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
				FCN_RX_DESCQ_JUMBO, 1,
				FCN_RX_DESCQ_EN, 1 );
	falcon_write ( efab, &reg, FCN_RX_DESC_PTR_TBL_KER );

	/* Program INT_ADR_REG_KER */
	EFAB_POPULATE_OWORD_1 ( reg,
				FCN_INT_ADR_KER,
				virt_to_bus ( &efab->int_ker ) );
	falcon_write ( efab, &reg, FCN_INT_ADR_REG_KER );
	udelay ( 1000 );

	return 1;
}

/** SPI device */
struct efab_spi_device {
	/** Device ID */
	unsigned int device_id;
	/** Address length (in bytes) */
	unsigned int addr_len;
	/** Read command */
	unsigned int read_command;
};

/**
 * Wait for SPI command completion
 *
 */
static int falcon_spi_wait ( struct efab_nic *efab ) {
	efab_oword_t reg;
	int count;

	count = 0;
	do {
		udelay ( 100 );
		falcon_read ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
		if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
			return 1;
	} while ( ++count < 1000 );
	printf ( "Timed out waiting for SPI\n" );
	return 0;
}

/**
 * Perform SPI read
 *
 */
static int falcon_spi_read ( struct efab_nic *efab,
			     struct efab_spi_device *spi,
			     int address, void *data, unsigned int len ) {
	efab_oword_t reg;

	/* Program address register */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
	falcon_write ( efab, &reg, FCN_EE_SPI_HADR_REG_KER );
	
	/* Issue read command */
	EFAB_POPULATE_OWORD_7 ( reg,
				FCN_EE_SPI_HCMD_CMD_EN, 1, 
				FCN_EE_SPI_HCMD_SF_SEL, spi->device_id,
				FCN_EE_SPI_HCMD_DABCNT, len,
				FCN_EE_SPI_HCMD_READ, FCN_EE_SPI_READ,
				FCN_EE_SPI_HCMD_DUBCNT, 0,
				FCN_EE_SPI_HCMD_ADBCNT, spi->addr_len,
				FCN_EE_SPI_HCMD_ENC, spi->read_command );
	falcon_write ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
	
	/* Wait for read to complete */
	if ( ! falcon_spi_wait ( efab ) )
		return 0;
	
	/* Read data */
	falcon_read ( efab, &reg, FCN_EE_SPI_HDATA_REG_KER );
	memcpy ( data, &reg, len );

	return 1;
}

#define SPI_READ_CMD 0x03
#define AT25F1024_ADDR_LEN 3
#define AT25F1024_READ_CMD SPI_READ_CMD
#define MC25XX640_ADDR_LEN 2
#define MC25XX640_READ_CMD SPI_READ_CMD

/** Falcon Flash SPI device */
static struct efab_spi_device falcon_spi_flash = {
	.device_id	= FCN_EE_SPI_FLASH,
	.addr_len	= AT25F1024_ADDR_LEN,
	.read_command	= AT25F1024_READ_CMD,
};

/** Falcon EEPROM SPI device */
static struct efab_spi_device falcon_spi_large_eeprom = {
	.device_id	= FCN_EE_SPI_EEPROM,
	.addr_len	= MC25XX640_ADDR_LEN,
	.read_command	= MC25XX640_READ_CMD,
};

/** Offset of MAC address within EEPROM or Flash */
#define FALCON_MAC_ADDRESS_OFFSET(port) ( 0x310 + 0x08 * (port) )

/**
 * Read MAC address from EEPROM
 *
 */
static int falcon_read_eeprom ( struct efab_nic *efab ) {
	efab_oword_t reg;
	int has_flash;
	struct efab_spi_device *spi;

	/* Determine the SPI device containing the MAC address */
	falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
	has_flash = EFAB_OWORD_FIELD ( reg, FCN_FLASH_PRESENT );
	spi = has_flash ? &falcon_spi_flash : &falcon_spi_large_eeprom;

	return falcon_spi_read ( efab, spi,
				 FALCON_MAC_ADDRESS_OFFSET ( efab->port ),
				 efab->mac_addr, sizeof ( efab->mac_addr ) );
}

/** RX descriptor */
typedef efab_qword_t falcon_rx_desc_t;

/**
 * Build RX descriptor
 *
 */
static void falcon_build_rx_desc ( struct efab_nic *efab,
				   struct efab_rx_buf *rx_buf ) {
	falcon_rx_desc_t *rxd;

	rxd = ( ( falcon_rx_desc_t * ) efab->rxd ) + rx_buf->id;
	EFAB_POPULATE_QWORD_2 ( *rxd,
				FCN_RX_KER_BUF_SIZE, EFAB_DATA_BUF_SIZE,
				FCN_RX_KER_BUF_ADR,
				virt_to_bus ( rx_buf->addr ) );
}

/**
 * Update RX descriptor write pointer
 *
 */
static void falcon_notify_rx_desc ( struct efab_nic *efab ) {
	efab_dword_t reg;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD,
				efab->rx_write_ptr );
	falcon_writel ( efab, &reg, FCN_RX_DESC_UPD_REG_KER_DWORD );
}

/** TX descriptor */
typedef efab_qword_t falcon_tx_desc_t;

/**
 * Build TX descriptor
 *
 */
static void falcon_build_tx_desc ( struct efab_nic *efab,
				   struct efab_tx_buf *tx_buf ) {
	falcon_rx_desc_t *txd;

	txd = ( ( falcon_rx_desc_t * ) efab->txd ) + tx_buf->id;
	EFAB_POPULATE_QWORD_3 ( *txd,
				FCN_TX_KER_PORT, efab->port,
				FCN_TX_KER_BYTE_CNT, tx_buf->len,
				FCN_TX_KER_BUF_ADR,
				virt_to_bus ( tx_buf->addr ) );
}

/**
 * Update TX descriptor write pointer
 *
 */
static void falcon_notify_tx_desc ( struct efab_nic *efab ) {
	efab_dword_t reg;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD,
				efab->tx_write_ptr );
	falcon_writel ( efab, &reg, FCN_TX_DESC_UPD_REG_KER_DWORD );
}

/** An event */
typedef efab_qword_t falcon_event_t;

/**
 * Retrieve event from event queue
 *
 */
static int falcon_fetch_event ( struct efab_nic *efab,
				struct efab_event *event ) {
	falcon_event_t *evt;
	int ev_code;
	int rx_port;

	/* Check for event */
	evt = ( ( falcon_event_t * ) efab->eventq ) + efab->eventq_read_ptr;
	if ( EFAB_QWORD_IS_ZERO ( *evt ) ) {
		/* No event */
		return 0;
	}
	
	DBG ( "Event is " EFAB_QWORD_FMT "\n", EFAB_QWORD_VAL ( *evt ) );

	/* Decode event */
	ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
	switch ( ev_code ) {
	case FCN_TX_IP_EV_DECODE:
		event->type = EFAB_EV_TX;
		break;
	case FCN_RX_IP_EV_DECODE:
		event->type = EFAB_EV_RX;
		event->rx_id = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
		event->rx_len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
		rx_port = EFAB_QWORD_FIELD ( *evt, FCN_RX_PORT );
		if ( rx_port != efab->port ) {
			/* Ignore packets on the wrong port.  We can't
			 * just set event->type = EFAB_EV_NONE,
			 * because then the descriptor ring won't get
			 * refilled.
			 */
			event->rx_len = 0;
		}
		break;
	case FCN_DRIVER_EV_DECODE:
		/* Ignore start-of-day events */
		event->type = EFAB_EV_NONE;
		break;
	default:
		printf ( "Unknown event type %d\n", ev_code );
		event->type = EFAB_EV_NONE;
	}

	/* Clear event and any pending interrupts */
	EFAB_ZERO_QWORD ( *evt );
	falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG );
	udelay ( 10 );

	/* Increment and update event queue read pointer */
	efab->eventq_read_ptr = ( ( efab->eventq_read_ptr + 1 )
				  % EFAB_EVQ_SIZE );
	falcon_eventq_read_ack ( efab );

	return 1;
}

/**
 * Enable/disable/generate interrupt
 *
 */
static inline void falcon_interrupts ( struct efab_nic *efab, int enabled,
				       int force ) {
	efab_oword_t int_en_reg_ker;

	EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
				FCN_KER_INT_KER, force,
				FCN_DRV_INT_EN_KER, enabled );
	falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );	
}

/**
 * Enable/disable interrupts
 *
 */
static void falcon_mask_irq ( struct efab_nic *efab, int enabled ) {
	falcon_interrupts ( efab, enabled, 0 );
	if ( enabled ) {
		/* Events won't trigger interrupts until we do this */
		falcon_eventq_read_ack ( efab );
	}
}

/**
 * Generate interrupt
 *
 */
static void falcon_generate_irq ( struct efab_nic *efab ) {
	falcon_interrupts ( efab, 1, 1 );
}

/**
 * Write dword to a Falcon MAC register
 *
 */
static void falcon_mac_writel ( struct efab_nic *efab,
				efab_dword_t *value, unsigned int mac_reg ) {
	efab_oword_t temp;

	EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
				EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
	falcon_write ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
}

/**
 * Read dword from a Falcon MAC register
 *
 */
static void falcon_mac_readl ( struct efab_nic *efab, efab_dword_t *value,
			       unsigned int mac_reg ) {
	efab_oword_t temp;

	falcon_read ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
	EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
				EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}

/**
 * Initialise MAC
 *
 */
static int falcon_init_mac ( struct efab_nic *efab ) {
	static struct efab_mentormac_parameters falcon_mentormac_params = {
		.gmf_cfgfrth = 0x12,
		.gmf_cfgftth = 0x08,
		.gmf_cfghwmft = 0x1c,
		.gmf_cfghwm = 0x3f,
		.gmf_cfglwm = 0xa,
	};
	efab_oword_t reg;
	int link_speed;

	/* Initialise PHY */
	alaska_init ( efab );

	/* Initialise MAC */
	mentormac_init ( efab, &falcon_mentormac_params );

	/* Configure the Falcon MAC wrapper */
	EFAB_POPULATE_OWORD_4 ( reg,
				FCN_XM_RX_JUMBO_MODE, 0,
				FCN_XM_CUT_THRU_MODE, 0,
				FCN_XM_TX_STAT_EN, 1,
				FCN_XM_RX_STAT_EN, 1);
	falcon_write ( efab, &reg, FCN_XM_GLB_CFG_REG_P0_KER );

	EFAB_POPULATE_OWORD_6 ( reg, 
				FCN_XM_TXEN, 1,
				FCN_XM_TX_PRMBL, 1,
				FCN_XM_AUTO_PAD, 1,
				FCN_XM_TXCRC, 1,
				FCN_XM_WTF_DOES_THIS_DO, 1,
				FCN_XM_IPG, 0x3 );
	falcon_write ( efab, &reg, FCN_XM_TX_CFG_REG_P0_KER );

	EFAB_POPULATE_OWORD_3 ( reg,
				FCN_XM_RXEN, 1,
				FCN_XM_AUTO_DEPAD, 1,
				FCN_XM_PASS_CRC_ERR, 1 );
	falcon_write ( efab, &reg, FCN_XM_RX_CFG_REG_P0_KER );

#warning "10G support not yet present"
#define LPA_10000 0
	if ( efab->link_options & LPA_10000 ) {
		link_speed = 0x3;
	} else if ( efab->link_options & LPA_1000 ) {
		link_speed = 0x2;
	} else if ( efab->link_options & LPA_100 ) {
		link_speed = 0x1;
	} else {
		link_speed = 0x0;
	}
	EFAB_POPULATE_OWORD_5 ( reg,
				FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
				FCN_MAC_BCAD_ACPT, 1,
				FCN_MAC_UC_PROM, 0,
				FCN_MAC_LINK_STATUS, 1,
				FCN_MAC_SPEED, link_speed );
	falcon_write ( efab, &reg, ( efab->port == 0 ?
			     FCN_MAC0_CTRL_REG_KER : FCN_MAC1_CTRL_REG_KER ) );

	return 1;
}

/**
 * Wait for GMII access to complete
 *
 */
static int falcon_gmii_wait ( struct efab_nic *efab ) {
	efab_oword_t md_stat;
	int count;

	for ( count = 0 ; count < 1000 ; count++ ) {
		udelay ( 10 );
		falcon_read ( efab, &md_stat, FCN_MD_STAT_REG_KER );
		if ( EFAB_OWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 )
			return 1;
	}
	printf ( "Timed out waiting for GMII\n" );
	return 0;
}

/** MDIO write */
static void falcon_mdio_write ( struct efab_nic *efab, int location,
				int value ) {
	int phy_id = efab->port + 2;
	efab_oword_t reg;

#warning "10G PHY access not yet in place"

	EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
		     phy_id, location, value );

	/* Check MII not currently being accessed */
	if ( ! falcon_gmii_wait ( efab ) )
		return;

	/* Write the address registers */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
	falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
	udelay ( 10 );
	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_MD_PRT_ADR, phy_id,
				FCN_MD_DEV_ADR, location );
	falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
	udelay ( 10 );

	/* Write data */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
	falcon_write ( efab, &reg, FCN_MD_TXD_REG_KER );
	udelay ( 10 );
	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_MD_WRC, 1,
				FCN_MD_GC, 1 );
	falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
	udelay ( 10 );
	
	/* Wait for data to be written */
	falcon_gmii_wait ( efab );
}

/** MDIO read */
static int falcon_mdio_read ( struct efab_nic *efab, int location ) {
	int phy_id = efab->port + 2;
	efab_oword_t reg;
	int value;

	/* Check MII not currently being accessed */
	if ( ! falcon_gmii_wait ( efab ) )
		return 0xffff;

	/* Write the address registers */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
	falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
	udelay ( 10 );
	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_MD_PRT_ADR, phy_id,
				FCN_MD_DEV_ADR, location );
	falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
	udelay ( 10 );

	/* Request data to be read */
	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_MD_RIC, 1,
				FCN_MD_GC, 1 );
	falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
	udelay ( 10 );
	
	/* Wait for data to become available */
	falcon_gmii_wait ( efab );

	/* Read the data */
	falcon_read ( efab, &reg, FCN_MD_RXD_REG_KER );
	value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );

	EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
		     phy_id, location, value );

	return value;
}

static struct efab_operations falcon_operations = {
	.get_membase		= falcon_get_membase,
	.reset			= falcon_reset,
	.init_nic		= falcon_init_nic,
	.read_eeprom		= falcon_read_eeprom,
	.build_rx_desc		= falcon_build_rx_desc,
	.notify_rx_desc		= falcon_notify_rx_desc,
	.build_tx_desc		= falcon_build_tx_desc,
	.notify_tx_desc		= falcon_notify_tx_desc,
	.fetch_event		= falcon_fetch_event,
	.mask_irq		= falcon_mask_irq,
	.generate_irq		= falcon_generate_irq,
	.mac_writel		= falcon_mac_writel,
	.mac_readl		= falcon_mac_readl,
	.init_mac		= falcon_init_mac,
	.mdio_write		= falcon_mdio_write,
	.mdio_read		= falcon_mdio_read,
};

/**************************************************************************
 *
 * Etherfabric abstraction layer
 *
 **************************************************************************
 */

/**
 * Push RX buffer to RXD ring
 *
 */
static inline void efab_push_rx_buffer ( struct efab_nic *efab,
					 struct efab_rx_buf *rx_buf ) {
	/* Create RX descriptor */
	rx_buf->id = efab->rx_write_ptr;
	efab->op->build_rx_desc ( efab, rx_buf );

	/* Update RX write pointer */
	efab->rx_write_ptr = ( efab->rx_write_ptr + 1 ) % EFAB_RXD_SIZE;
	efab->op->notify_rx_desc ( efab );

	DBG ( "Added RX id %x\n", rx_buf->id );
}

/**
 * Push TX buffer to TXD ring
 *
 */
static inline void efab_push_tx_buffer ( struct efab_nic *efab,
					 struct efab_tx_buf *tx_buf ) {
	/* Create TX descriptor */
	tx_buf->id = efab->tx_write_ptr;
	efab->op->build_tx_desc ( efab, tx_buf );

	/* Update TX write pointer */
	efab->tx_write_ptr = ( efab->tx_write_ptr + 1 ) % EFAB_TXD_SIZE;
	efab->op->notify_tx_desc ( efab );

	DBG ( "Added TX id %x\n", tx_buf->id );
}

/**
 * Initialise MAC and wait for link up
 *
 */
static int efab_init_mac ( struct efab_nic *efab ) {
	int count;

	/* This can take several seconds */
	printf ( "Waiting for link.." );
	count = 0;
	do {
		putchar ( '.' );
		if ( ! efab->op->init_mac ( efab ) ) {
			printf ( "failed\n" );
			return 0;
		}
		if ( efab->link_up ) {
			/* PHY init printed the message for us */
			return 1;
		}
		sleep ( 1 );
	} while ( ++count < 5 );
	printf ( "timed out\n" );

	return 0;
}

/**
 * Initialise NIC
 *
 */
static int efab_init_nic ( struct efab_nic *efab ) {
	int i;

	/* Initialise NIC */
	if ( ! efab->op->init_nic ( efab ) )
		return 0;

	/* Push RX descriptors */
	for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
		efab_push_rx_buffer ( efab, &efab->rx_bufs[i] );
	}

	/* Read MAC address from EEPROM */
	if ( ! efab->op->read_eeprom ( efab ) )
		return 0;
	efab->mac_addr[ETH_ALEN-1] += efab->port;

	/* Initialise MAC and wait for link up */
	if ( ! efab_init_mac ( efab ) )
		return 0;

	return 1;
}

/**************************************************************************
 *
 * Etherboot interface
 *
 **************************************************************************
 */

/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int etherfabric_poll ( struct nic *nic, int retrieve ) {
	struct efab_nic *efab = nic->priv_data;
	struct efab_event event;
	static struct efab_rx_buf *rx_buf = NULL;
	int i;

	/* Process the event queue until we hit either a packet
	 * received event or an empty event slot.
	 */
	while ( ( rx_buf == NULL ) &&
		efab->op->fetch_event ( efab, &event ) ) {
		if ( event.type == EFAB_EV_TX ) {
			/* TX completed - mark as done */
			DBG ( "TX id %x complete\n",
			      efab->tx_buf.id );
		} else if ( event.type == EFAB_EV_RX ) {
			/* RX - find corresponding buffer */
			for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
				if ( efab->rx_bufs[i].id == event.rx_id ) {
					rx_buf = &efab->rx_bufs[i];
					rx_buf->len = event.rx_len;
					DBG ( "RX id %x (len %x) received\n",
					      rx_buf->id, rx_buf->len );
					break;
				}
			}
			if ( ! rx_buf ) {
				printf ( "Invalid RX ID %x\n", event.rx_id );
			}
		} else if ( event.type == EFAB_EV_NONE ) {
			DBG ( "Ignorable event\n" );
		} else {
			DBG ( "Unknown event\n" );
		}
	}

	/* If there is no packet, return 0 */
	if ( ! rx_buf )
		return 0;

	/* If we don't want to retrieve it just yet, return 1 */
	if ( ! retrieve )
		return 1;

	/* There seems to be a hardware race.  The event can show up
	 * on the event FIFO before the DMA has completed, so we
	 * insert a tiny delay.  If this proves unreliable, we should
	 * switch to using event DMA rather than the event FIFO, since
	 * event DMA ordering is guaranteed.
	 */
	udelay ( 1 );

	/* Copy packet contents */
	nic->packetlen = rx_buf->len;
	memcpy ( nic->packet, rx_buf->addr, nic->packetlen );

	/* Give this buffer back to the NIC */
	efab_push_rx_buffer ( efab, rx_buf );

	/* Prepare to receive next packet */
	rx_buf = NULL;

	return 1;
}

/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void etherfabric_transmit ( struct nic *nic, const char *dest,
				   unsigned int type, unsigned int size,
				   const char *data ) {
	struct efab_nic *efab = nic->priv_data;
	unsigned int nstype = htons ( type );

	/* Fill TX buffer, pad to ETH_ZLEN */
	memcpy ( efab->tx_buf.addr, dest, ETH_ALEN );
	memcpy ( efab->tx_buf.addr + ETH_ALEN, nic->node_addr, ETH_ALEN );
	memcpy ( efab->tx_buf.addr + 2 * ETH_ALEN, &nstype, 2 );
	memcpy ( efab->tx_buf.addr + ETH_HLEN, data, size );
	size += ETH_HLEN;
        while ( size < ETH_ZLEN ) {
                efab->tx_buf.addr[size++] = '\0';
        }
	efab->tx_buf.len = size;

	/* Push TX descriptor */
	efab_push_tx_buffer ( efab, &efab->tx_buf );

	/* Allow enough time for the packet to be transmitted.  This
	 * is a temporary hack until we update to the new driver API.
	 */
	udelay ( 20 );

	return;
}

/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void etherfabric_disable ( struct nic *nic ) {
	struct efab_nic *efab = nic->priv_data;

	efab->op->reset ( efab );
	if ( efab->membase )
		iounmap ( efab->membase );
}

/**************************************************************************
IRQ - handle interrupts
***************************************************************************/
static void etherfabric_irq ( struct nic *nic, irq_action_t action ) {
	struct efab_nic *efab = nic->priv_data;
       
	switch ( action ) {
	case DISABLE :
		efab->op->mask_irq ( efab, 1 );
		break;
	case ENABLE :
		efab->op->mask_irq ( efab, 0 );
		break;
	case FORCE :
		/* Force NIC to generate a receive interrupt */
		efab->op->generate_irq ( efab );
		break;
	}
	
	return;
}

static struct nic_operations etherfabric_operations = {
	.connect	= dummy_connect,
	.poll		= etherfabric_poll,
	.transmit	= etherfabric_transmit,
	.irq		= etherfabric_irq,
};

/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
static int etherfabric_probe ( struct nic *nic, struct pci_device *pci ) {
	static struct efab_nic efab;
	static int nic_port = 1;
	struct efab_buffers *buffers;
	int i;

	/* Set up our private data structure */
	nic->priv_data = &efab;
	memset ( &efab, 0, sizeof ( efab ) );
	memset ( &efab_buffers, 0, sizeof ( efab_buffers ) );

	/* Hook in appropriate operations table.  Do this early. */
	if ( pci->device == EF1002_DEVID ) {
		efab.op = &ef1002_operations;
	} else {
		efab.op = &falcon_operations;
	}

	/* Initialise efab data structure */
	efab.pci = pci;
	buffers = ( ( struct efab_buffers * )
		    ( ( ( void * ) &efab_buffers ) +
		      ( - virt_to_bus ( &efab_buffers ) ) % EFAB_BUF_ALIGN ) );
	efab.eventq = buffers->eventq;
	efab.txd = buffers->txd;
	efab.rxd = buffers->rxd;
	efab.tx_buf.addr = buffers->tx_buf;
	for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
		efab.rx_bufs[i].addr = buffers->rx_buf[i];
	}

	/* Enable the PCI device */
	adjust_pci_device ( pci );
	nic->ioaddr = pci->ioaddr & ~3;
	nic->irqno = pci->irq;

	/* Get iobase/membase */
	efab.iobase = nic->ioaddr;
	efab.op->get_membase ( &efab );

	/* Switch NIC ports (i.e. try different ports on each probe) */
	nic_port = 1 - nic_port;
	efab.port = nic_port;

	/* Initialise hardware */
	if ( ! efab_init_nic ( &efab ) )
		return 0;
	memcpy ( nic->node_addr, efab.mac_addr, ETH_ALEN );

	/* point to NIC specific routines */
	nic->nic_op = &etherfabric_operations;

	return 1;
}

static struct pci_device_id etherfabric_nics[] = {
PCI_ROM(0x1924, 0xC101, "ef1002", "EtherFabric EF1002"),
PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon"),
};

PCI_DRIVER ( etherfabric_driver, etherfabric_nics, PCI_NO_CLASS );

DRIVER ( "EFAB", nic_driver, pci_driver, etherfabric_driver,
	 etherfabric_probe, etherfabric_disable );

/*
 * Local variables:
 *  c-basic-offset: 8
 *  c-indent-level: 8
 *  tab-width: 8
 * End:
 */