summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorMichael Brown2014-09-25 14:16:44 +0200
committerMichael Brown2014-09-25 14:16:44 +0200
commita48a71b7203b71620b37238c10501e125f89c0c6 (patch)
tree80749f8075e8f3a8b43541c89a3e3c2049b43187 /src
parent[efi] Centralise definitions of more protocol GUIDs (diff)
downloadipxe-a48a71b7203b71620b37238c10501e125f89c0c6.tar.gz
ipxe-a48a71b7203b71620b37238c10501e125f89c0c6.tar.xz
ipxe-a48a71b7203b71620b37238c10501e125f89c0c6.zip
[efi] Add definitions of GUIDs observed when chainloading from Intel driver
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Diffstat (limited to 'src')
-rw-r--r--src/include/ipxe/efi/Protocol/Arp.h387
-rw-r--r--src/include/ipxe/efi/Protocol/Dhcp4.h782
-rw-r--r--src/include/ipxe/efi/Protocol/Ip4.h614
-rw-r--r--src/include/ipxe/efi/Protocol/Ip4Config.h184
-rw-r--r--src/include/ipxe/efi/Protocol/ManagedNetwork.h374
-rw-r--r--src/include/ipxe/efi/Protocol/Mtftp4.h595
-rw-r--r--src/include/ipxe/efi/Protocol/Tcp4.h579
-rw-r--r--src/include/ipxe/efi/Protocol/Udp4.h447
-rw-r--r--src/include/ipxe/efi/Protocol/VlanConfig.h145
-rw-r--r--src/include/ipxe/efi/efi.h16
-rw-r--r--src/interface/efi/efi_debug.c52
-rw-r--r--src/interface/efi/efi_guid.c73
12 files changed, 4246 insertions, 2 deletions
diff --git a/src/include/ipxe/efi/Protocol/Arp.h b/src/include/ipxe/efi/Protocol/Arp.h
new file mode 100644
index 00000000..80921f9a
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Arp.h
@@ -0,0 +1,387 @@
+/** @file
+ EFI ARP Protocol Definition
+
+ The EFI ARP Service Binding Protocol is used to locate EFI
+ ARP Protocol drivers to create and destroy child of the
+ driver to communicate with other host using ARP protocol.
+ The EFI ARP Protocol provides services to map IP network
+ address to hardware address used by a data link protocol.
+
+Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol was introduced in UEFI Specification 2.0.
+
+**/
+
+#ifndef __EFI_ARP_PROTOCOL_H__
+#define __EFI_ARP_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xf44c00ee, 0x1f2c, 0x4a00, {0xaa, 0x9, 0x1c, 0x9f, 0x3e, 0x8, 0x0, 0xa3 } \
+ }
+
+#define EFI_ARP_PROTOCOL_GUID \
+ { \
+ 0xf4b427bb, 0xba21, 0x4f16, {0xbc, 0x4e, 0x43, 0xe4, 0x16, 0xab, 0x61, 0x9c } \
+ }
+
+typedef struct _EFI_ARP_PROTOCOL EFI_ARP_PROTOCOL;
+
+typedef struct {
+ ///
+ /// Length in bytes of this entry.
+ ///
+ UINT32 Size;
+
+ ///
+ /// Set to TRUE if this entry is a "deny" entry.
+ /// Set to FALSE if this entry is a "normal" entry.
+ ///
+ BOOLEAN DenyFlag;
+
+ ///
+ /// Set to TRUE if this entry will not time out.
+ /// Set to FALSE if this entry will time out.
+ ///
+ BOOLEAN StaticFlag;
+
+ ///
+ /// 16-bit ARP hardware identifier number.
+ ///
+ UINT16 HwAddressType;
+
+ ///
+ /// 16-bit protocol type number.
+ ///
+ UINT16 SwAddressType;
+
+ ///
+ /// The length of the hardware address.
+ ///
+ UINT8 HwAddressLength;
+
+ ///
+ /// The length of the protocol address.
+ ///
+ UINT8 SwAddressLength;
+} EFI_ARP_FIND_DATA;
+
+typedef struct {
+ ///
+ /// 16-bit protocol type number in host byte order.
+ ///
+ UINT16 SwAddressType;
+
+ ///
+ /// The length in bytes of the station's protocol address to register.
+ ///
+ UINT8 SwAddressLength;
+
+ ///
+ /// The pointer to the first byte of the protocol address to register. For
+ /// example, if SwAddressType is 0x0800 (IP), then
+ /// StationAddress points to the first byte of this station's IP
+ /// address stored in network byte order.
+ ///
+ VOID *StationAddress;
+
+ ///
+ /// The timeout value in 100-ns units that is associated with each
+ /// new dynamic ARP cache entry. If it is set to zero, the value is
+ /// implementation-specific.
+ ///
+ UINT32 EntryTimeOut;
+
+ ///
+ /// The number of retries before a MAC address is resolved. If it is
+ /// set to zero, the value is implementation-specific.
+ ///
+ UINT32 RetryCount;
+
+ ///
+ /// The timeout value in 100-ns units that is used to wait for the ARP
+ /// reply packet or the timeout value between two retries. Set to zero
+ /// to use implementation-specific value.
+ ///
+ UINT32 RetryTimeOut;
+} EFI_ARP_CONFIG_DATA;
+
+
+/**
+ This function is used to assign a station address to the ARP cache for this instance
+ of the ARP driver.
+
+ Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver will
+ respond to ARP requests that match this registered station address. A call to
+ this function with the ConfigData field set to NULL will reset this ARP instance.
+
+ Once a protocol type and station address have been assigned to this ARP instance,
+ all the following ARP functions will use this information. Attempting to change
+ the protocol type or station address to a configured ARP instance will result in errors.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+ @param ConfigData The pointer to the EFI_ARP_CONFIG_DATA structure.
+
+ @retval EFI_SUCCESS The new station address was successfully
+ registered.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ * This is NULL.
+ * SwAddressLength is zero when ConfigData is not NULL.
+ * StationAddress is NULL when ConfigData is not NULL.
+ @retval EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or
+ StationAddress is different from the one that is
+ already registered.
+ @retval EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be
+ allocated.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_CONFIGURE)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
+ );
+
+/**
+ This function is used to insert entries into the ARP cache.
+
+ ARP cache entries are typically inserted and updated by network protocol drivers
+ as network traffic is processed. Most ARP cache entries will time out and be
+ deleted if the network traffic stops. ARP cache entries that were inserted
+ by the Add() function may be static (will not time out) or dynamic (will time out).
+ Default ARP cache timeout values are not covered in most network protocol
+ specifications (although RFC 1122 comes pretty close) and will only be
+ discussed in general terms in this specification. The timeout values that are
+ used in the EFI Sample Implementation should be used only as a guideline.
+ Final product implementations of the EFI network stack should be tuned for
+ their expected network environments.
+
+ @param This Pointer to the EFI_ARP_PROTOCOL instance.
+ @param DenyFlag Set to TRUE if this entry is a deny entry. Set to
+ FALSE if this entry is a normal entry.
+ @param TargetSwAddress Pointer to a protocol address to add (or deny).
+ May be set to NULL if DenyFlag is TRUE.
+ @param TargetHwAddress Pointer to a hardware address to add (or deny).
+ May be set to NULL if DenyFlag is TRUE.
+ @param TimeoutValue Time in 100-ns units that this entry will remain
+ in the ARP cache. A value of zero means that the
+ entry is permanent. A nonzero value will override
+ the one given by Configure() if the entry to be
+ added is a dynamic entry.
+ @param Overwrite If TRUE, the matching cache entry will be
+ overwritten with the supplied parameters. If
+ FALSE, EFI_ACCESS_DENIED is returned if the
+ corresponding cache entry already exists.
+
+ @retval EFI_SUCCESS The entry has been added or updated.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ * This is NULL.
+ * DenyFlag is FALSE and TargetHwAddress is NULL.
+ * DenyFlag is FALSE and TargetSwAddress is NULL.
+ * TargetHwAddress is NULL and TargetSwAddress is NULL.
+ * Neither TargetSwAddress nor TargetHwAddress are NULL when DenyFlag is
+ TRUE.
+ @retval EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.
+ @retval EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite
+ is not true.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_ADD)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN BOOLEAN DenyFlag,
+ IN VOID *TargetSwAddress OPTIONAL,
+ IN VOID *TargetHwAddress OPTIONAL,
+ IN UINT32 TimeoutValue,
+ IN BOOLEAN Overwrite
+ );
+
+/**
+ This function searches the ARP cache for matching entries and allocates a buffer into
+ which those entries are copied.
+
+ The first part of the allocated buffer is EFI_ARP_FIND_DATA, following which
+ are protocol address pairs and hardware address pairs.
+ When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer
+ is not NULL), the ARP cache timeout for the found entry is reset if Refresh is
+ set to TRUE. If the found ARP cache entry is a permanent entry, it is not
+ affected by Refresh.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+ @param BySwAddress Set to TRUE to look for matching software protocol
+ addresses. Set to FALSE to look for matching
+ hardware protocol addresses.
+ @param AddressBuffer The pointer to the address buffer. Set to NULL
+ to match all addresses.
+ @param EntryLength The size of an entry in the entries buffer.
+ @param EntryCount The number of ARP cache entries that are found by
+ the specified criteria.
+ @param Entries The pointer to the buffer that will receive the ARP
+ cache entries.
+ @param Refresh Set to TRUE to refresh the timeout value of the
+ matching ARP cache entry.
+
+ @retval EFI_SUCCESS The requested ARP cache entries were copied into
+ the buffer.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL. Both EntryCount and EntryLength are
+ NULL, when Refresh is FALSE.
+ @retval EFI_NOT_FOUND No matching entries were found.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_FIND)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN BOOLEAN BySwAddress,
+ IN VOID *AddressBuffer OPTIONAL,
+ OUT UINT32 *EntryLength OPTIONAL,
+ OUT UINT32 *EntryCount OPTIONAL,
+ OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
+ IN BOOLEAN Refresh
+ );
+
+
+/**
+ This function removes specified ARP cache entries.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+ @param BySwAddress Set to TRUE to delete matching protocol addresses.
+ Set to FALSE to delete matching hardware
+ addresses.
+ @param AddressBuffer The pointer to the address buffer that is used as a
+ key to look for the cache entry. Set to NULL to
+ delete all entries.
+
+ @retval EFI_SUCCESS The entry was removed from the ARP cache.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_FOUND The specified deletion key was not found.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_DELETE)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN BOOLEAN BySwAddress,
+ IN VOID *AddressBuffer OPTIONAL
+ );
+
+/**
+ This function delete all dynamic entries from the ARP cache that match the specified
+ software protocol type.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The cache has been flushed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_FOUND There are no matching dynamic cache entries.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_FLUSH)(
+ IN EFI_ARP_PROTOCOL *This
+ );
+
+/**
+ This function tries to resolve the TargetSwAddress and optionally returns a
+ TargetHwAddress if it already exists in the ARP cache.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+ @param TargetSwAddress The pointer to the protocol address to resolve.
+ @param ResolvedEvent The pointer to the event that will be signaled when
+ the address is resolved or some error occurs.
+ @param TargetHwAddress The pointer to the buffer for the resolved hardware
+ address in network byte order.
+
+ @retval EFI_SUCCESS The data is copied from the ARP cache into the
+ TargetHwAddress buffer.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL. TargetHwAddress is NULL.
+ @retval EFI_ACCESS_DENIED The requested address is not present in the normal
+ ARP cache but is present in the deny address list.
+ Outgoing traffic to that address is forbidden.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+ @retval EFI_NOT_READY The request has been started and is not finished.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_REQUEST)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN VOID *TargetSwAddress OPTIONAL,
+ IN EFI_EVENT ResolvedEvent OPTIONAL,
+ OUT VOID *TargetHwAddress
+ );
+
+/**
+ This function aborts the previous ARP request (identified by This, TargetSwAddress
+ and ResolvedEvent) that is issued by EFI_ARP_PROTOCOL.Request().
+
+ If the request is in the internal ARP request queue, the request is aborted
+ immediately and its ResolvedEvent is signaled. Only an asynchronous address
+ request needs to be canceled. If TargeSwAddress and ResolveEvent are both
+ NULL, all the pending asynchronous requests that have been issued by This
+ instance will be cancelled and their corresponding events will be signaled.
+
+ @param This The pointer to the EFI_ARP_PROTOCOL instance.
+ @param TargetSwAddress The pointer to the protocol address in previous
+ request session.
+ @param ResolvedEvent Pointer to the event that is used as the
+ notification event in previous request session.
+
+ @retval EFI_SUCCESS The pending request session(s) is/are aborted and
+ corresponding event(s) is/are signaled.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL. TargetSwAddress is not NULL and
+ ResolvedEvent is NULL. TargetSwAddress is NULL and
+ ResolvedEvent is not NULL.
+ @retval EFI_NOT_STARTED The ARP driver instance has not been configured.
+ @retval EFI_NOT_FOUND The request is not issued by
+ EFI_ARP_PROTOCOL.Request().
+
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_ARP_CANCEL)(
+ IN EFI_ARP_PROTOCOL *This,
+ IN VOID *TargetSwAddress OPTIONAL,
+ IN EFI_EVENT ResolvedEvent OPTIONAL
+ );
+
+///
+/// ARP is used to resolve local network protocol addresses into
+/// network hardware addresses.
+///
+struct _EFI_ARP_PROTOCOL {
+ EFI_ARP_CONFIGURE Configure;
+ EFI_ARP_ADD Add;
+ EFI_ARP_FIND Find;
+ EFI_ARP_DELETE Delete;
+ EFI_ARP_FLUSH Flush;
+ EFI_ARP_REQUEST Request;
+ EFI_ARP_CANCEL Cancel;
+};
+
+
+extern EFI_GUID gEfiArpServiceBindingProtocolGuid;
+extern EFI_GUID gEfiArpProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Dhcp4.h b/src/include/ipxe/efi/Protocol/Dhcp4.h
new file mode 100644
index 00000000..560ee322
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Dhcp4.h
@@ -0,0 +1,782 @@
+/** @file
+ EFI_DHCP4_PROTOCOL as defined in UEFI 2.0.
+ EFI_DHCP4_SERVICE_BINDING_PROTOCOL as defined in UEFI 2.0.
+ These protocols are used to collect configuration information for the EFI IPv4 Protocol
+ drivers and to provide DHCPv4 server and PXE boot server discovery services.
+
+Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol was introduced in UEFI Specification 2.0.
+
+**/
+
+#ifndef __EFI_DHCP4_PROTOCOL_H__
+#define __EFI_DHCP4_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#define EFI_DHCP4_PROTOCOL_GUID \
+ { \
+ 0x8a219718, 0x4ef5, 0x4761, {0x91, 0xc8, 0xc0, 0xf0, 0x4b, 0xda, 0x9e, 0x56 } \
+ }
+
+#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x9d9a39d8, 0xbd42, 0x4a73, {0xa4, 0xd5, 0x8e, 0xe9, 0x4b, 0xe1, 0x13, 0x80 } \
+ }
+
+typedef struct _EFI_DHCP4_PROTOCOL EFI_DHCP4_PROTOCOL;
+
+
+#pragma pack(1)
+typedef struct {
+ ///
+ /// DHCP option code.
+ ///
+ UINT8 OpCode;
+ ///
+ /// Length of the DHCP option data. Not present if OpCode is 0 or 255.
+ ///
+ UINT8 Length;
+ ///
+ /// Start of the DHCP option data. Not present if OpCode is 0 or 255 or if Length is zero.
+ ///
+ UINT8 Data[1];
+} EFI_DHCP4_PACKET_OPTION;
+#pragma pack()
+
+
+#pragma pack(1)
+///
+/// EFI_DHCP4_PACKET defines the format of DHCPv4 packets. See RFC 2131 for more information.
+///
+typedef struct {
+ UINT8 OpCode;
+ UINT8 HwType;
+ UINT8 HwAddrLen;
+ UINT8 Hops;
+ UINT32 Xid;
+ UINT16 Seconds;
+ UINT16 Reserved;
+ EFI_IPv4_ADDRESS ClientAddr; ///< Client IP address from client.
+ EFI_IPv4_ADDRESS YourAddr; ///< Client IP address from server.
+ EFI_IPv4_ADDRESS ServerAddr; ///< IP address of next server in bootstrap.
+ EFI_IPv4_ADDRESS GatewayAddr; ///< Relay agent IP address.
+ UINT8 ClientHwAddr[16]; ///< Client hardware address.
+ CHAR8 ServerName[64];
+ CHAR8 BootFileName[128];
+}EFI_DHCP4_HEADER;
+#pragma pack()
+
+
+#pragma pack(1)
+typedef struct {
+ ///
+ /// Size of the EFI_DHCP4_PACKET buffer.
+ ///
+ UINT32 Size;
+ ///
+ /// Length of the EFI_DHCP4_PACKET from the first byte of the Header field
+ /// to the last byte of the Option[] field.
+ ///
+ UINT32 Length;
+
+ struct {
+ ///
+ /// DHCP packet header.
+ ///
+ EFI_DHCP4_HEADER Header;
+ ///
+ /// DHCP magik cookie in network byte order.
+ ///
+ UINT32 Magik;
+ ///
+ /// Start of the DHCP packed option data.
+ ///
+ UINT8 Option[1];
+ } Dhcp4;
+} EFI_DHCP4_PACKET;
+#pragma pack()
+
+
+typedef enum {
+ ///
+ /// The EFI DHCPv4 Protocol driver is stopped.
+ ///
+ Dhcp4Stopped = 0x0,
+ ///
+ /// The EFI DHCPv4 Protocol driver is inactive.
+ ///
+ Dhcp4Init = 0x1,
+ ///
+ /// The EFI DHCPv4 Protocol driver is collecting DHCP offer packets from DHCP servers.
+ ///
+ Dhcp4Selecting = 0x2,
+ ///
+ /// The EFI DHCPv4 Protocol driver has sent the request to the DHCP server and is waiting for a response.
+ ///
+ Dhcp4Requesting = 0x3,
+ ///
+ /// The DHCP configuration has completed.
+ ///
+ Dhcp4Bound = 0x4,
+ ///
+ /// The DHCP configuration is being renewed and another request has
+ /// been sent out, but it has not received a response from the server yet.
+ ///
+ Dhcp4Renewing = 0x5,
+ ///
+ /// The DHCP configuration has timed out and the EFI DHCPv4
+ /// Protocol driver is trying to extend the lease time.
+ ///
+ Dhcp4Rebinding = 0x6,
+ ///
+ /// The EFI DHCPv4 Protocol driver was initialized with a previously
+ /// allocated or known IP address.
+ ///
+ Dhcp4InitReboot = 0x7,
+ ///
+ /// The EFI DHCPv4 Protocol driver is seeking to reuse the previously
+ /// allocated IP address by sending a request to the DHCP server.
+ ///
+ Dhcp4Rebooting = 0x8
+} EFI_DHCP4_STATE;
+
+
+typedef enum{
+ ///
+ /// The packet to start the configuration sequence is about to be sent.
+ ///
+ Dhcp4SendDiscover = 0x01,
+ ///
+ /// A reply packet was just received.
+ ///
+ Dhcp4RcvdOffer = 0x02,
+ ///
+ /// It is time for Dhcp4Callback to select an offer.
+ ///
+ Dhcp4SelectOffer = 0x03,
+ ///
+ /// A request packet is about to be sent.
+ ///
+ Dhcp4SendRequest = 0x04,
+ ///
+ /// A DHCPACK packet was received and will be passed to Dhcp4Callback.
+ ///
+ Dhcp4RcvdAck = 0x05,
+ ///
+ /// A DHCPNAK packet was received and will be passed to Dhcp4Callback.
+ ///
+ Dhcp4RcvdNak = 0x06,
+ ///
+ /// A decline packet is about to be sent.
+ ///
+ Dhcp4SendDecline = 0x07,
+ ///
+ /// The DHCP configuration process has completed. No packet is associated with this event.
+ ///
+ Dhcp4BoundCompleted = 0x08,
+ ///
+ /// It is time to enter the Dhcp4Renewing state and to contact the server
+ /// that originally issued the network address. No packet is associated with this event.
+ ///
+ Dhcp4EnterRenewing = 0x09,
+ ///
+ /// It is time to enter the Dhcp4Rebinding state and to contact any server.
+ /// No packet is associated with this event.
+ ///
+ Dhcp4EnterRebinding = 0x0a,
+ ///
+ /// The configured IP address was lost either because the lease has expired,
+ /// the user released the configuration, or a DHCPNAK packet was received in
+ /// the Dhcp4Renewing or Dhcp4Rebinding state. No packet is associated with this event.
+ ///
+ Dhcp4AddressLost = 0x0b,
+ ///
+ /// The DHCP process failed because a DHCPNAK packet was received or the user
+ /// aborted the DHCP process at a time when the configuration was not available yet.
+ /// No packet is associated with this event.
+ ///
+ Dhcp4Fail = 0x0c
+} EFI_DHCP4_EVENT;
+
+/**
+ Callback routine.
+
+ EFI_DHCP4_CALLBACK is provided by the consumer of the EFI DHCPv4 Protocol driver
+ to intercept events that occurred in the configuration process. This structure
+ provides advanced control of each state transition of the DHCP process. The
+ returned status code determines the behavior of the EFI DHCPv4 Protocol driver.
+ There are three possible returned values, which are described in the following
+ table.
+
+ @param This The pointer to the EFI DHCPv4 Protocol instance that is used to
+ configure this callback function.
+ @param Context The pointer to the context that is initialized by
+ EFI_DHCP4_PROTOCOL.Configure().
+ @param CurrentState The current operational state of the EFI DHCPv4 Protocol
+ driver.
+ @param Dhcp4Event The event that occurs in the current state, which usually means a
+ state transition.
+ @param Packet The DHCP packet that is going to be sent or already received.
+ @param NewPacket The packet that is used to replace the above Packet.
+
+ @retval EFI_SUCCESS Tells the EFI DHCPv4 Protocol driver to continue the DHCP process.
+ When it is in the Dhcp4Selecting state, it tells the EFI DHCPv4 Protocol
+ driver to stop collecting additional packets. The driver will exit
+ the Dhcp4Selecting state and enter the Dhcp4Requesting state.
+ @retval EFI_NOT_READY Only used in the Dhcp4Selecting state. The EFI DHCPv4 Protocol
+ driver will continue to wait for more packets until the retry
+ timeout expires.
+ @retval EFI_ABORTED Tells the EFI DHCPv4 Protocol driver to abort the current process and
+ return to the Dhcp4Init or Dhcp4InitReboot state.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_CALLBACK)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN VOID *Context,
+ IN EFI_DHCP4_STATE CurrentState,
+ IN EFI_DHCP4_EVENT Dhcp4Event,
+ IN EFI_DHCP4_PACKET *Packet OPTIONAL,
+ OUT EFI_DHCP4_PACKET **NewPacket OPTIONAL
+ );
+
+typedef struct {
+ ///
+ /// The number of times to try sending a packet during the Dhcp4SendDiscover
+ /// event and waiting for a response during the Dhcp4RcvdOffer event.
+ /// Set to zero to use the default try counts and timeout values.
+ ///
+ UINT32 DiscoverTryCount;
+ ///
+ /// The maximum amount of time (in seconds) to wait for returned packets in each
+ /// of the retries. Timeout values of zero will default to a timeout value
+ /// of one second. Set to NULL to use default timeout values.
+ ///
+ UINT32 *DiscoverTimeout;
+ ///
+ /// The number of times to try sending a packet during the Dhcp4SendRequest event
+ /// and waiting for a response during the Dhcp4RcvdAck event before accepting
+ /// failure. Set to zero to use the default try counts and timeout values.
+ ///
+ UINT32 RequestTryCount;
+ ///
+ /// The maximum amount of time (in seconds) to wait for return packets in each of the retries.
+ /// Timeout values of zero will default to a timeout value of one second.
+ /// Set to NULL to use default timeout values.
+ ///
+ UINT32 *RequestTimeout;
+ ///
+ /// For a DHCPDISCOVER, setting this parameter to the previously allocated IP
+ /// address will cause the EFI DHCPv4 Protocol driver to enter the Dhcp4InitReboot state.
+ /// And set this field to 0.0.0.0 to enter the Dhcp4Init state.
+ /// For a DHCPINFORM this parameter should be set to the client network address
+ /// which was assigned to the client during a DHCPDISCOVER.
+ ///
+ EFI_IPv4_ADDRESS ClientAddress;
+ ///
+ /// The callback function to intercept various events that occurred in
+ /// the DHCP configuration process. Set to NULL to ignore all those events.
+ ///
+ EFI_DHCP4_CALLBACK Dhcp4Callback;
+ ///
+ /// The pointer to the context that will be passed to Dhcp4Callback when it is called.
+ ///
+ VOID *CallbackContext;
+ ///
+ /// Number of DHCP options in the OptionList.
+ ///
+ UINT32 OptionCount;
+ ///
+ /// List of DHCP options to be included in every packet that is sent during the
+ /// Dhcp4SendDiscover event. Pad options are appended automatically by DHCP driver
+ /// in outgoing DHCP packets. If OptionList itself contains pad option, they are
+ /// ignored by the driver. OptionList can be freed after EFI_DHCP4_PROTOCOL.Configure()
+ /// returns. Ignored if OptionCount is zero.
+ ///
+ EFI_DHCP4_PACKET_OPTION **OptionList;
+} EFI_DHCP4_CONFIG_DATA;
+
+
+typedef struct {
+ ///
+ /// The EFI DHCPv4 Protocol driver operating state.
+ ///
+ EFI_DHCP4_STATE State;
+ ///
+ /// The configuration data of the current EFI DHCPv4 Protocol driver instance.
+ ///
+ EFI_DHCP4_CONFIG_DATA ConfigData;
+ ///
+ /// The client IP address that was acquired from the DHCP server. If it is zero,
+ /// the DHCP acquisition has not completed yet and the following fields in this structure are undefined.
+ ///
+ EFI_IPv4_ADDRESS ClientAddress;
+ ///
+ /// The local hardware address.
+ ///
+ EFI_MAC_ADDRESS ClientMacAddress;
+ ///
+ /// The server IP address that is providing the DHCP service to this client.
+ ///
+ EFI_IPv4_ADDRESS ServerAddress;
+ ///
+ /// The router IP address that was acquired from the DHCP server.
+ /// May be zero if the server does not offer this address.
+ ///
+ EFI_IPv4_ADDRESS RouterAddress;
+ ///
+ /// The subnet mask of the connected network that was acquired from the DHCP server.
+ ///
+ EFI_IPv4_ADDRESS SubnetMask;
+ ///
+ /// The lease time (in 1-second units) of the configured IP address.
+ /// The value 0xFFFFFFFF means that the lease time is infinite.
+ /// A default lease of 7 days is used if the DHCP server does not provide a value.
+ ///
+ UINT32 LeaseTime;
+ ///
+ /// The cached latest DHCPACK or DHCPNAK or BOOTP REPLY packet. May be NULL if no packet is cached.
+ ///
+ EFI_DHCP4_PACKET *ReplyPacket;
+} EFI_DHCP4_MODE_DATA;
+
+
+typedef struct {
+ ///
+ /// Alternate listening address. It can be a unicast, multicast, or broadcast address.
+ ///
+ EFI_IPv4_ADDRESS ListenAddress;
+ ///
+ /// The subnet mask of above listening unicast/broadcast IP address.
+ /// Ignored if ListenAddress is a multicast address.
+ ///
+ EFI_IPv4_ADDRESS SubnetMask;
+ ///
+ /// Alternate station source (or listening) port number.
+ /// If zero, then the default station port number (68) will be used.
+ ///
+ UINT16 ListenPort;
+} EFI_DHCP4_LISTEN_POINT;
+
+
+typedef struct {
+ ///
+ /// The completion status of transmitting and receiving.
+ ///
+ EFI_STATUS Status;
+ ///
+ /// If not NULL, the event that will be signaled when the collection process
+ /// completes. If NULL, this function will busy-wait until the collection process competes.
+ ///
+ EFI_EVENT CompletionEvent;
+ ///
+ /// The pointer to the server IP address. This address may be a unicast, multicast, or broadcast address.
+ ///
+ EFI_IPv4_ADDRESS RemoteAddress;
+ ///
+ /// The server listening port number. If zero, the default server listening port number (67) will be used.
+ ///
+ UINT16 RemotePort;
+ ///
+ /// The pointer to the gateway address to override the existing setting.
+ ///
+ EFI_IPv4_ADDRESS GatewayAddress;
+ ///
+ /// The number of entries in ListenPoints. If zero, the default station address and port number 68 are used.
+ ///
+ UINT32 ListenPointCount;
+ ///
+ /// An array of station address and port number pairs that are used as receiving filters.
+ /// The first entry is also used as the source address and source port of the outgoing packet.
+ ///
+ EFI_DHCP4_LISTEN_POINT *ListenPoints;
+ ///
+ /// The number of seconds to collect responses. Zero is invalid.
+ ///
+ UINT32 TimeoutValue;
+ ///
+ /// The pointer to the packet to be transmitted.
+ ///
+ EFI_DHCP4_PACKET *Packet;
+ ///
+ /// Number of received packets.
+ ///
+ UINT32 ResponseCount;
+ ///
+ /// The pointer to the allocated list of received packets.
+ ///
+ EFI_DHCP4_PACKET *ResponseList;
+} EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN;
+
+
+/**
+ Returns the current operating mode and cached data packet for the EFI DHCPv4 Protocol driver.
+
+ The GetModeData() function returns the current operating mode and cached data
+ packet for the EFI DHCPv4 Protocol driver.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param Dhcp4ModeData The pointer to storage for the EFI_DHCP4_MODE_DATA structure.
+
+ @retval EFI_SUCCESS The mode data was returned.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_GET_MODE_DATA)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ OUT EFI_DHCP4_MODE_DATA *Dhcp4ModeData
+ );
+
+/**
+ Initializes, changes, or resets the operational settings for the EFI DHCPv4 Protocol driver.
+
+ The Configure() function is used to initialize, change, or reset the operational
+ settings of the EFI DHCPv4 Protocol driver for the communication device on which
+ the EFI DHCPv4 Service Binding Protocol is installed. This function can be
+ successfully called only if both of the following are true:
+ * This instance of the EFI DHCPv4 Protocol driver is in the Dhcp4Stopped, Dhcp4Init,
+ Dhcp4InitReboot, or Dhcp4Bound states.
+ * No other EFI DHCPv4 Protocol driver instance that is controlled by this EFI
+ DHCPv4 Service Binding Protocol driver instance has configured this EFI DHCPv4
+ Protocol driver.
+ When this driver is in the Dhcp4Stopped state, it can transfer into one of the
+ following two possible initial states:
+ * Dhcp4Init
+ * Dhcp4InitReboot.
+ The driver can transfer into these states by calling Configure() with a non-NULL
+ Dhcp4CfgData. The driver will transfer into the appropriate state based on the
+ supplied client network address in the ClientAddress parameter and DHCP options
+ in the OptionList parameter as described in RFC 2131.
+ When Configure() is called successfully while Dhcp4CfgData is set to NULL, the
+ default configuring data will be reset in the EFI DHCPv4 Protocol driver and
+ the state of the EFI DHCPv4 Protocol driver will not be changed. If one instance
+ wants to make it possible for another instance to configure the EFI DHCPv4 Protocol
+ driver, it must call this function with Dhcp4CfgData set to NULL.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param Dhcp4CfgData The pointer to the EFI_DHCP4_CONFIG_DATA.
+
+ @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init or
+ Dhcp4InitReboot state, if the original state of this driver
+ was Dhcp4Stopped, Dhcp4Init,Dhcp4InitReboot, or Dhcp4Bound
+ and the value of Dhcp4CfgData was not NULL.
+ Otherwise, the state was left unchanged.
+ @retval EFI_ACCESS_DENIED This instance of the EFI DHCPv4 Protocol driver was not in the
+ Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or Dhcp4Bound state;
+ Or onother instance of this EFI DHCPv4 Protocol driver is already
+ in a valid configured state.
+ @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE:
+ This is NULL.
+ DiscoverTryCount > 0 and DiscoverTimeout is NULL
+ RequestTryCount > 0 and RequestTimeout is NULL.
+ OptionCount >0 and OptionList is NULL.
+ ClientAddress is not a valid unicast address.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_CONFIGURE)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN EFI_DHCP4_CONFIG_DATA *Dhcp4CfgData OPTIONAL
+ );
+
+
+/**
+ Starts the DHCP configuration process.
+
+ The Start() function starts the DHCP configuration process. This function can
+ be called only when the EFI DHCPv4 Protocol driver is in the Dhcp4Init or
+ Dhcp4InitReboot state.
+ If the DHCP process completes successfully, the state of the EFI DHCPv4 Protocol
+ driver will be transferred through Dhcp4Selecting and Dhcp4Requesting to the
+ Dhcp4Bound state. The CompletionEvent will then be signaled if it is not NULL.
+ If the process aborts, either by the user or by some unexpected network error,
+ the state is restored to the Dhcp4Init state. The Start() function can be called
+ again to restart the process.
+ Refer to RFC 2131 for precise state transitions during this process. At the
+ time when each event occurs in this process, the callback function that was set
+ by EFI_DHCP4_PROTOCOL.Configure() will be called and the user can take this
+ opportunity to control the process.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param CompletionEvent If not NULL, it indicates the event that will be signaled when the
+ EFI DHCPv4 Protocol driver is transferred into the
+ Dhcp4Bound state or when the DHCP process is aborted.
+ EFI_DHCP4_PROTOCOL.GetModeData() can be called to
+ check the completion status. If NULL,
+ EFI_DHCP4_PROTOCOL.Start() will wait until the driver
+ is transferred into the Dhcp4Bound state or the process fails.
+
+ @retval EFI_SUCCESS The DHCP configuration process has started, or it has completed
+ when CompletionEvent is NULL.
+ @retval EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped
+ state. EFI_DHCP4_PROTOCOL. Configure() needs to be called.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_TIMEOUT The DHCP configuration process failed because no response was
+ received from the server within the specified timeout value.
+ @retval EFI_ABORTED The user aborted the DHCP process.
+ @retval EFI_ALREADY_STARTED Some other EFI DHCPv4 Protocol instance already started the
+ DHCP process.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_START)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN EFI_EVENT CompletionEvent OPTIONAL
+ );
+
+/**
+ Extends the lease time by sending a request packet.
+
+ The RenewRebind() function is used to manually extend the lease time when the
+ EFI DHCPv4 Protocol driver is in the Dhcp4Bound state, and the lease time has
+ not expired yet. This function will send a request packet to the previously
+ found server (or to any server when RebindRequest is TRUE) and transfer the
+ state into the Dhcp4Renewing state (or Dhcp4Rebinding when RebindingRequest is
+ TRUE). When a response is received, the state is returned to Dhcp4Bound.
+ If no response is received before the try count is exceeded (the RequestTryCount
+ field that is specified in EFI_DHCP4_CONFIG_DATA) but before the lease time that
+ was issued by the previous server expires, the driver will return to the Dhcp4Bound
+ state, and the previous configuration is restored. The outgoing and incoming packets
+ can be captured by the EFI_DHCP4_CALLBACK function.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param RebindRequest If TRUE, this function broadcasts the request packets and enters
+ the Dhcp4Rebinding state. Otherwise, it sends a unicast
+ request packet and enters the Dhcp4Renewing state.
+ @param CompletionEvent If not NULL, this event is signaled when the renew/rebind phase
+ completes or some error occurs.
+ EFI_DHCP4_PROTOCOL.GetModeData() can be called to
+ check the completion status. If NULL,
+ EFI_DHCP4_PROTOCOL.RenewRebind() will busy-wait
+ until the DHCP process finishes.
+
+ @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the
+ Dhcp4Renewing state or is back to the Dhcp4Bound state.
+ @retval EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped
+ state. EFI_DHCP4_PROTOCOL.Configure() needs to
+ be called.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_TIMEOUT There was no response from the server when the try count was
+ exceeded.
+ @retval EFI_ACCESS_DENIED The driver is not in the Dhcp4Bound state.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_RENEW_REBIND)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN BOOLEAN RebindRequest,
+ IN EFI_EVENT CompletionEvent OPTIONAL
+ );
+
+/**
+ Releases the current address configuration.
+
+ The Release() function releases the current configured IP address by doing either
+ of the following:
+ * Sending a DHCPRELEASE packet when the EFI DHCPv4 Protocol driver is in the
+ Dhcp4Bound state
+ * Setting the previously assigned IP address that was provided with the
+ EFI_DHCP4_PROTOCOL.Configure() function to 0.0.0.0 when the driver is in
+ Dhcp4InitReboot state
+ After a successful call to this function, the EFI DHCPv4 Protocol driver returns
+ to the Dhcp4Init state, and any subsequent incoming packets will be discarded silently.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init phase.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_ACCESS_DENIED The EFI DHCPv4 Protocol driver is not Dhcp4InitReboot state.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_RELEASE)(
+ IN EFI_DHCP4_PROTOCOL *This
+ );
+
+/**
+ Stops the current address configuration.
+
+ The Stop() function is used to stop the DHCP configuration process. After this
+ function is called successfully, the EFI DHCPv4 Protocol driver is transferred
+ into the Dhcp4Stopped state. EFI_DHCP4_PROTOCOL.Configure() needs to be called
+ before DHCP configuration process can be started again. This function can be
+ called when the EFI DHCPv4 Protocol driver is in any state.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Stopped phase.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_STOP)(
+ IN EFI_DHCP4_PROTOCOL *This
+ );
+
+/**
+ Builds a DHCP packet, given the options to be appended or deleted or replaced.
+
+ The Build() function is used to assemble a new packet from the original packet
+ by replacing or deleting existing options or appending new options. This function
+ does not change any state of the EFI DHCPv4 Protocol driver and can be used at
+ any time.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param SeedPacket Initial packet to be used as a base for building new packet.
+ @param DeleteCount Number of opcodes in the DeleteList.
+ @param DeleteList List of opcodes to be deleted from the seed packet.
+ Ignored if DeleteCount is zero.
+ @param AppendCount Number of entries in the OptionList.
+ @param AppendList The pointer to a DHCP option list to be appended to SeedPacket.
+ If SeedPacket also contains options in this list, they are
+ replaced by new options (except pad option). Ignored if
+ AppendCount is zero. Type EFI_DHCP4_PACKET_OPTION
+ @param NewPacket The pointer to storage for the pointer to the new allocated packet.
+ Use the EFI Boot Service FreePool() on the resulting pointer
+ when done with the packet.
+
+ @retval EFI_SUCCESS The new packet was built.
+ @retval EFI_OUT_OF_RESOURCES Storage for the new packet could not be allocated.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL.
+ SeedPacket is NULL.
+ SeedPacket is not a well-formed DHCP packet.
+ AppendCount is not zero and AppendList is NULL.
+ DeleteCount is not zero and DeleteList is NULL.
+ NewPacket is NULL
+ Both DeleteCount and AppendCount are zero and
+ NewPacket is not NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_BUILD)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN EFI_DHCP4_PACKET *SeedPacket,
+ IN UINT32 DeleteCount,
+ IN UINT8 *DeleteList OPTIONAL,
+ IN UINT32 AppendCount,
+ IN EFI_DHCP4_PACKET_OPTION *AppendList[] OPTIONAL,
+ OUT EFI_DHCP4_PACKET **NewPacket
+ );
+
+
+/**
+ Transmits a DHCP formatted packet and optionally waits for responses.
+
+ The TransmitReceive() function is used to transmit a DHCP packet and optionally
+ wait for the response from servers. This function does not change the state of
+ the EFI DHCPv4 Protocol driver. It can be used at any time because of this.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param Token The pointer to the EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN structure.
+
+ @retval EFI_SUCCESS The packet was successfully queued for transmission.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL.
+ Token.RemoteAddress is zero.
+ Token.Packet is NULL.
+ Token.Packet is not a well-formed DHCP packet.
+ The transaction ID in Token.Packet is in use by another DHCP process.
+ @retval EFI_NOT_READY The previous call to this function has not finished yet. Try to call
+ this function after collection process completes.
+ @retval EFI_NO_MAPPING The default station address is not available yet.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_UNSUPPORTED The implementation doesn't support this function
+ @retval Others Some other unexpected error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_TRANSMIT_RECEIVE)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN *Token
+ );
+
+
+/**
+ Parses the packed DHCP option data.
+
+ The Parse() function is used to retrieve the option list from a DHCP packet.
+ If *OptionCount isn't zero, and there is enough space for all the DHCP options
+ in the Packet, each element of PacketOptionList is set to point to somewhere in
+ the Packet->Dhcp4.Option where a new DHCP option begins. If RFC3396 is supported,
+ the caller should reassemble the parsed DHCP options to get the final result.
+ If *OptionCount is zero or there isn't enough space for all of them, the number
+ of DHCP options in the Packet is returned in OptionCount.
+
+ @param This The pointer to the EFI_DHCP4_PROTOCOL instance.
+ @param Packet The pointer to packet to be parsed.
+ @param OptionCount On input, the number of entries in the PacketOptionList.
+ On output, the number of entries that were written into the
+ PacketOptionList.
+ @param PacketOptionList A list of packet option entries to be filled in. End option or pad
+ options are not included.
+
+ @retval EFI_SUCCESS The packet was successfully parsed.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL.
+ The packet is NULL.
+ The packet is not a well-formed DHCP packet.
+ OptionCount is NULL.
+ @retval EFI_BUFFER_TOO_SMALL One or more of the following conditions is TRUE:
+ 1) *OptionCount is smaller than the number of options that
+ were found in the Packet.
+ 2) PacketOptionList is NULL.
+ @retval EFI_OUT_OF_RESOURCE The packet failed to parse because of a resource shortage.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_DHCP4_PARSE)(
+ IN EFI_DHCP4_PROTOCOL *This,
+ IN EFI_DHCP4_PACKET *Packet,
+ IN OUT UINT32 *OptionCount,
+ OUT EFI_DHCP4_PACKET_OPTION *PacketOptionList[] OPTIONAL
+ );
+
+///
+/// This protocol is used to collect configuration information for the EFI IPv4 Protocol drivers
+/// and to provide DHCPv4 server and PXE boot server discovery services.
+///
+struct _EFI_DHCP4_PROTOCOL {
+ EFI_DHCP4_GET_MODE_DATA GetModeData;
+ EFI_DHCP4_CONFIGURE Configure;
+ EFI_DHCP4_START Start;
+ EFI_DHCP4_RENEW_REBIND RenewRebind;
+ EFI_DHCP4_RELEASE Release;
+ EFI_DHCP4_STOP Stop;
+ EFI_DHCP4_BUILD Build;
+ EFI_DHCP4_TRANSMIT_RECEIVE TransmitReceive;
+ EFI_DHCP4_PARSE Parse;
+};
+
+extern EFI_GUID gEfiDhcp4ProtocolGuid;
+extern EFI_GUID gEfiDhcp4ServiceBindingProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Ip4.h b/src/include/ipxe/efi/Protocol/Ip4.h
new file mode 100644
index 00000000..f174c0cf
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Ip4.h
@@ -0,0 +1,614 @@
+/** @file
+ This file defines the EFI IPv4 (Internet Protocol version 4)
+ Protocol interface. It is split into the following three main
+ sections:
+ - EFI IPv4 Service Binding Protocol
+ - EFI IPv4 Variable (deprecated in UEFI 2.4B)
+ - EFI IPv4 Protocol.
+ The EFI IPv4 Protocol provides basic network IPv4 packet I/O services,
+ which includes support foR a subset of the Internet Control Message
+ Protocol (ICMP) and may include support for the Internet Group Management
+ Protocol (IGMP).
+
+Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0.
+
+**/
+
+#ifndef __EFI_IP4_PROTOCOL_H__
+#define __EFI_IP4_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#include <ipxe/efi/Protocol/ManagedNetwork.h>
+
+#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xc51711e7, 0xb4bf, 0x404a, {0xbf, 0xb8, 0x0a, 0x04, 0x8e, 0xf1, 0xff, 0xe4 } \
+ }
+
+#define EFI_IP4_PROTOCOL_GUID \
+ { \
+ 0x41d94cd2, 0x35b6, 0x455a, {0x82, 0x58, 0xd4, 0xe5, 0x13, 0x34, 0xaa, 0xdd } \
+ }
+
+typedef struct _EFI_IP4_PROTOCOL EFI_IP4_PROTOCOL;
+
+///
+/// EFI_IP4_ADDRESS_PAIR is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE InstanceHandle;
+ EFI_IPv4_ADDRESS Ip4Address;
+ EFI_IPv4_ADDRESS SubnetMask;
+} EFI_IP4_ADDRESS_PAIR;
+
+///
+/// EFI_IP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE DriverHandle;
+ UINT32 AddressCount;
+ EFI_IP4_ADDRESS_PAIR AddressPairs[1];
+} EFI_IP4_VARIABLE_DATA;
+
+typedef struct {
+ ///
+ /// The default IPv4 protocol packets to send and receive. Ignored
+ /// when AcceptPromiscuous is TRUE.
+ ///
+ UINT8 DefaultProtocol;
+ ///
+ /// Set to TRUE to receive all IPv4 packets that get through the receive filters.
+ /// Set to FALSE to receive only the DefaultProtocol IPv4
+ /// packets that get through the receive filters.
+ ///
+ BOOLEAN AcceptAnyProtocol;
+ ///
+ /// Set to TRUE to receive ICMP error report packets. Ignored when
+ /// AcceptPromiscuous or AcceptAnyProtocol is TRUE.
+ ///
+ BOOLEAN AcceptIcmpErrors;
+ ///
+ /// Set to TRUE to receive broadcast IPv4 packets. Ignored when
+ /// AcceptPromiscuous is TRUE.
+ /// Set to FALSE to stop receiving broadcast IPv4 packets.
+ ///
+ BOOLEAN AcceptBroadcast;
+ ///
+ /// Set to TRUE to receive all IPv4 packets that are sent to any
+ /// hardware address or any protocol address.
+ /// Set to FALSE to stop receiving all promiscuous IPv4 packets
+ ///
+ BOOLEAN AcceptPromiscuous;
+ ///
+ /// Set to TRUE to use the default IPv4 address and default routing table.
+ ///
+ BOOLEAN UseDefaultAddress;
+ ///
+ /// The station IPv4 address that will be assigned to this EFI IPv4Protocol instance.
+ ///
+ EFI_IPv4_ADDRESS StationAddress;
+ ///
+ /// The subnet address mask that is associated with the station address.
+ ///
+ EFI_IPv4_ADDRESS SubnetMask;
+ ///
+ /// TypeOfService field in transmitted IPv4 packets.
+ ///
+ UINT8 TypeOfService;
+ ///
+ /// TimeToLive field in transmitted IPv4 packets.
+ ///
+ UINT8 TimeToLive;
+ ///
+ /// State of the DoNotFragment bit in transmitted IPv4 packets.
+ ///
+ BOOLEAN DoNotFragment;
+ ///
+ /// Set to TRUE to send and receive unformatted packets. The other
+ /// IPv4 receive filters are still applied. Fragmentation is disabled for RawData mode.
+ ///
+ BOOLEAN RawData;
+ ///
+ /// The timer timeout value (number of microseconds) for the
+ /// receive timeout event to be associated with each assembled
+ /// packet. Zero means do not drop assembled packets.
+ ///
+ UINT32 ReceiveTimeout;
+ ///
+ /// The timer timeout value (number of microseconds) for the
+ /// transmit timeout event to be associated with each outgoing
+ /// packet. Zero means do not drop outgoing packets.
+ ///
+ UINT32 TransmitTimeout;
+} EFI_IP4_CONFIG_DATA;
+
+
+typedef struct {
+ EFI_IPv4_ADDRESS SubnetAddress;
+ EFI_IPv4_ADDRESS SubnetMask;
+ EFI_IPv4_ADDRESS GatewayAddress;
+} EFI_IP4_ROUTE_TABLE;
+
+typedef struct {
+ UINT8 Type;
+ UINT8 Code;
+} EFI_IP4_ICMP_TYPE;
+
+typedef struct {
+ ///
+ /// Set to TRUE after this EFI IPv4 Protocol instance has been successfully configured.
+ ///
+ BOOLEAN IsStarted;
+ ///
+ /// The maximum packet size, in bytes, of the packet which the upper layer driver could feed.
+ ///
+ UINT32 MaxPacketSize;
+ ///
+ /// Current configuration settings.
+ ///
+ EFI_IP4_CONFIG_DATA ConfigData;
+ ///
+ /// Set to TRUE when the EFI IPv4 Protocol instance has a station address and subnet mask.
+ ///
+ BOOLEAN IsConfigured;
+ ///
+ /// Number of joined multicast groups.
+ ///
+ UINT32 GroupCount;
+ ///
+ /// List of joined multicast group addresses.
+ ///
+ EFI_IPv4_ADDRESS *GroupTable;
+ ///
+ /// Number of entries in the routing table.
+ ///
+ UINT32 RouteCount;
+ ///
+ /// Routing table entries.
+ ///
+ EFI_IP4_ROUTE_TABLE *RouteTable;
+ ///
+ /// Number of entries in the supported ICMP types list.
+ ///
+ UINT32 IcmpTypeCount;
+ ///
+ /// Array of ICMP types and codes that are supported by this EFI IPv4 Protocol driver
+ ///
+ EFI_IP4_ICMP_TYPE *IcmpTypeList;
+} EFI_IP4_MODE_DATA;
+
+#pragma pack(1)
+
+typedef struct {
+ UINT8 HeaderLength:4;
+ UINT8 Version:4;
+ UINT8 TypeOfService;
+ UINT16 TotalLength;
+ UINT16 Identification;
+ UINT16 Fragmentation;
+ UINT8 TimeToLive;
+ UINT8 Protocol;
+ UINT16 Checksum;
+ EFI_IPv4_ADDRESS SourceAddress;
+ EFI_IPv4_ADDRESS DestinationAddress;
+} EFI_IP4_HEADER;
+#pragma pack()
+
+
+typedef struct {
+ UINT32 FragmentLength;
+ VOID *FragmentBuffer;
+} EFI_IP4_FRAGMENT_DATA;
+
+
+typedef struct {
+ EFI_TIME TimeStamp;
+ EFI_EVENT RecycleSignal;
+ UINT32 HeaderLength;
+ EFI_IP4_HEADER *Header;
+ UINT32 OptionsLength;
+ VOID *Options;
+ UINT32 DataLength;
+ UINT32 FragmentCount;
+ EFI_IP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_IP4_RECEIVE_DATA;
+
+
+typedef struct {
+ EFI_IPv4_ADDRESS SourceAddress;
+ EFI_IPv4_ADDRESS GatewayAddress;
+ UINT8 Protocol;
+ UINT8 TypeOfService;
+ UINT8 TimeToLive;
+ BOOLEAN DoNotFragment;
+} EFI_IP4_OVERRIDE_DATA;
+
+typedef struct {
+ EFI_IPv4_ADDRESS DestinationAddress;
+ EFI_IP4_OVERRIDE_DATA *OverrideData; //OPTIONAL
+ UINT32 OptionsLength; //OPTIONAL
+ VOID *OptionsBuffer; //OPTIONAL
+ UINT32 TotalDataLength;
+ UINT32 FragmentCount;
+ EFI_IP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_IP4_TRANSMIT_DATA;
+
+typedef struct {
+ ///
+ /// This Event will be signaled after the Status field is updated
+ /// by the EFI IPv4 Protocol driver. The type of Event must be
+ /// EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
+ /// Event must be lower than or equal to TPL_CALLBACK.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// The status that is returned to the caller at the end of the operation
+ /// to indicate whether this operation completed successfully.
+ ///
+ EFI_STATUS Status;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to the EFI_IP4_RECEIVE_DATA.
+ ///
+ EFI_IP4_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to the EFI_IP4_TRANSMIT_DATA.
+ ///
+ EFI_IP4_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_IP4_COMPLETION_TOKEN;
+
+/**
+ Gets the current operational settings for this instance of the EFI IPv4 Protocol driver.
+
+ The GetModeData() function returns the current operational mode data for this
+ driver instance. The data fields in EFI_IP4_MODE_DATA are read only. This
+ function is used optionally to retrieve the operational mode data of underlying
+ networks or drivers.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param Ip4ModeData The pointer to the EFI IPv4 Protocol mode data structure.
+ @param MnpConfigData The pointer to the managed network configuration data structure.
+ @param SnpModeData The pointer to the simple network mode data structure.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_GET_MODE_DATA)(
+ IN CONST EFI_IP4_PROTOCOL *This,
+ OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Assigns an IPv4 address and subnet mask to this EFI IPv4 Protocol driver instance.
+
+ The Configure() function is used to set, change, or reset the operational
+ parameters and filter settings for this EFI IPv4 Protocol instance. Until these
+ parameters have been set, no network traffic can be sent or received by this
+ instance. Once the parameters have been reset (by calling this function with
+ IpConfigData set to NULL), no more traffic can be sent or received until these
+ parameters have been set again. Each EFI IPv4 Protocol instance can be started
+ and stopped independently of each other by enabling or disabling their receive
+ filter settings with the Configure() function.
+
+ When IpConfigData.UseDefaultAddress is set to FALSE, the new station address will
+ be appended as an alias address into the addresses list in the EFI IPv4 Protocol
+ driver. While set to TRUE, Configure() will trigger the EFI_IP4_CONFIG_PROTOCOL
+ to retrieve the default IPv4 address if it is not available yet. Clients could
+ frequently call GetModeData() to check the status to ensure that the default IPv4
+ address is ready.
+
+ If operational parameters are reset or changed, any pending transmit and receive
+ requests will be cancelled. Their completion token status will be set to EFI_ABORTED
+ and their events will be signaled.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param IpConfigData The pointer to the EFI IPv4 Protocol configuration data structure.
+
+ @retval EFI_SUCCESS The driver instance was successfully opened.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ This is NULL.
+ IpConfigData.StationAddress is not a unicast IPv4 address.
+ IpConfigData.SubnetMask is not a valid IPv4 subnet
+ @retval EFI_UNSUPPORTED One or more of the following conditions is TRUE:
+ A configuration protocol (DHCP, BOOTP, RARP, etc.) could
+ not be located when clients choose to use the default IPv4
+ address. This EFI IPv4 Protocol implementation does not
+ support this requested filter or timeout setting.
+ @retval EFI_OUT_OF_RESOURCES The EFI IPv4 Protocol driver instance data could not be allocated.
+ @retval EFI_ALREADY_STARTED The interface is already open and must be stopped before the
+ IPv4 address or subnet mask can be changed. The interface must
+ also be stopped when switching to/from raw packet mode.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv4
+ Protocol driver instance is not opened.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_CONFIGURE)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN EFI_IP4_CONFIG_DATA *IpConfigData OPTIONAL
+ );
+
+/**
+ Joins and leaves multicast groups.
+
+ The Groups() function is used to join and leave multicast group sessions. Joining
+ a group will enable reception of matching multicast packets. Leaving a group will
+ disable the multicast packet reception.
+
+ If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param JoinFlag Set to TRUE to join the multicast group session and FALSE to leave.
+ @param GroupAddress The pointer to the IPv4 multicast address.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER One or more of the following is TRUE:
+ - This is NULL.
+ - JoinFlag is TRUE and GroupAddress is NULL.
+ - GroupAddress is not NULL and *GroupAddress is
+ not a multicast IPv4 address.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_OUT_OF_RESOURCES System resources could not be allocated.
+ @retval EFI_UNSUPPORTED This EFI IPv4 Protocol implementation does not support multicast groups.
+ @retval EFI_ALREADY_STARTED The group address is already in the group table (when
+ JoinFlag is TRUE).
+ @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is FALSE).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_GROUPS)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN BOOLEAN JoinFlag,
+ IN EFI_IPv4_ADDRESS *GroupAddress OPTIONAL
+ );
+
+/**
+ Adds and deletes routing table entries.
+
+ The Routes() function adds a route to or deletes a route from the routing table.
+
+ Routes are determined by comparing the SubnetAddress with the destination IPv4
+ address arithmetically AND-ed with the SubnetMask. The gateway address must be
+ on the same subnet as the configured station address.
+
+ The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0.
+ The default route matches all destination IPv4 addresses that do not match any
+ other routes.
+
+ A GatewayAddress that is zero is a nonroute. Packets are sent to the destination
+ IP address if it can be found in the ARP cache or on the local subnet. One automatic
+ nonroute entry will be inserted into the routing table for outgoing packets that
+ are addressed to a local subnet (gateway address of 0.0.0.0).
+
+ Each EFI IPv4 Protocol instance has its own independent routing table. Those EFI
+ IPv4 Protocol instances that use the default IPv4 address will also have copies
+ of the routing table that was provided by the EFI_IP4_CONFIG_PROTOCOL, and these
+ copies will be updated whenever the EIF IPv4 Protocol driver reconfigures its
+ instances. As a result, client modification to the routing table will be lost.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param DeleteRoute Set to TRUE to delete this route from the routing table. Set to
+ FALSE to add this route to the routing table. SubnetAddress
+ and SubnetMask are used as the key to each route entry.
+ @param SubnetAddress The address of the subnet that needs to be routed.
+ @param SubnetMask The subnet mask of SubnetAddress.
+ @param GatewayAddress The unicast gateway IPv4 address for this route.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The driver instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - SubnetAddress is NULL.
+ - SubnetMask is NULL.
+ - GatewayAddress is NULL.
+ - *SubnetAddress is not a valid subnet address.
+ - *SubnetMask is not a valid subnet mask.
+ - *GatewayAddress is not a valid unicast IPv4 address.
+ @retval EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.
+ @retval EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is TRUE).
+ @retval EFI_ACCESS_DENIED The route is already defined in the routing table (when
+ DeleteRoute is FALSE).
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_ROUTES)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN BOOLEAN DeleteRoute,
+ IN EFI_IPv4_ADDRESS *SubnetAddress,
+ IN EFI_IPv4_ADDRESS *SubnetMask,
+ IN EFI_IPv4_ADDRESS *GatewayAddress
+ );
+
+/**
+ Places outgoing data packets into the transmit queue.
+
+ The Transmit() function places a sending request in the transmit queue of this
+ EFI IPv4 Protocol instance. Whenever the packet in the token is sent out or some
+ errors occur, the event in the token will be signaled and the status is updated.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param Token The pointer to the transmit token.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more pameters are invalid.
+ @retval EFI_ACCESS_DENIED The transmit completion token with the same Token.Event
+ was already in the transmit queue.
+ @retval EFI_NOT_READY The completion token could not be queued because the transmit
+ queue is full.
+ @retval EFI_NOT_FOUND Not route is found to destination address.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data.
+ @retval EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too
+ short to transmit.
+ @retval EFI_BAD_BUFFER_SIZE The length of the IPv4 header + option length + total data length is
+ greater than MTU (or greater than the maximum packet size if
+ Token.Packet.TxData.OverrideData.
+ DoNotFragment is TRUE.)
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_TRANSMIT)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN EFI_IP4_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Places a receiving request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue.
+ This function is always asynchronous.
+
+ The Token.Event field in the completion token must be filled in by the caller
+ and cannot be NULL. When the receive operation completes, the EFI IPv4 Protocol
+ driver updates the Token.Status and Token.Packet.RxData fields and the Token.Event
+ is signaled.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param Token The pointer to a token that is associated with the receive data descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP, etc.)
+ is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
+ resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ The EFI IPv4 Protocol instance has been reset to startup defaults.
+ @retval EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already
+ in the receive queue.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+ @retval EFI_ICMP_ERROR An ICMP error packet was received.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_RECEIVE)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN EFI_IP4_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Abort an asynchronous transmit or receive request.
+
+ The Cancel() function is used to abort a pending transmit or receive request.
+ If the token is in the transmit or receive request queues, after calling this
+ function, Token->Status will be set to EFI_ABORTED and then Token->Event will
+ be signaled. If the token is not in one of the queues, which usually means the
+ asynchronous operation has completed, this function will not signal the token
+ and EFI_NOT_FOUND is returned.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+ @param Token The pointer to a token that has been issued by
+ EFI_IP4_PROTOCOL.Transmit() or
+ EFI_IP4_PROTOCOL.Receive(). If NULL, all pending
+ tokens are aborted. Type EFI_IP4_COMPLETION_TOKEN is
+ defined in EFI_IP4_PROTOCOL.Transmit().
+
+ @retval EFI_SUCCESS The asynchronous I/O request was aborted and
+ Token->Event was signaled. When Token is NULL, all
+ pending requests were aborted and their events were signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was
+ not found in the transmit or receive queue. It has either completed
+ or was not issued by Transmit() and Receive().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_CANCEL)(
+ IN EFI_IP4_PROTOCOL *This,
+ IN EFI_IP4_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ The Poll() function polls for incoming data packets and processes outgoing data
+ packets. Network drivers and applications can call the EFI_IP4_PROTOCOL.Poll()
+ function to increase the rate that data packets are moved between the communications
+ device and the transmit and receive queues.
+
+ In some systems the periodic timer event may not poll the underlying communications
+ device fast enough to transmit and/or receive all data packets without missing
+ incoming packets or dropping outgoing packets. Drivers and applications that are
+ experiencing packet loss should try calling the EFI_IP4_PROTOCOL.Poll() function
+ more often.
+
+ @param This The pointer to the EFI_IP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data is processed.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_POLL)(
+ IN EFI_IP4_PROTOCOL *This
+ );
+
+///
+/// The EFI IPv4 Protocol implements a simple packet-oriented interface that can be
+/// used by drivers, daemons, and applications to transmit and receive network packets.
+///
+struct _EFI_IP4_PROTOCOL {
+ EFI_IP4_GET_MODE_DATA GetModeData;
+ EFI_IP4_CONFIGURE Configure;
+ EFI_IP4_GROUPS Groups;
+ EFI_IP4_ROUTES Routes;
+ EFI_IP4_TRANSMIT Transmit;
+ EFI_IP4_RECEIVE Receive;
+ EFI_IP4_CANCEL Cancel;
+ EFI_IP4_POLL Poll;
+};
+
+extern EFI_GUID gEfiIp4ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiIp4ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Ip4Config.h b/src/include/ipxe/efi/Protocol/Ip4Config.h
new file mode 100644
index 00000000..227ae039
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Ip4Config.h
@@ -0,0 +1,184 @@
+/** @file
+ This file provides a definition of the EFI IPv4 Configuration
+ Protocol.
+
+Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0.
+
+**/
+#ifndef __EFI_IP4CONFIG_PROTOCOL_H__
+#define __EFI_IP4CONFIG_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#include <ipxe/efi/Protocol/Ip4.h>
+
+#define EFI_IP4_CONFIG_PROTOCOL_GUID \
+ { \
+ 0x3b95aa31, 0x3793, 0x434b, {0x86, 0x67, 0xc8, 0x07, 0x08, 0x92, 0xe0, 0x5e } \
+ }
+
+typedef struct _EFI_IP4_CONFIG_PROTOCOL EFI_IP4_CONFIG_PROTOCOL;
+
+#define IP4_CONFIG_VARIABLE_ATTRIBUTES \
+ (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS)
+
+///
+/// EFI_IP4_IPCONFIG_DATA contains the minimum IPv4 configuration data
+/// that is needed to start basic network communication. The StationAddress
+/// and SubnetMask must be a valid unicast IP address and subnet mask.
+/// If RouteTableSize is not zero, then RouteTable contains a properly
+/// formatted routing table for the StationAddress/SubnetMask, with the
+/// last entry in the table being the default route.
+///
+typedef struct {
+ ///
+ /// Default station IP address, stored in network byte order.
+ ///
+ EFI_IPv4_ADDRESS StationAddress;
+ ///
+ /// Default subnet mask, stored in network byte order.
+ ///
+ EFI_IPv4_ADDRESS SubnetMask;
+ ///
+ /// Number of entries in the following RouteTable. May be zero.
+ ///
+ UINT32 RouteTableSize;
+ ///
+ /// Default routing table data (stored in network byte order).
+ /// Ignored if RouteTableSize is zero.
+ ///
+ EFI_IP4_ROUTE_TABLE *RouteTable;
+} EFI_IP4_IPCONFIG_DATA;
+
+
+/**
+ Starts running the configuration policy for the EFI IPv4 Protocol driver.
+
+ The Start() function is called to determine and to begin the platform
+ configuration policy by the EFI IPv4 Protocol driver. This determination may
+ be as simple as returning EFI_UNSUPPORTED if there is no EFI IPv4 Protocol
+ driver configuration policy. It may be as involved as loading some defaults
+ from nonvolatile storage, downloading dynamic data from a DHCP server, and
+ checking permissions with a site policy server.
+ Starting the configuration policy is just the beginning. It may finish almost
+ instantly or it may take several minutes before it fails to retrieve configuration
+ information from one or more servers. Once the policy is started, drivers
+ should use the DoneEvent parameter to determine when the configuration policy
+ has completed. EFI_IP4_CONFIG_PROTOCOL.GetData() must then be called to
+ determine if the configuration succeeded or failed.
+ Until the configuration completes successfully, EFI IPv4 Protocol driver instances
+ that are attempting to use default configurations must return EFI_NO_MAPPING.
+ Once the configuration is complete, the EFI IPv4 Configuration Protocol driver
+ signals DoneEvent. The configuration may need to be updated in the future.
+ Note that in this case the EFI IPv4 Configuration Protocol driver must signal
+ ReconfigEvent, and all EFI IPv4 Protocol driver instances that are using default
+ configurations must return EFI_NO_MAPPING until the configuration policy has
+ been rerun.
+
+ @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance.
+ @param DoneEvent Event that will be signaled when the EFI IPv4
+ Protocol driver configuration policy completes
+ execution. This event must be of type EVT_NOTIFY_SIGNAL.
+ @param ReconfigEvent Event that will be signaled when the EFI IPv4
+ Protocol driver configuration needs to be updated.
+ This event must be of type EVT_NOTIFY_SIGNAL.
+
+ @retval EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol
+ driver is now running.
+ @retval EFI_INVALID_PARAMETER One or more of the following parameters is NULL:
+ This
+ DoneEvent
+ ReconfigEvent
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ALREADY_STARTED The configuration policy for the EFI IPv4 Protocol
+ driver was already started.
+ @retval EFI_DEVICE_ERROR An unexpected system error or network error occurred.
+ @retval EFI_UNSUPPORTED This interface does not support the EFI IPv4 Protocol
+ driver configuration.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_CONFIG_START)(
+ IN EFI_IP4_CONFIG_PROTOCOL *This,
+ IN EFI_EVENT DoneEvent,
+ IN EFI_EVENT ReconfigEvent
+ );
+
+/**
+ Stops running the configuration policy for the EFI IPv4 Protocol driver.
+
+ The Stop() function stops the configuration policy for the EFI IPv4 Protocol driver.
+ All configuration data will be lost after calling Stop().
+
+ @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol
+ driver has been stopped.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol
+ driver was not started.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_CONFIG_STOP)(
+ IN EFI_IP4_CONFIG_PROTOCOL *This
+ );
+
+/**
+ Returns the default configuration data (if any) for the EFI IPv4 Protocol driver.
+
+ The GetData() function returns the current configuration data for the EFI IPv4
+ Protocol driver after the configuration policy has completed.
+
+ @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance.
+ @param IpConfigDataSize On input, the size of the IpConfigData buffer.
+ On output, the count of bytes that were written
+ into the IpConfigData buffer.
+ @param IpConfigData The pointer to the EFI IPv4 Configuration Protocol
+ driver configuration data structure.
+ Type EFI_IP4_IPCONFIG_DATA is defined in
+ "Related Definitions" below.
+
+ @retval EFI_SUCCESS The EFI IPv4 Protocol driver configuration has been returned.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol
+ driver is not running.
+ @retval EFI_NOT_READY EFI IPv4 Protocol driver configuration is still running.
+ @retval EFI_ABORTED EFI IPv4 Protocol driver configuration could not complete.
+ @retval EFI_BUFFER_TOO_SMALL *IpConfigDataSize is smaller than the configuration
+ data buffer or IpConfigData is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_IP4_CONFIG_GET_DATA)(
+ IN EFI_IP4_CONFIG_PROTOCOL *This,
+ IN OUT UINTN *IpConfigDataSize,
+ OUT EFI_IP4_IPCONFIG_DATA *IpConfigData OPTIONAL
+ );
+
+///
+/// The EFI_IP4_CONFIG_PROTOCOL driver performs platform-dependent and policy-dependent
+/// configurations for the EFI IPv4 Protocol driver.
+///
+struct _EFI_IP4_CONFIG_PROTOCOL {
+ EFI_IP4_CONFIG_START Start;
+ EFI_IP4_CONFIG_STOP Stop;
+ EFI_IP4_CONFIG_GET_DATA GetData;
+};
+
+extern EFI_GUID gEfiIp4ConfigProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/ManagedNetwork.h b/src/include/ipxe/efi/Protocol/ManagedNetwork.h
new file mode 100644
index 00000000..2bd09226
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/ManagedNetwork.h
@@ -0,0 +1,374 @@
+/** @file
+ EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL as defined in UEFI 2.0.
+ EFI_MANAGED_NETWORK_PROTOCOL as defined in UEFI 2.0.
+
+Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0
+
+**/
+
+#ifndef __EFI_MANAGED_NETWORK_PROTOCOL_H__
+#define __EFI_MANAGED_NETWORK_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#include <ipxe/efi/Protocol/SimpleNetwork.h>
+
+#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0xf36ff770, 0xa7e1, 0x42cf, {0x9e, 0xd2, 0x56, 0xf0, 0xf2, 0x71, 0xf4, 0x4c } \
+ }
+
+#define EFI_MANAGED_NETWORK_PROTOCOL_GUID \
+ { \
+ 0x7ab33a91, 0xace5, 0x4326, { 0xb5, 0x72, 0xe7, 0xee, 0x33, 0xd3, 0x9f, 0x16 } \
+ }
+
+typedef struct _EFI_MANAGED_NETWORK_PROTOCOL EFI_MANAGED_NETWORK_PROTOCOL;
+
+typedef struct {
+ ///
+ /// Timeout value for a UEFI one-shot timer event. A packet that has not been removed
+ /// from the MNP receive queue will be dropped if its receive timeout expires.
+ ///
+ UINT32 ReceivedQueueTimeoutValue;
+ ///
+ /// Timeout value for a UEFI one-shot timer event. A packet that has not been removed
+ /// from the MNP transmit queue will be dropped if its receive timeout expires.
+ ///
+ UINT32 TransmitQueueTimeoutValue;
+ ///
+ /// Ethernet type II 16-bit protocol type in host byte order. Valid
+ /// values are zero and 1,500 to 65,535.
+ ///
+ UINT16 ProtocolTypeFilter;
+ ///
+ /// Set to TRUE to receive packets that are sent to the network
+ /// device MAC address. The startup default value is FALSE.
+ ///
+ BOOLEAN EnableUnicastReceive;
+ ///
+ /// Set to TRUE to receive packets that are sent to any of the
+ /// active multicast groups. The startup default value is FALSE.
+ ///
+ BOOLEAN EnableMulticastReceive;
+ ///
+ /// Set to TRUE to receive packets that are sent to the network
+ /// device broadcast address. The startup default value is FALSE.
+ ///
+ BOOLEAN EnableBroadcastReceive;
+ ///
+ /// Set to TRUE to receive packets that are sent to any MAC address.
+ /// The startup default value is FALSE.
+ ///
+ BOOLEAN EnablePromiscuousReceive;
+ ///
+ /// Set to TRUE to drop queued packets when the configuration
+ /// is changed. The startup default value is FALSE.
+ ///
+ BOOLEAN FlushQueuesOnReset;
+ ///
+ /// Set to TRUE to timestamp all packets when they are received
+ /// by the MNP. Note that timestamps may be unsupported in some
+ /// MNP implementations. The startup default value is FALSE.
+ ///
+ BOOLEAN EnableReceiveTimestamps;
+ ///
+ /// Set to TRUE to disable background polling in this MNP
+ /// instance. Note that background polling may not be supported in
+ /// all MNP implementations. The startup default value is FALSE,
+ /// unless background polling is not supported.
+ ///
+ BOOLEAN DisableBackgroundPolling;
+} EFI_MANAGED_NETWORK_CONFIG_DATA;
+
+typedef struct {
+ EFI_TIME Timestamp;
+ EFI_EVENT RecycleEvent;
+ UINT32 PacketLength;
+ UINT32 HeaderLength;
+ UINT32 AddressLength;
+ UINT32 DataLength;
+ BOOLEAN BroadcastFlag;
+ BOOLEAN MulticastFlag;
+ BOOLEAN PromiscuousFlag;
+ UINT16 ProtocolType;
+ VOID *DestinationAddress;
+ VOID *SourceAddress;
+ VOID *MediaHeader;
+ VOID *PacketData;
+} EFI_MANAGED_NETWORK_RECEIVE_DATA;
+
+typedef struct {
+ UINT32 FragmentLength;
+ VOID *FragmentBuffer;
+} EFI_MANAGED_NETWORK_FRAGMENT_DATA;
+
+typedef struct {
+ EFI_MAC_ADDRESS *DestinationAddress; //OPTIONAL
+ EFI_MAC_ADDRESS *SourceAddress; //OPTIONAL
+ UINT16 ProtocolType; //OPTIONAL
+ UINT32 DataLength;
+ UINT16 HeaderLength; //OPTIONAL
+ UINT16 FragmentCount;
+ EFI_MANAGED_NETWORK_FRAGMENT_DATA FragmentTable[1];
+} EFI_MANAGED_NETWORK_TRANSMIT_DATA;
+
+
+typedef struct {
+ ///
+ /// This Event will be signaled after the Status field is updated
+ /// by the MNP. The type of Event must be
+ /// EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
+ /// Event must be lower than or equal to TPL_CALLBACK.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// The status that is returned to the caller at the end of the operation
+ /// to indicate whether this operation completed successfully.
+ ///
+ EFI_STATUS Status;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to the EFI_MANAGED_NETWORK_RECEIVE_DATA.
+ ///
+ EFI_MANAGED_NETWORK_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to the EFI_MANAGED_NETWORK_TRANSMIT_DATA.
+ ///
+ EFI_MANAGED_NETWORK_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_MANAGED_NETWORK_COMPLETION_TOKEN;
+
+/**
+ Returns the operational parameters for the current MNP child driver.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param MnpConfigData The pointer to storage for MNP operational parameters.
+ @param SnpModeData The pointer to storage for SNP operational parameters.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. The default
+ values are returned in MnpConfigData if it is not NULL.
+ @retval Other The mode data could not be read.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_GET_MODE_DATA)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Sets or clears the operational parameters for the MNP child driver.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param MnpConfigData The pointer to configuration data that will be assigned to the MNP
+ child driver instance. If NULL, the MNP child driver instance is
+ reset to startup defaults and all pending transmit and receive
+ requests are flushed.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_OUT_OF_RESOURCES Required system resources (usually memory) could not be
+ allocated.
+ @retval EFI_UNSUPPORTED The requested feature is unsupported in this [MNP]
+ implementation.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval Other The MNP child driver instance has been reset to startup defaults.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_CONFIGURE)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL
+ );
+
+/**
+ Translates an IP multicast address to a hardware (MAC) multicast address.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param Ipv6Flag Set to TRUE to if IpAddress is an IPv6 multicast address.
+ Set to FALSE if IpAddress is an IPv4 multicast address.
+ @param IpAddress The pointer to the multicast IP address (in network byte order) to convert.
+ @param MacAddress The pointer to the resulting multicast MAC address.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_INVALID_PARAMETER One of the following conditions is TRUE:
+ - This is NULL.
+ - IpAddress is NULL.
+ - *IpAddress is not a valid multicast IP address.
+ - MacAddress is NULL.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval Other The address could not be converted.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN BOOLEAN Ipv6Flag,
+ IN EFI_IP_ADDRESS *IpAddress,
+ OUT EFI_MAC_ADDRESS *MacAddress
+ );
+
+/**
+ Enables and disables receive filters for multicast address.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param JoinFlag Set to TRUE to join this multicast group.
+ Set to FALSE to leave this multicast group.
+ @param MacAddress The pointer to the multicast MAC group (address) to join or leave.
+
+ @retval EFI_SUCCESS The requested operation completed successfully.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - JoinFlag is TRUE and MacAddress is NULL.
+ - *MacAddress is not a valid multicast MAC address.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_ALREADY_STARTED The supplied multicast group is already joined.
+ @retval EFI_NOT_FOUND The supplied multicast group is not joined.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.
+ @retval Other The requested operation could not be completed.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_GROUPS)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN BOOLEAN JoinFlag,
+ IN EFI_MAC_ADDRESS *MacAddress OPTIONAL
+ );
+
+/**
+ Places asynchronous outgoing data packets into the transmit queue.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param Token The pointer to a token associated with the transmit data descriptor.
+
+ @retval EFI_SUCCESS The transmit completion token was cached.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_ACCESS_DENIED The transmit completion token is already in the transmit queue.
+ @retval EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
+ (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY The transmit request could not be queued because the transmit queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_TRANSMIT)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Places an asynchronous receiving request into the receiving queue.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param Token The pointer to a token associated with the receive data descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
+ (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_ACCESS_DENIED The receive completion token was already in the receive queue.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_RECEIVE)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
+ );
+
+
+/**
+ Aborts an asynchronous transmit or receive request.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+ @param Token The pointer to a token that has been issued by
+ EFI_MANAGED_NETWORK_PROTOCOL.Transmit() or
+ EFI_MANAGED_NETWORK_PROTOCOL.Receive(). If
+ NULL, all pending tokens are aborted.
+
+ @retval EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event
+ was signaled. When Token is NULL, all pending requests were
+ aborted and their events were signaled.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was
+ not found in the transmit or receive queue. It has either completed
+ or was not issued by Transmit() and Receive().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_CANCEL)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This,
+ IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_NOT_STARTED This MNP child driver instance has not been configured.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data was processed. Consider increasing
+ the polling rate.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MANAGED_NETWORK_POLL)(
+ IN EFI_MANAGED_NETWORK_PROTOCOL *This
+ );
+
+///
+/// The MNP is used by network applications (and drivers) to
+/// perform raw (unformatted) asynchronous network packet I/O.
+///
+struct _EFI_MANAGED_NETWORK_PROTOCOL {
+ EFI_MANAGED_NETWORK_GET_MODE_DATA GetModeData;
+ EFI_MANAGED_NETWORK_CONFIGURE Configure;
+ EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC McastIpToMac;
+ EFI_MANAGED_NETWORK_GROUPS Groups;
+ EFI_MANAGED_NETWORK_TRANSMIT Transmit;
+ EFI_MANAGED_NETWORK_RECEIVE Receive;
+ EFI_MANAGED_NETWORK_CANCEL Cancel;
+ EFI_MANAGED_NETWORK_POLL Poll;
+};
+
+extern EFI_GUID gEfiManagedNetworkServiceBindingProtocolGuid;
+extern EFI_GUID gEfiManagedNetworkProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Mtftp4.h b/src/include/ipxe/efi/Protocol/Mtftp4.h
new file mode 100644
index 00000000..0e961cfd
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Mtftp4.h
@@ -0,0 +1,595 @@
+/** @file
+ EFI Multicast Trivial File Tranfer Protocol Definition
+
+Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0
+
+**/
+
+#ifndef __EFI_MTFTP4_PROTOCOL_H__
+#define __EFI_MTFTP4_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x2FE800BE, 0x8F01, 0x4aa6, {0x94, 0x6B, 0xD7, 0x13, 0x88, 0xE1, 0x83, 0x3F } \
+ }
+
+#define EFI_MTFTP4_PROTOCOL_GUID \
+ { \
+ 0x78247c57, 0x63db, 0x4708, {0x99, 0xc2, 0xa8, 0xb4, 0xa9, 0xa6, 0x1f, 0x6b } \
+ }
+
+typedef struct _EFI_MTFTP4_PROTOCOL EFI_MTFTP4_PROTOCOL;
+typedef struct _EFI_MTFTP4_TOKEN EFI_MTFTP4_TOKEN;
+
+//
+//MTFTP4 packet opcode definition
+//
+#define EFI_MTFTP4_OPCODE_RRQ 1
+#define EFI_MTFTP4_OPCODE_WRQ 2
+#define EFI_MTFTP4_OPCODE_DATA 3
+#define EFI_MTFTP4_OPCODE_ACK 4
+#define EFI_MTFTP4_OPCODE_ERROR 5
+#define EFI_MTFTP4_OPCODE_OACK 6
+#define EFI_MTFTP4_OPCODE_DIR 7
+#define EFI_MTFTP4_OPCODE_DATA8 8
+#define EFI_MTFTP4_OPCODE_ACK8 9
+
+//
+// MTFTP4 error code definition
+//
+#define EFI_MTFTP4_ERRORCODE_NOT_DEFINED 0
+#define EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND 1
+#define EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION 2
+#define EFI_MTFTP4_ERRORCODE_DISK_FULL 3
+#define EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION 4
+#define EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID 5
+#define EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS 6
+#define EFI_MTFTP4_ERRORCODE_NO_SUCH_USER 7
+#define EFI_MTFTP4_ERRORCODE_REQUEST_DENIED 8
+
+//
+// MTFTP4 pacekt definitions
+//
+#pragma pack(1)
+
+typedef struct {
+ UINT16 OpCode;
+ UINT8 Filename[1];
+} EFI_MTFTP4_REQ_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT8 Data[1];
+} EFI_MTFTP4_OACK_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT16 Block;
+ UINT8 Data[1];
+} EFI_MTFTP4_DATA_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT16 Block[1];
+} EFI_MTFTP4_ACK_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT64 Block;
+ UINT8 Data[1];
+} EFI_MTFTP4_DATA8_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT64 Block[1];
+} EFI_MTFTP4_ACK8_HEADER;
+
+typedef struct {
+ UINT16 OpCode;
+ UINT16 ErrorCode;
+ UINT8 ErrorMessage[1];
+} EFI_MTFTP4_ERROR_HEADER;
+
+typedef union {
+ ///
+ /// Type of packets as defined by the MTFTPv4 packet opcodes.
+ ///
+ UINT16 OpCode;
+ ///
+ /// Read request packet header.
+ ///
+ EFI_MTFTP4_REQ_HEADER Rrq;
+ ///
+ /// Write request packet header.
+ ///
+ EFI_MTFTP4_REQ_HEADER Wrq;
+ ///
+ /// Option acknowledge packet header.
+ ///
+ EFI_MTFTP4_OACK_HEADER Oack;
+ ///
+ /// Data packet header.
+ ///
+ EFI_MTFTP4_DATA_HEADER Data;
+ ///
+ /// Acknowledgement packet header.
+ ///
+ EFI_MTFTP4_ACK_HEADER Ack;
+ ///
+ /// Data packet header with big block number.
+ ///
+ EFI_MTFTP4_DATA8_HEADER Data8;
+ ///
+ /// Acknowledgement header with big block num.
+ ///
+ EFI_MTFTP4_ACK8_HEADER Ack8;
+ ///
+ /// Error packet header.
+ ///
+ EFI_MTFTP4_ERROR_HEADER Error;
+} EFI_MTFTP4_PACKET;
+
+#pragma pack()
+
+///
+/// MTFTP4 option definition.
+///
+typedef struct {
+ UINT8 *OptionStr;
+ UINT8 *ValueStr;
+} EFI_MTFTP4_OPTION;
+
+
+typedef struct {
+ BOOLEAN UseDefaultSetting;
+ EFI_IPv4_ADDRESS StationIp;
+ EFI_IPv4_ADDRESS SubnetMask;
+ UINT16 LocalPort;
+ EFI_IPv4_ADDRESS GatewayIp;
+ EFI_IPv4_ADDRESS ServerIp;
+ UINT16 InitialServerPort;
+ UINT16 TryCount;
+ UINT16 TimeoutValue;
+} EFI_MTFTP4_CONFIG_DATA;
+
+
+typedef struct {
+ EFI_MTFTP4_CONFIG_DATA ConfigData;
+ UINT8 SupportedOptionCount;
+ UINT8 **SupportedOptoins;
+ UINT8 UnsupportedOptionCount;
+ UINT8 **UnsupportedOptoins;
+} EFI_MTFTP4_MODE_DATA;
+
+
+typedef struct {
+ EFI_IPv4_ADDRESS GatewayIp;
+ EFI_IPv4_ADDRESS ServerIp;
+ UINT16 ServerPort;
+ UINT16 TryCount;
+ UINT16 TimeoutValue;
+} EFI_MTFTP4_OVERRIDE_DATA;
+
+//
+// Protocol interfaces definition
+//
+
+/**
+ A callback function that is provided by the caller to intercept
+ the EFI_MTFTP4_OPCODE_DATA or EFI_MTFTP4_OPCODE_DATA8 packets processed in the
+ EFI_MTFTP4_PROTOCOL.ReadFile() function, and alternatively to intercept
+ EFI_MTFTP4_OPCODE_OACK or EFI_MTFTP4_OPCODE_ERROR packets during a call to
+ EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory().
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The token that the caller provided in the
+ EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile()
+ or ReadDirectory() function.
+ @param PacketLen Indicates the length of the packet.
+ @param Packet The pointer to an MTFTPv4 packet.
+
+ @retval EFI_SUCCESS The operation was successful.
+ @retval Others Aborts the transfer process.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_CHECK_PACKET)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token,
+ IN UINT16 PacketLen,
+ IN EFI_MTFTP4_PACKET *Paket
+ );
+
+/**
+ Timeout callback funtion.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The token that is provided in the
+ EFI_MTFTP4_PROTOCOL.ReadFile() or
+ EFI_MTFTP4_PROTOCOL.WriteFile() or
+ EFI_MTFTP4_PROTOCOL.ReadDirectory() functions
+ by the caller.
+
+ @retval EFI_SUCCESS The operation was successful.
+ @retval Others Aborts download process.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_TIMEOUT_CALLBACK)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token
+ );
+
+/**
+ A callback function that the caller provides to feed data to the
+ EFI_MTFTP4_PROTOCOL.WriteFile() function.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The token provided in the
+ EFI_MTFTP4_PROTOCOL.WriteFile() by the caller.
+ @param Length Indicates the length of the raw data wanted on input, and the
+ length the data available on output.
+ @param Buffer The pointer to the buffer where the data is stored.
+
+ @retval EFI_SUCCESS The operation was successful.
+ @retval Others Aborts session.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_PACKET_NEEDED)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token,
+ IN OUT UINT16 *Length,
+ OUT VOID **Buffer
+ );
+
+
+/**
+ Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param ModeData The pointer to storage for the EFI MTFTPv4 Protocol driver mode data.
+
+ @retval EFI_SUCCESS The configuration data was successfully returned.
+ @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
+ @retval EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_GET_MODE_DATA)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ OUT EFI_MTFTP4_MODE_DATA *ModeData
+ );
+
+
+/**
+ Initializes, changes, or resets the default operational setting for this
+ EFI MTFTPv4 Protocol driver instance.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param MtftpConfigData The pointer to the configuration data structure.
+
+ @retval EFI_SUCCESS The EFI MTFTPv4 Protocol driver was configured successfully.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_ACCESS_DENIED The EFI configuration could not be changed at this time because
+ there is one MTFTP background operation in progress.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) has not finished yet.
+ @retval EFI_UNSUPPORTED A configuration protocol (DHCP, BOOTP, RARP, etc.) could not
+ be located when clients choose to use the default address
+ settings.
+ @retval EFI_OUT_OF_RESOURCES The EFI MTFTPv4 Protocol driver instance data could not be
+ allocated.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
+ MTFTPv4 Protocol driver instance is not configured.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_CONFIGURE)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_CONFIG_DATA *MtftpConfigData OPTIONAL
+ );
+
+
+/**
+ Gets information about a file from an MTFTPv4 server.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param OverrideData Data that is used to override the existing parameters. If NULL,
+ the default parameters that were set in the
+ EFI_MTFTP4_PROTOCOL.Configure() function are used.
+ @param Filename The pointer to null-terminated ASCII file name string.
+ @param ModeStr The pointer to null-terminated ASCII mode string. If NULL, "octet" will be used.
+ @param OptionCount Number of option/value string pairs in OptionList.
+ @param OptionList The pointer to array of option/value string pairs. Ignored if
+ OptionCount is zero.
+ @param PacketLength The number of bytes in the returned packet.
+ @param Packet The pointer to the received packet. This buffer must be freed by
+ the caller.
+
+ @retval EFI_SUCCESS An MTFTPv4 OACK packet was received and is in the Packet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Filename is NULL.
+ - OptionCount is not zero and OptionList is NULL.
+ - One or more options in OptionList have wrong format.
+ - PacketLength is NULL.
+ - One or more IPv4 addresses in OverrideData are not valid
+ unicast IPv4 addresses if OverrideData is not NULL.
+ @retval EFI_UNSUPPORTED One or more options in the OptionList are in the
+ unsupported list of structure EFI_MTFTP4_MODE_DATA.
+ @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) has not finished yet.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received and is in the Packet.
+ @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the Packet is set to NULL.
+ @retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received and is in the Buffer.
+ @retval EFI_PROTOCOL_ERROR An unexpected MTFTPv4 packet was received and is in the Packet.
+ @retval EFI_TIMEOUT No responses were received from the MTFTPv4 server.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_GET_INFO)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL,
+ IN UINT8 *Filename,
+ IN UINT8 *ModeStr OPTIONAL,
+ IN UINT8 OptionCount,
+ IN EFI_MTFTP4_OPTION *OptionList,
+ OUT UINT32 *PacketLength,
+ OUT EFI_MTFTP4_PACKET **Packet OPTIONAL
+ );
+
+/**
+ Parses the options in an MTFTPv4 OACK packet.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param PacketLen Length of the OACK packet to be parsed.
+ @param Packet The pointer to the OACK packet to be parsed.
+ @param OptionCount The pointer to the number of options in following OptionList.
+ @param OptionList The pointer to EFI_MTFTP4_OPTION storage. Call the EFI Boot
+ Service FreePool() to release the OptionList if the options
+ in this OptionList are not needed any more.
+
+ @retval EFI_SUCCESS The OACK packet was valid and the OptionCount and
+ OptionList parameters have been updated.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - PacketLen is 0.
+ - Packet is NULL or Packet is not a valid MTFTPv4 packet.
+ - OptionCount is NULL.
+ @retval EFI_NOT_FOUND No options were found in the OACK packet.
+ @retval EFI_OUT_OF_RESOURCES Storage for the OptionList array cannot be allocated.
+ @retval EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_PARSE_OPTIONS)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN UINT32 PacketLen,
+ IN EFI_MTFTP4_PACKET *Packet,
+ OUT UINT32 *OptionCount,
+ OUT EFI_MTFTP4_OPTION **OptionList OPTIONAL
+ );
+
+
+/**
+ Downloads a file from an MTFTPv4 server.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The data file has been transferred successfully.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the
+ downloaded data in downloading process.
+ @retval EFI_ABORTED Current operation is aborted by user.
+ @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.
+ @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received.
+ @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received.
+ @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received.
+ @retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received.
+ @retval EFI_TIMEOUT No responses were received from the MTFTPv4 server.
+ @retval EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+ @retval EFI_NO_MEDIA There was a media error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_READ_FILE)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token
+ );
+
+
+
+/**
+ Sends a file to an MTFTPv4 server.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The upload session has started.
+ @retval EFI_UNSUPPORTED The operation is not supported by this implementation.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are in
+ the unsupported list of structure EFI_MTFTP4_MODE_DATA.
+ @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_WRITE_FILE)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token
+ );
+
+
+/**
+ Downloads a data file "directory" from an MTFTPv4 server. May be unsupported in some EFI
+ implementations.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+ @param Token The pointer to the token structure to provide the parameters that are
+ used in this operation.
+
+ @retval EFI_SUCCESS The MTFTPv4 related file "directory" has been downloaded.
+ @retval EFI_UNSUPPORTED The operation is not supported by this implementation.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are in
+ the unsupported list of structure EFI_MTFTP4_MODE_DATA.
+ @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.
+ @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
+ @retval EFI_ACCESS_DENIED The previous operation has not completed yet.
+ @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_READ_DIRECTORY)(
+ IN EFI_MTFTP4_PROTOCOL *This,
+ IN EFI_MTFTP4_TOKEN *Token
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ @param This The pointer to the EFI_MTFTP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_NOT_STARTED This EFI MTFTPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_MTFTP4_POLL)(
+ IN EFI_MTFTP4_PROTOCOL *This
+ );
+
+///
+/// The EFI_MTFTP4_PROTOCOL is designed to be used by UEFI drivers and applications
+/// to transmit and receive data files. The EFI MTFTPv4 Protocol driver uses
+/// the underlying EFI UDPv4 Protocol driver and EFI IPv4 Protocol driver.
+///
+struct _EFI_MTFTP4_PROTOCOL {
+ EFI_MTFTP4_GET_MODE_DATA GetModeData;
+ EFI_MTFTP4_CONFIGURE Configure;
+ EFI_MTFTP4_GET_INFO GetInfo;
+ EFI_MTFTP4_PARSE_OPTIONS ParseOptions;
+ EFI_MTFTP4_READ_FILE ReadFile;
+ EFI_MTFTP4_WRITE_FILE WriteFile;
+ EFI_MTFTP4_READ_DIRECTORY ReadDirectory;
+ EFI_MTFTP4_POLL Poll;
+};
+
+struct _EFI_MTFTP4_TOKEN {
+ ///
+ /// The status that is returned to the caller at the end of the operation
+ /// to indicate whether this operation completed successfully.
+ ///
+ EFI_STATUS Status;
+ ///
+ /// The event that will be signaled when the operation completes. If
+ /// set to NULL, the corresponding function will wait until the read or
+ /// write operation finishes. The type of Event must be
+ /// EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
+ /// Event must be lower than or equal to TPL_CALLBACK.
+ ///
+ EFI_EVENT Event;
+ ///
+ /// If not NULL, the data that will be used to override the existing configure data.
+ ///
+ EFI_MTFTP4_OVERRIDE_DATA *OverrideData;
+ ///
+ /// The pointer to the null-terminated ASCII file name string.
+ ///
+ UINT8 *Filename;
+ ///
+ /// The pointer to the null-terminated ASCII mode string. If NULL, "octet" is used.
+ ///
+ UINT8 *ModeStr;
+ ///
+ /// Number of option/value string pairs.
+ ///
+ UINT32 OptionCount;
+ ///
+ /// The pointer to an array of option/value string pairs. Ignored if OptionCount is zero.
+ ///
+ EFI_MTFTP4_OPTION *OptionList;
+ ///
+ /// The size of the data buffer.
+ ///
+ UINT64 BufferSize;
+ ///
+ /// The pointer to the data buffer. Data that is downloaded from the
+ /// MTFTPv4 server is stored here. Data that is uploaded to the
+ /// MTFTPv4 server is read from here. Ignored if BufferSize is zero.
+ ///
+ VOID *Buffer;
+ ///
+ /// The pointer to the context that will be used by CheckPacket,
+ /// TimeoutCallback and PacketNeeded.
+ ///
+ VOID *Context;
+ ///
+ /// The pointer to the callback function to check the contents of the received packet.
+ ///
+ EFI_MTFTP4_CHECK_PACKET CheckPacket;
+ ///
+ /// The pointer to the function to be called when a timeout occurs.
+ ///
+ EFI_MTFTP4_TIMEOUT_CALLBACK TimeoutCallback;
+ ///
+ /// The pointer to the function to provide the needed packet contents.
+ ///
+ EFI_MTFTP4_PACKET_NEEDED PacketNeeded;
+};
+
+extern EFI_GUID gEfiMtftp4ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiMtftp4ProtocolGuid;
+
+#endif
+
diff --git a/src/include/ipxe/efi/Protocol/Tcp4.h b/src/include/ipxe/efi/Protocol/Tcp4.h
new file mode 100644
index 00000000..1771bc55
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Tcp4.h
@@ -0,0 +1,579 @@
+/** @file
+ EFI TCPv4(Transmission Control Protocol version 4) Protocol Definition
+ The EFI TCPv4 Service Binding Protocol is used to locate EFI TCPv4 Protocol drivers to create
+ and destroy child of the driver to communicate with other host using TCP protocol.
+ The EFI TCPv4 Protocol provides services to send and receive data stream.
+
+Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0.
+
+**/
+
+#ifndef __EFI_TCP4_PROTOCOL_H__
+#define __EFI_TCP4_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#include <ipxe/efi/Protocol/Ip4.h>
+
+#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x00720665, 0x67EB, 0x4a99, {0xBA, 0xF7, 0xD3, 0xC3, 0x3A, 0x1C, 0x7C, 0xC9 } \
+ }
+
+#define EFI_TCP4_PROTOCOL_GUID \
+ { \
+ 0x65530BC7, 0xA359, 0x410f, {0xB0, 0x10, 0x5A, 0xAD, 0xC7, 0xEC, 0x2B, 0x62 } \
+ }
+
+typedef struct _EFI_TCP4_PROTOCOL EFI_TCP4_PROTOCOL;
+
+///
+/// EFI_TCP4_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE InstanceHandle;
+ EFI_IPv4_ADDRESS LocalAddress;
+ UINT16 LocalPort;
+ EFI_IPv4_ADDRESS RemoteAddress;
+ UINT16 RemotePort;
+} EFI_TCP4_SERVICE_POINT;
+
+///
+/// EFI_TCP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE DriverHandle;
+ UINT32 ServiceCount;
+ EFI_TCP4_SERVICE_POINT Services[1];
+} EFI_TCP4_VARIABLE_DATA;
+
+typedef struct {
+ BOOLEAN UseDefaultAddress;
+ EFI_IPv4_ADDRESS StationAddress;
+ EFI_IPv4_ADDRESS SubnetMask;
+ UINT16 StationPort;
+ EFI_IPv4_ADDRESS RemoteAddress;
+ UINT16 RemotePort;
+ BOOLEAN ActiveFlag;
+} EFI_TCP4_ACCESS_POINT;
+
+typedef struct {
+ UINT32 ReceiveBufferSize;
+ UINT32 SendBufferSize;
+ UINT32 MaxSynBackLog;
+ UINT32 ConnectionTimeout;
+ UINT32 DataRetries;
+ UINT32 FinTimeout;
+ UINT32 TimeWaitTimeout;
+ UINT32 KeepAliveProbes;
+ UINT32 KeepAliveTime;
+ UINT32 KeepAliveInterval;
+ BOOLEAN EnableNagle;
+ BOOLEAN EnableTimeStamp;
+ BOOLEAN EnableWindowScaling;
+ BOOLEAN EnableSelectiveAck;
+ BOOLEAN EnablePathMtuDiscovery;
+} EFI_TCP4_OPTION;
+
+typedef struct {
+ //
+ // I/O parameters
+ //
+ UINT8 TypeOfService;
+ UINT8 TimeToLive;
+
+ //
+ // Access Point
+ //
+ EFI_TCP4_ACCESS_POINT AccessPoint;
+
+ //
+ // TCP Control Options
+ //
+ EFI_TCP4_OPTION *ControlOption;
+} EFI_TCP4_CONFIG_DATA;
+
+///
+/// TCP4 connnection state
+///
+typedef enum {
+ Tcp4StateClosed = 0,
+ Tcp4StateListen = 1,
+ Tcp4StateSynSent = 2,
+ Tcp4StateSynReceived = 3,
+ Tcp4StateEstablished = 4,
+ Tcp4StateFinWait1 = 5,
+ Tcp4StateFinWait2 = 6,
+ Tcp4StateClosing = 7,
+ Tcp4StateTimeWait = 8,
+ Tcp4StateCloseWait = 9,
+ Tcp4StateLastAck = 10
+} EFI_TCP4_CONNECTION_STATE;
+
+typedef struct {
+ EFI_EVENT Event;
+ EFI_STATUS Status;
+} EFI_TCP4_COMPLETION_TOKEN;
+
+typedef struct {
+ ///
+ /// The Status in the CompletionToken will be set to one of
+ /// the following values if the active open succeeds or an unexpected
+ /// error happens:
+ /// EFI_SUCCESS: The active open succeeds and the instance's
+ /// state is Tcp4StateEstablished.
+ /// EFI_CONNECTION_RESET: The connect fails because the connection is reset
+ /// either by instance itself or the communication peer.
+ /// EFI_CONNECTION_REFUSED: The connect fails because this connection is initiated with
+ /// an active open and the connection is refused.
+ /// EFI_ABORTED: The active open is aborted.
+ /// EFI_TIMEOUT: The connection establishment timer expires and
+ /// no more specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The active open fails because
+ /// an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The active open fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The active open fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The connection establishment
+ /// timer times out and an ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The connection establishment timer timeout and some other ICMP
+ /// error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurred.
+ /// EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_TCP4_COMPLETION_TOKEN CompletionToken;
+} EFI_TCP4_CONNECTION_TOKEN;
+
+typedef struct {
+ EFI_TCP4_COMPLETION_TOKEN CompletionToken;
+ EFI_HANDLE NewChildHandle;
+} EFI_TCP4_LISTEN_TOKEN;
+
+typedef struct {
+ UINT32 FragmentLength;
+ VOID *FragmentBuffer;
+} EFI_TCP4_FRAGMENT_DATA;
+
+typedef struct {
+ BOOLEAN UrgentFlag;
+ UINT32 DataLength;
+ UINT32 FragmentCount;
+ EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP4_RECEIVE_DATA;
+
+typedef struct {
+ BOOLEAN Push;
+ BOOLEAN Urgent;
+ UINT32 DataLength;
+ UINT32 FragmentCount;
+ EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_TCP4_TRANSMIT_DATA;
+
+typedef struct {
+ ///
+ /// When transmission finishes or meets any unexpected error it will
+ /// be set to one of the following values:
+ /// EFI_SUCCESS: The receiving or transmission operation
+ /// completes successfully.
+ /// EFI_CONNECTION_FIN: The receiving operation fails because the communication peer
+ /// has closed the connection and there is no more data in the
+ /// receive buffer of the instance.
+ /// EFI_CONNECTION_RESET: The receiving or transmission operation fails
+ /// because this connection is reset either by instance
+ /// itself or the communication peer.
+ /// EFI_ABORTED: The receiving or transmission is aborted.
+ /// EFI_TIMEOUT: The transmission timer expires and no more
+ /// specific information is available.
+ /// EFI_NETWORK_UNREACHABLE: The transmission fails
+ /// because an ICMP network unreachable error is received.
+ /// EFI_HOST_UNREACHABLE: The transmission fails because an
+ /// ICMP host unreachable error is received.
+ /// EFI_PROTOCOL_UNREACHABLE: The transmission fails
+ /// because an ICMP protocol unreachable error is received.
+ /// EFI_PORT_UNREACHABLE: The transmission fails and an
+ /// ICMP port unreachable error is received.
+ /// EFI_ICMP_ERROR: The transmission fails and some other
+ /// ICMP error is received.
+ /// EFI_DEVICE_ERROR: An unexpected system or network error occurs.
+ /// EFI_NO_MEDIA: There was a media error.
+ ///
+ EFI_TCP4_COMPLETION_TOKEN CompletionToken;
+ union {
+ ///
+ /// When this token is used for receiving, RxData is a pointer to EFI_TCP4_RECEIVE_DATA.
+ ///
+ EFI_TCP4_RECEIVE_DATA *RxData;
+ ///
+ /// When this token is used for transmitting, TxData is a pointer to EFI_TCP4_TRANSMIT_DATA.
+ ///
+ EFI_TCP4_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_TCP4_IO_TOKEN;
+
+typedef struct {
+ EFI_TCP4_COMPLETION_TOKEN CompletionToken;
+ BOOLEAN AbortOnClose;
+} EFI_TCP4_CLOSE_TOKEN;
+
+//
+// Interface definition for TCP4 protocol
+//
+
+/**
+ Get the current operational status.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param Tcp4State The pointer to the buffer to receive the current TCP state.
+ @param Tcp4ConfigData The pointer to the buffer to receive the current TCP configuration.
+ @param Ip4ModeData The pointer to the buffer to receive the current IPv4 configuration
+ data used by the TCPv4 instance.
+ @param MnpConfigData The pointer to the buffer to receive the current MNP configuration
+ data used indirectly by the TCPv4 instance.
+ @param SnpModeData The pointer to the buffer to receive the current SNP configuration
+ data used indirectly by the TCPv4 instance.
+
+ @retval EFI_SUCCESS The mode data was read.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED No configuration data is available because this instance hasn't
+ been started.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_GET_MODE_DATA)(
+ IN EFI_TCP4_PROTOCOL *This,
+ OUT EFI_TCP4_CONNECTION_STATE *Tcp4State OPTIONAL,
+ OUT EFI_TCP4_CONFIG_DATA *Tcp4ConfigData OPTIONAL,
+ OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+/**
+ Initialize or brutally reset the operational parameters for this EFI TCPv4 instance.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param Tcp4ConfigData The pointer to the configure data to configure the instance.
+
+ @retval EFI_SUCCESS The operational settings are set, changed, or reset
+ successfully.
+ @retval EFI_INVALID_PARAMETER Some parameter is invalid.
+ @retval EFI_NO_MAPPING When using a default address, configuration (through
+ DHCP, BOOTP, RARP, etc.) is not finished yet.
+ @retval EFI_ACCESS_DENIED Configuring TCP instance when it is configured without
+ calling Configure() with NULL to reset it.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred.
+ @retval EFI_UNSUPPORTED One or more of the control options are not supported in
+ the implementation.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough system resources when
+ executing Configure().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_CONFIGURE)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_CONFIG_DATA *TcpConfigData OPTIONAL
+ );
+
+
+/**
+ Add or delete a route entry to the route table
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param DeleteRoute Set it to TRUE to delete this route from the routing table. Set it to
+ FALSE to add this route to the routing table.
+ DestinationAddress and SubnetMask are used as the
+ keywords to search route entry.
+ @param SubnetAddress The destination network.
+ @param SubnetMask The subnet mask of the destination network.
+ @param GatewayAddress The gateway address for this route. It must be on the same
+ subnet with the station address unless a direct route is specified.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - SubnetAddress is NULL.
+ - SubnetMask is NULL.
+ - GatewayAddress is NULL.
+ - *SubnetAddress is not NULL a valid subnet address.
+ - *SubnetMask is not a valid subnet mask.
+ - *GatewayAddress is not a valid unicast IP address or it
+ is not in the same subnet.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resources to add the entry to the
+ routing table.
+ @retval EFI_NOT_FOUND This route is not in the routing table.
+ @retval EFI_ACCESS_DENIED The route is already defined in the routing table.
+ @retval EFI_UNSUPPORTED The TCP driver does not support this operation.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_ROUTES)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN BOOLEAN DeleteRoute,
+ IN EFI_IPv4_ADDRESS *SubnetAddress,
+ IN EFI_IPv4_ADDRESS *SubnetMask,
+ IN EFI_IPv4_ADDRESS *GatewayAddress
+ );
+
+/**
+ Initiate a nonblocking TCP connection request for an active TCP instance.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param ConnectionToken The pointer to the connection token to return when the TCP three
+ way handshake finishes.
+
+ @retval EFI_SUCCESS The connection request is successfully initiated and the state
+ of this TCPv4 instance has been changed to Tcp4StateSynSent.
+ @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE:
+ - This instance is not configured as an active one.
+ - This instance is not in Tcp4StateClosed state.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ConnectionToken is NULL.
+ - ConnectionToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The driver can't allocate enough resource to initiate the activ eopen.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_CONNECT)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_CONNECTION_TOKEN *ConnectionToken
+ );
+
+
+/**
+ Listen on the passive instance to accept an incoming connection request. This is a nonblocking operation.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param ListenToken The pointer to the listen token to return when operation finishes.
+
+ @retval EFI_SUCCESS The listen token has been queued successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - This instance is not a passive instance.
+ - This instance is not in Tcp4StateListen state.
+ - The same listen token has already existed in the listen
+ token queue of this TCP instance.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - ListenToken is NULL.
+ - ListentToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_ACCEPT)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_LISTEN_TOKEN *ListenToken
+ );
+
+/**
+ Queues outgoing data into the transmit queue.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param Token The pointer to the completion token to queue to the transmit queue.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.TxData is NULL L.
+ - Token->Packet.FragmentCount is zero.
+ - Token->Packet.DataLength is not equal to the sum of fragment lengths.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE:
+ - A transmit completion token with the same Token->CompletionToken.Event
+ was already in the transmission queue.
+ - The current instance is in Tcp4StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp4StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_NOT_READY The completion token could not be queued because the
+ transmit queue is full.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
+ shortage.
+ @retval EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_TRANSMIT)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_IO_TOKEN *Token
+ );
+
+
+/**
+ Places an asynchronous receive request into the receiving queue.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param Token The pointer to a token that is associated with the receive data
+ descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP,
+ etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - Token is NULL.
+ - Token->CompletionToken.Event is NULL.
+ - Token->Packet.RxData is NULL.
+ - Token->Packet.RxData->DataLength is 0.
+ - The Token->Packet.RxData->DataLength is not
+ the sum of all FragmentBuffer length in FragmentTable.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
+ system resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE:
+ - A receive completion token with the same Token-
+ >CompletionToken.Event was already in the receive
+ queue.
+ - The current instance is in Tcp4StateClosed state.
+ - The current instance is a passive one and it is in
+ Tcp4StateListen state.
+ - User has called Close() to disconnect this connection.
+ @retval EFI_CONNECTION_FIN The communication peer has closed the connection and there is
+ no any buffered data in the receive buffer of this instance.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_RECEIVE)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_IO_TOKEN *Token
+ );
+
+/**
+ Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
+ nonblocking operation.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param CloseToken The pointer to the close token to return when operation finishes.
+
+ @retval EFI_SUCCESS The Close() is called successfully.
+ @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.
+ @retval EFI_ACCESS_DENIED One or more of the following are TRUE:
+ - Configure() has been called with
+ TcpConfigData set to NULL and this function has
+ not returned.
+ - Previous Close() call on this instance has not
+ finished.
+ @retval EFI_INVALID_PARAMETER One or more of the following are TRUE:
+ - This is NULL.
+ - CloseToken is NULL.
+ - CloseToken->CompletionToken.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.
+ @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_CLOSE)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_CLOSE_TOKEN *CloseToken
+ );
+
+/**
+ Abort an asynchronous connection, listen, transmission or receive request.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+ @param Token The pointer to a token that has been issued by
+ EFI_TCP4_PROTOCOL.Connect(),
+ EFI_TCP4_PROTOCOL.Accept(),
+ EFI_TCP4_PROTOCOL.Transmit() or
+ EFI_TCP4_PROTOCOL.Receive(). If NULL, all pending
+ tokens issued by above four functions will be aborted. Type
+ EFI_TCP4_COMPLETION_TOKEN is defined in
+ EFI_TCP4_PROTOCOL.Connect().
+
+ @retval EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event
+ is signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance hasn't been configured.
+ @retval EFI_NO_MAPPING When using the default address, configuration
+ (DHCP, BOOTP,RARP, etc.) hasn't finished yet.
+ @retval EFI_NOT_FOUND The asynchronous I/O request isn't found in the
+ transmission or receive queue. It has either
+ completed or wasn't issued by Transmit() and Receive().
+ @retval EFI_UNSUPPORTED The implementation does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_CANCEL)(
+ IN EFI_TCP4_PROTOCOL *This,
+ IN EFI_TCP4_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+
+/**
+ Poll to receive incoming data and transmit outgoing segments.
+
+ @param This The pointer to the EFI_TCP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_NOT_READY No incoming or outgoing data is processed.
+ @retval EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
+ Consider increasing the polling rate.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_TCP4_POLL)(
+ IN EFI_TCP4_PROTOCOL *This
+ );
+
+///
+/// The EFI_TCP4_PROTOCOL defines the EFI TCPv4 Protocol child to be used by
+/// any network drivers or applications to send or receive data stream.
+/// It can either listen on a specified port as a service or actively connected
+/// to remote peer as a client. Each instance has its own independent settings,
+/// such as the routing table.
+///
+struct _EFI_TCP4_PROTOCOL {
+ EFI_TCP4_GET_MODE_DATA GetModeData;
+ EFI_TCP4_CONFIGURE Configure;
+ EFI_TCP4_ROUTES Routes;
+ EFI_TCP4_CONNECT Connect;
+ EFI_TCP4_ACCEPT Accept;
+ EFI_TCP4_TRANSMIT Transmit;
+ EFI_TCP4_RECEIVE Receive;
+ EFI_TCP4_CLOSE Close;
+ EFI_TCP4_CANCEL Cancel;
+ EFI_TCP4_POLL Poll;
+};
+
+extern EFI_GUID gEfiTcp4ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiTcp4ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/Udp4.h b/src/include/ipxe/efi/Protocol/Udp4.h
new file mode 100644
index 00000000..3c61db8c
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/Udp4.h
@@ -0,0 +1,447 @@
+/** @file
+ UDP4 Service Binding Protocol as defined in UEFI specification.
+
+ The EFI UDPv4 Protocol provides simple packet-oriented services
+ to transmit and receive UDP packets.
+
+Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.0.
+
+**/
+
+#ifndef __EFI_UDP4_PROTOCOL_H__
+#define __EFI_UDP4_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+#include <ipxe/efi/Protocol/Ip4.h>
+//
+//GUID definitions
+//
+#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \
+ { \
+ 0x83f01464, 0x99bd, 0x45e5, {0xb3, 0x83, 0xaf, 0x63, 0x05, 0xd8, 0xe9, 0xe6 } \
+ }
+
+#define EFI_UDP4_PROTOCOL_GUID \
+ { \
+ 0x3ad9df29, 0x4501, 0x478d, {0xb1, 0xf8, 0x7f, 0x7f, 0xe7, 0x0e, 0x50, 0xf3 } \
+ }
+
+typedef struct _EFI_UDP4_PROTOCOL EFI_UDP4_PROTOCOL;
+
+///
+/// EFI_UDP4_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE InstanceHandle;
+ EFI_IPv4_ADDRESS LocalAddress;
+ UINT16 LocalPort;
+ EFI_IPv4_ADDRESS RemoteAddress;
+ UINT16 RemotePort;
+} EFI_UDP4_SERVICE_POINT;
+
+///
+/// EFI_UDP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more.
+/// The definition in here is only present to provide backwards compatability.
+///
+typedef struct {
+ EFI_HANDLE DriverHandle;
+ UINT32 ServiceCount;
+ EFI_UDP4_SERVICE_POINT Services[1];
+} EFI_UDP4_VARIABLE_DATA;
+
+typedef struct {
+ UINT32 FragmentLength;
+ VOID *FragmentBuffer;
+} EFI_UDP4_FRAGMENT_DATA;
+
+typedef struct {
+ EFI_IPv4_ADDRESS SourceAddress;
+ UINT16 SourcePort;
+ EFI_IPv4_ADDRESS DestinationAddress;
+ UINT16 DestinationPort;
+} EFI_UDP4_SESSION_DATA;
+typedef struct {
+ //
+ // Receiving Filters
+ //
+ BOOLEAN AcceptBroadcast;
+ BOOLEAN AcceptPromiscuous;
+ BOOLEAN AcceptAnyPort;
+ BOOLEAN AllowDuplicatePort;
+ //
+ // I/O parameters
+ //
+ UINT8 TypeOfService;
+ UINT8 TimeToLive;
+ BOOLEAN DoNotFragment;
+ UINT32 ReceiveTimeout;
+ UINT32 TransmitTimeout;
+ //
+ // Access Point
+ //
+ BOOLEAN UseDefaultAddress;
+ EFI_IPv4_ADDRESS StationAddress;
+ EFI_IPv4_ADDRESS SubnetMask;
+ UINT16 StationPort;
+ EFI_IPv4_ADDRESS RemoteAddress;
+ UINT16 RemotePort;
+} EFI_UDP4_CONFIG_DATA;
+
+typedef struct {
+ EFI_UDP4_SESSION_DATA *UdpSessionData; //OPTIONAL
+ EFI_IPv4_ADDRESS *GatewayAddress; //OPTIONAL
+ UINT32 DataLength;
+ UINT32 FragmentCount;
+ EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_UDP4_TRANSMIT_DATA;
+
+typedef struct {
+ EFI_TIME TimeStamp;
+ EFI_EVENT RecycleSignal;
+ EFI_UDP4_SESSION_DATA UdpSession;
+ UINT32 DataLength;
+ UINT32 FragmentCount;
+ EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
+} EFI_UDP4_RECEIVE_DATA;
+
+
+typedef struct {
+ EFI_EVENT Event;
+ EFI_STATUS Status;
+ union {
+ EFI_UDP4_RECEIVE_DATA *RxData;
+ EFI_UDP4_TRANSMIT_DATA *TxData;
+ } Packet;
+} EFI_UDP4_COMPLETION_TOKEN;
+
+/**
+ Reads the current operational settings.
+
+ The GetModeData() function copies the current operational settings of this EFI
+ UDPv4 Protocol instance into user-supplied buffers. This function is used
+ optionally to retrieve the operational mode data of underlying networks or
+ drivers.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param Udp4ConfigData The pointer to the buffer to receive the current configuration data.
+ @param Ip4ModeData The pointer to the EFI IPv4 Protocol mode data structure.
+ @param MnpConfigData The pointer to the managed network configuration data structure.
+ @param SnpModeData The pointer to the simple network mode data structure.
+
+ @retval EFI_SUCCESS The mode data was read.
+ @retval EFI_NOT_STARTED When Udp4ConfigData is queried, no configuration data is
+ available because this instance has not been started.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_GET_MODE_DATA)(
+ IN EFI_UDP4_PROTOCOL *This,
+ OUT EFI_UDP4_CONFIG_DATA *Udp4ConfigData OPTIONAL,
+ OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
+ OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
+ OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
+ );
+
+
+/**
+ Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv4
+ Protocol.
+
+ The Configure() function is used to do the following:
+ * Initialize and start this instance of the EFI UDPv4 Protocol.
+ * Change the filtering rules and operational parameters.
+ * Reset this instance of the EFI UDPv4 Protocol.
+ Until these parameters are initialized, no network traffic can be sent or
+ received by this instance. This instance can be also reset by calling Configure()
+ with UdpConfigData set to NULL. Once reset, the receiving queue and transmitting
+ queue are flushed and no traffic is allowed through this instance.
+ With different parameters in UdpConfigData, Configure() can be used to bind
+ this instance to specified port.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param Udp4ConfigData The pointer to the buffer to receive the current configuration data.
+
+ @retval EFI_SUCCESS The configuration settings were set, changed, or reset successfully.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_INVALID_PARAMETER UdpConfigData.StationAddress is not a valid unicast IPv4 address.
+ @retval EFI_INVALID_PARAMETER UdpConfigData.SubnetMask is not a valid IPv4 address mask. The subnet
+ mask must be contiguous.
+ @retval EFI_INVALID_PARAMETER UdpConfigData.RemoteAddress is not a valid unicast IPv4 address if it
+ is not zero.
+ @retval EFI_ALREADY_STARTED The EFI UDPv4 Protocol instance is already started/configured
+ and must be stopped/reset before it can be reconfigured.
+ @retval EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE
+ and UdpConfigData.StationPort is already used by
+ other instance.
+ @retval EFI_OUT_OF_RESOURCES The EFI UDPv4 Protocol driver cannot allocate memory for this
+ EFI UDPv4 Protocol instance.
+ @retval EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance
+ was not opened.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_CONFIGURE)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN EFI_UDP4_CONFIG_DATA *UdpConfigData OPTIONAL
+ );
+
+/**
+ Joins and leaves multicast groups.
+
+ The Groups() function is used to enable and disable the multicast group
+ filtering. If the JoinFlag is FALSE and the MulticastAddress is NULL, then all
+ currently joined groups are left.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one
+ or all multicast groups.
+ @param MulticastAddress The pointer to multicast group address to join or leave.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.
+ @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
+ - This is NULL.
+ - JoinFlag is TRUE and MulticastAddress is NULL.
+ - JoinFlag is TRUE and *MulticastAddress is not
+ a valid multicast address.
+ @retval EFI_ALREADY_STARTED The group address is already in the group table (when
+ JoinFlag is TRUE).
+ @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is
+ FALSE).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_GROUPS)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN BOOLEAN JoinFlag,
+ IN EFI_IPv4_ADDRESS *MulticastAddress OPTIONAL
+ );
+
+/**
+ Adds and deletes routing table entries.
+
+ The Routes() function adds a route to or deletes a route from the routing table.
+ Routes are determined by comparing the SubnetAddress with the destination IP
+ address and arithmetically AND-ing it with the SubnetMask. The gateway address
+ must be on the same subnet as the configured station address.
+ The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0.
+ The default route matches all destination IP addresses that do not match any
+ other routes.
+ A zero GatewayAddress is a nonroute. Packets are sent to the destination IP
+ address if it can be found in the Address Resolution Protocol (ARP) cache or
+ on the local subnet. One automatic nonroute entry will be inserted into the
+ routing table for outgoing packets that are addressed to a local subnet
+ (gateway address of 0.0.0.0).
+ Each instance of the EFI UDPv4 Protocol has its own independent routing table.
+ Instances of the EFI UDPv4 Protocol that use the default IP address will also
+ have copies of the routing table provided by the EFI_IP4_CONFIG_PROTOCOL. These
+ copies will be updated automatically whenever the IP driver reconfigures its
+ instances; as a result, the previous modification to these copies will be lost.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param DeleteRoute Set to TRUE to delete this route from the routing table.
+ Set to FALSE to add this route to the routing table.
+ @param SubnetAddress The destination network address that needs to be routed.
+ @param SubnetMask The subnet mask of SubnetAddress.
+ @param GatewayAddress The gateway IP address for this route.
+
+ @retval EFI_SUCCESS The operation completed successfully.
+ @retval EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ - RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.
+ @retval EFI_NOT_FOUND This route is not in the routing table.
+ @retval EFI_ACCESS_DENIED The route is already defined in the routing table.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_ROUTES)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN BOOLEAN DeleteRoute,
+ IN EFI_IPv4_ADDRESS *SubnetAddress,
+ IN EFI_IPv4_ADDRESS *SubnetMask,
+ IN EFI_IPv4_ADDRESS *GatewayAddress
+ );
+
+/**
+ Polls for incoming data packets and processes outgoing data packets.
+
+ The Poll() function can be used by network drivers and applications to increase
+ the rate that data packets are moved between the communications device and the
+ transmit and receive queues.
+ In some systems, the periodic timer event in the managed network driver may not
+ poll the underlying communications device fast enough to transmit and/or receive
+ all data packets without missing incoming packets or dropping outgoing packets.
+ Drivers and applications that are experiencing packet loss should try calling
+ the Poll() function more often.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+
+ @retval EFI_SUCCESS Incoming or outgoing data was processed.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_POLL)(
+ IN EFI_UDP4_PROTOCOL *This
+ );
+
+/**
+ Places an asynchronous receive request into the receiving queue.
+
+ The Receive() function places a completion token into the receive packet queue.
+ This function is always asynchronous.
+ The caller must fill in the Token.Event field in the completion token, and this
+ field cannot be NULL. When the receive operation completes, the EFI UDPv4 Protocol
+ driver updates the Token.Status and Token.Packet.RxData fields and the Token.Event
+ is signaled. Providing a proper notification function and context for the event
+ will enable the user to receive the notification and receiving status. That
+ notification function is guaranteed to not be re-entered.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param Token The pointer to a token that is associated with the receive data
+ descriptor.
+
+ @retval EFI_SUCCESS The receive completion token was cached.
+ @retval EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
+ is not finished yet.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_INVALID_PARAMETER Token is NULL.
+ @retval EFI_INVALID_PARAMETER Token.Event is NULL.
+ @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
+ resources (usually memory).
+ @retval EFI_DEVICE_ERROR An unexpected system or network error occurred.
+ @retval EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in
+ the receive queue.
+ @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_RECEIVE)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN EFI_UDP4_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Queues outgoing data packets into the transmit queue.
+
+ The Transmit() function places a sending request to this instance of the EFI
+ UDPv4 Protocol, alongside the transmit data that was filled by the user. Whenever
+ the packet in the token is sent out or some errors occur, the Token.Event will
+ be signaled and Token.Status is updated. Providing a proper notification function
+ and context for the event will enable the user to receive the notification and
+ transmitting status.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param Token The pointer to the completion token that will be placed into the
+ transmit queue.
+
+ @retval EFI_SUCCESS The data has been queued for transmission.
+ @retval EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.
+ @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
+ @retval EFI_ACCESS_DENIED The transmit completion token with the same
+ Token.Event was already in the transmit queue.
+ @retval EFI_NOT_READY The completion token could not be queued because the
+ transmit queue is full.
+ @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data.
+ @retval EFI_NOT_FOUND There is no route to the destination network or address.
+ @retval EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet
+ size. Or the length of the IP header + UDP header + data
+ length is greater than MTU if DoNotFragment is TRUE.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_TRANSMIT)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN EFI_UDP4_COMPLETION_TOKEN *Token
+ );
+
+/**
+ Aborts an asynchronous transmit or receive request.
+
+ The Cancel() function is used to abort a pending transmit or receive request.
+ If the token is in the transmit or receive request queues, after calling this
+ function, Token.Status will be set to EFI_ABORTED and then Token.Event will be
+ signaled. If the token is not in one of the queues, which usually means that
+ the asynchronous operation has completed, this function will not signal the
+ token and EFI_NOT_FOUND is returned.
+
+ @param This The pointer to the EFI_UDP4_PROTOCOL instance.
+ @param Token The pointer to a token that has been issued by
+ EFI_UDP4_PROTOCOL.Transmit() or
+ EFI_UDP4_PROTOCOL.Receive().If NULL, all pending
+ tokens are aborted.
+
+ @retval EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event
+ was signaled. When Token is NULL, all pending requests are
+ aborted and their events are signaled.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_NOT_STARTED This instance has not been started.
+ @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
+ RARP, etc.) is not finished yet.
+ @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was
+ not found in the transmit or receive queue. It has either completed
+ or was not issued by Transmit() and Receive().
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_UDP4_CANCEL)(
+ IN EFI_UDP4_PROTOCOL *This,
+ IN EFI_UDP4_COMPLETION_TOKEN *Token OPTIONAL
+ );
+
+///
+/// The EFI_UDP4_PROTOCOL defines an EFI UDPv4 Protocol session that can be used
+/// by any network drivers, applications, or daemons to transmit or receive UDP packets.
+/// This protocol instance can either be bound to a specified port as a service or
+/// connected to some remote peer as an active client. Each instance has its own settings,
+/// such as the routing table and group table, which are independent from each other.
+///
+struct _EFI_UDP4_PROTOCOL {
+ EFI_UDP4_GET_MODE_DATA GetModeData;
+ EFI_UDP4_CONFIGURE Configure;
+ EFI_UDP4_GROUPS Groups;
+ EFI_UDP4_ROUTES Routes;
+ EFI_UDP4_TRANSMIT Transmit;
+ EFI_UDP4_RECEIVE Receive;
+ EFI_UDP4_CANCEL Cancel;
+ EFI_UDP4_POLL Poll;
+};
+
+extern EFI_GUID gEfiUdp4ServiceBindingProtocolGuid;
+extern EFI_GUID gEfiUdp4ProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/Protocol/VlanConfig.h b/src/include/ipxe/efi/Protocol/VlanConfig.h
new file mode 100644
index 00000000..928faded
--- /dev/null
+++ b/src/include/ipxe/efi/Protocol/VlanConfig.h
@@ -0,0 +1,145 @@
+/** @file
+ EFI VLAN Config protocol is to provide manageability interface for VLAN configuration.
+
+ Copyright (c) 2009, Intel Corporation. All rights reserved.<BR>
+ This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ This Protocol is introduced in UEFI Specification 2.2
+
+**/
+
+#ifndef __EFI_VLANCONFIG_PROTOCOL_H__
+#define __EFI_VLANCONFIG_PROTOCOL_H__
+
+FILE_LICENCE ( BSD3 );
+
+
+#define EFI_VLAN_CONFIG_PROTOCOL_GUID \
+ { \
+ 0x9e23d768, 0xd2f3, 0x4366, {0x9f, 0xc3, 0x3a, 0x7a, 0xba, 0x86, 0x43, 0x74 } \
+ }
+
+typedef struct _EFI_VLAN_CONFIG_PROTOCOL EFI_VLAN_CONFIG_PROTOCOL;
+
+
+///
+/// EFI_VLAN_FIND_DATA
+///
+typedef struct {
+ UINT16 VlanId; ///< Vlan Identifier.
+ UINT8 Priority; ///< Priority of this VLAN.
+} EFI_VLAN_FIND_DATA;
+
+
+/**
+ Create a VLAN device or modify the configuration parameter of an
+ already-configured VLAN.
+
+ The Set() function is used to create a new VLAN device or change the VLAN
+ configuration parameters. If the VlanId hasn't been configured in the
+ physical Ethernet device, a new VLAN device will be created. If a VLAN with
+ this VlanId is already configured, then related configuration will be updated
+ as the input parameters.
+
+ If VlanId is zero, the VLAN device will send and receive untagged frames.
+ Otherwise, the VLAN device will send and receive VLAN-tagged frames containing the VlanId.
+ If VlanId is out of scope of (0-4094), EFI_INVALID_PARAMETER is returned.
+ If Priority is out of the scope of (0-7), then EFI_INVALID_PARAMETER is returned.
+ If there is not enough system memory to perform the registration, then
+ EFI_OUT_OF_RESOURCES is returned.
+
+ @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL.
+ @param[in] VlanId A unique identifier (1-4094) of the VLAN which is being created
+ or modified, or zero (0).
+ @param[in] Priority 3 bit priority in VLAN header. Priority 0 is default value. If
+ VlanId is zero (0), Priority is ignored.
+
+ @retval EFI_SUCCESS The VLAN is successfully configured.
+ @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE:
+ - This is NULL.
+ - VlanId is an invalid VLAN Identifier.
+ - Priority is invalid.
+ @retval EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_VLAN_CONFIG_SET)(
+ IN EFI_VLAN_CONFIG_PROTOCOL *This,
+ IN UINT16 VlanId,
+ IN UINT8 Priority
+ );
+
+/**
+ Find configuration information for specified VLAN or all configured VLANs.
+
+ The Find() function is used to find the configuration information for matching
+ VLAN and allocate a buffer into which those entries are copied.
+
+ @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL.
+ @param[in] VlanId Pointer to VLAN identifier. Set to NULL to find all
+ configured VLANs.
+ @param[out] NumberOfVlan The number of VLANs which is found by the specified criteria.
+ @param[out] Entries The buffer which receive the VLAN configuration.
+
+ @retval EFI_SUCCESS The VLAN is successfully found.
+ @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE:
+ - This is NULL.
+ - Specified VlanId is invalid.
+ @retval EFI_NOT_FOUND No matching VLAN is found.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_VLAN_CONFIG_FIND)(
+ IN EFI_VLAN_CONFIG_PROTOCOL *This,
+ IN UINT16 *VlanId OPTIONAL,
+ OUT UINT16 *NumberOfVlan,
+ OUT EFI_VLAN_FIND_DATA **Entries
+ );
+
+/**
+ Remove the configured VLAN device.
+
+ The Remove() function is used to remove the specified VLAN device.
+ If the VlanId is out of the scope of (0-4094), EFI_INVALID_PARAMETER is returned.
+ If specified VLAN hasn't been previously configured, EFI_NOT_FOUND is returned.
+
+ @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL.
+ @param[in] VlanId Identifier (0-4094) of the VLAN to be removed.
+
+ @retval EFI_SUCCESS The VLAN is successfully removed.
+ @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE:
+ - This is NULL.
+ - VlanId is an invalid parameter.
+ @retval EFI_NOT_FOUND The to-be-removed VLAN does not exist.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_VLAN_CONFIG_REMOVE)(
+ IN EFI_VLAN_CONFIG_PROTOCOL *This,
+ IN UINT16 VlanId
+ );
+
+///
+/// EFI_VLAN_CONFIG_PROTOCOL
+/// provide manageability interface for VLAN setting. The intended
+/// VLAN tagging implementation is IEEE802.1Q.
+///
+struct _EFI_VLAN_CONFIG_PROTOCOL {
+ EFI_VLAN_CONFIG_SET Set;
+ EFI_VLAN_CONFIG_FIND Find;
+ EFI_VLAN_CONFIG_REMOVE Remove;
+};
+
+extern EFI_GUID gEfiVlanConfigProtocolGuid;
+
+#endif
diff --git a/src/include/ipxe/efi/efi.h b/src/include/ipxe/efi/efi.h
index 4dff2a7b..ab52dd9e 100644
--- a/src/include/ipxe/efi/efi.h
+++ b/src/include/ipxe/efi/efi.h
@@ -153,19 +153,30 @@ struct efi_config_table {
*/
#define EEFI( efirc ) EPLATFORM ( EINFO_EPLATFORM, efirc )
+extern EFI_GUID efi_arp_protocol_guid;
+extern EFI_GUID efi_arp_service_binding_protocol_guid;
extern EFI_GUID efi_block_io_protocol_guid;
extern EFI_GUID efi_bus_specific_driver_override_protocol_guid;
extern EFI_GUID efi_component_name_protocol_guid;
extern EFI_GUID efi_component_name2_protocol_guid;
extern EFI_GUID efi_device_path_protocol_guid;
+extern EFI_GUID efi_dhcp4_protocol_guid;
+extern EFI_GUID efi_dhcp4_service_binding_protocol_guid;
extern EFI_GUID efi_disk_io_protocol_guid;
extern EFI_GUID efi_driver_binding_protocol_guid;
extern EFI_GUID efi_graphics_output_protocol_guid;
extern EFI_GUID efi_hii_config_access_protocol_guid;
+extern EFI_GUID efi_ip4_protocol_guid;
+extern EFI_GUID efi_ip4_config_protocol_guid;
+extern EFI_GUID efi_ip4_service_binding_protocol_guid;
extern EFI_GUID efi_load_file_protocol_guid;
extern EFI_GUID efi_load_file2_protocol_guid;
extern EFI_GUID efi_loaded_image_protocol_guid;
extern EFI_GUID efi_loaded_image_device_path_protocol_guid;
+extern EFI_GUID efi_managed_network_protocol_guid;
+extern EFI_GUID efi_managed_network_service_binding_protocol_guid;
+extern EFI_GUID efi_mtftp4_protocol_guid;
+extern EFI_GUID efi_mtftp4_service_binding_protocol_guid;
extern EFI_GUID efi_nii_protocol_guid;
extern EFI_GUID efi_nii31_protocol_guid;
extern EFI_GUID efi_pci_io_protocol_guid;
@@ -174,6 +185,11 @@ extern EFI_GUID efi_pxe_base_code_protocol_guid;
extern EFI_GUID efi_simple_file_system_protocol_guid;
extern EFI_GUID efi_simple_network_protocol_guid;
extern EFI_GUID efi_tcg_protocol_guid;
+extern EFI_GUID efi_tcp4_protocol_guid;
+extern EFI_GUID efi_tcp4_service_binding_protocol_guid;
+extern EFI_GUID efi_udp4_protocol_guid;
+extern EFI_GUID efi_udp4_service_binding_protocol_guid;
+extern EFI_GUID efi_vlan_config_protocol_guid;
extern EFI_HANDLE efi_image_handle;
extern EFI_LOADED_IMAGE_PROTOCOL *efi_loaded_image;
diff --git a/src/interface/efi/efi_debug.c b/src/interface/efi/efi_debug.c
index c6b43e01..d2396014 100644
--- a/src/interface/efi/efi_debug.c
+++ b/src/interface/efi/efi_debug.c
@@ -42,6 +42,18 @@ FILE_LICENCE ( GPL2_OR_LATER );
static EFI_DEVICE_PATH_TO_TEXT_PROTOCOL *efidpt;
EFI_REQUEST_PROTOCOL ( EFI_DEVICE_PATH_TO_TEXT_PROTOCOL, &efidpt );
+/** Iscsi4Dxe module GUID */
+static EFI_GUID efi_iscsi4_dxe_guid = {
+ 0x4579b72d, 0x7ec4, 0x4dd4,
+ { 0x84, 0x86, 0x08, 0x3c, 0x86, 0xb1, 0x82, 0xa7 }
+};
+
+/** VlanConfigDxe module GUID */
+static EFI_GUID efi_vlan_config_dxe_guid = {
+ 0xe4f61863, 0xfe2c, 0x4b56,
+ { 0xa8, 0xf4, 0x08, 0x51, 0x9b, 0xc4, 0x39, 0xdf }
+};
+
/** A well-known GUID */
struct efi_well_known_guid {
/** GUID */
@@ -52,24 +64,40 @@ struct efi_well_known_guid {
/** Well-known GUIDs */
static struct efi_well_known_guid efi_well_known_guids[] = {
+ { &efi_arp_protocol_guid,
+ "Arp" },
+ { &efi_arp_service_binding_protocol_guid,
+ "ArpSb" },
{ &efi_block_io_protocol_guid,
"BlockIo" },
{ &efi_bus_specific_driver_override_protocol_guid,
"BusSpecificDriverOverride" },
- { &efi_component_name2_protocol_guid,
- "ComponentName2" },
{ &efi_component_name_protocol_guid,
"ComponentName" },
+ { &efi_component_name2_protocol_guid,
+ "ComponentName2" },
{ &efi_device_path_protocol_guid,
"DevicePath" },
{ &efi_driver_binding_protocol_guid,
"DriverBinding" },
+ { &efi_dhcp4_protocol_guid,
+ "Dhcp4" },
+ { &efi_dhcp4_service_binding_protocol_guid,
+ "Dhcp4Sb" },
{ &efi_disk_io_protocol_guid,
"DiskIo" },
{ &efi_graphics_output_protocol_guid,
"GraphicsOutput" },
{ &efi_hii_config_access_protocol_guid,
"HiiConfigAccess" },
+ { &efi_ip4_protocol_guid,
+ "Ip4" },
+ { &efi_ip4_config_protocol_guid,
+ "Ip4Config" },
+ { &efi_ip4_service_binding_protocol_guid,
+ "Ip4Sb" },
+ { &efi_iscsi4_dxe_guid,
+ "IScsi4Dxe" },
{ &efi_load_file_protocol_guid,
"LoadFile" },
{ &efi_load_file2_protocol_guid,
@@ -78,6 +106,14 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"LoadedImage" },
{ &efi_loaded_image_device_path_protocol_guid,
"LoadedImageDevicePath"},
+ { &efi_managed_network_protocol_guid,
+ "ManagedNetwork" },
+ { &efi_managed_network_service_binding_protocol_guid,
+ "ManagedNetworkSb" },
+ { &efi_mtftp4_protocol_guid,
+ "Mtftp4" },
+ { &efi_mtftp4_service_binding_protocol_guid,
+ "Mtftp4Sb" },
{ &efi_nii_protocol_guid,
"Nii" },
{ &efi_nii31_protocol_guid,
@@ -94,6 +130,18 @@ static struct efi_well_known_guid efi_well_known_guids[] = {
"SimpleNetwork" },
{ &efi_tcg_protocol_guid,
"Tcg" },
+ { &efi_tcp4_protocol_guid,
+ "Tcp4" },
+ { &efi_tcp4_service_binding_protocol_guid,
+ "Tcp4Sb" },
+ { &efi_udp4_protocol_guid,
+ "Udp4" },
+ { &efi_udp4_service_binding_protocol_guid,
+ "Udp4Sb" },
+ { &efi_vlan_config_protocol_guid,
+ "VlanConfig" },
+ { &efi_vlan_config_dxe_guid,
+ "VlanConfigDxe" },
};
/**
diff --git a/src/interface/efi/efi_guid.c b/src/interface/efi/efi_guid.c
index 458cbb29..52ba58ae 100644
--- a/src/interface/efi/efi_guid.c
+++ b/src/interface/efi/efi_guid.c
@@ -20,19 +20,25 @@
FILE_LICENCE ( GPL2_OR_LATER );
#include <ipxe/efi/efi.h>
+#include <ipxe/efi/Protocol/Arp.h>
#include <ipxe/efi/Protocol/BlockIo.h>
#include <ipxe/efi/Protocol/BusSpecificDriverOverride.h>
#include <ipxe/efi/Protocol/ComponentName.h>
#include <ipxe/efi/Protocol/ComponentName2.h>
#include <ipxe/efi/Protocol/DevicePath.h>
#include <ipxe/efi/Protocol/DevicePathToText.h>
+#include <ipxe/efi/Protocol/Dhcp4.h>
#include <ipxe/efi/Protocol/DiskIo.h>
#include <ipxe/efi/Protocol/DriverBinding.h>
#include <ipxe/efi/Protocol/GraphicsOutput.h>
#include <ipxe/efi/Protocol/HiiConfigAccess.h>
+#include <ipxe/efi/Protocol/Ip4.h>
+#include <ipxe/efi/Protocol/Ip4Config.h>
#include <ipxe/efi/Protocol/LoadFile.h>
#include <ipxe/efi/Protocol/LoadFile2.h>
#include <ipxe/efi/Protocol/LoadedImage.h>
+#include <ipxe/efi/Protocol/ManagedNetwork.h>
+#include <ipxe/efi/Protocol/Mtftp4.h>
#include <ipxe/efi/Protocol/NetworkInterfaceIdentifier.h>
#include <ipxe/efi/Protocol/PciIo.h>
#include <ipxe/efi/Protocol/PciRootBridgeIo.h>
@@ -40,6 +46,9 @@ FILE_LICENCE ( GPL2_OR_LATER );
#include <ipxe/efi/Protocol/SimpleFileSystem.h>
#include <ipxe/efi/Protocol/SimpleNetwork.h>
#include <ipxe/efi/Protocol/TcgService.h>
+#include <ipxe/efi/Protocol/Tcp4.h>
+#include <ipxe/efi/Protocol/Udp4.h>
+#include <ipxe/efi/Protocol/VlanConfig.h>
/** @file
*
@@ -47,6 +56,14 @@ FILE_LICENCE ( GPL2_OR_LATER );
*
*/
+/** ARP protocol GUID */
+EFI_GUID efi_arp_protocol_guid
+ = EFI_ARP_PROTOCOL_GUID;
+
+/** ARP service binding protocol GUID */
+EFI_GUID efi_arp_service_binding_protocol_guid
+ = EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Block I/O protocol GUID */
EFI_GUID efi_block_io_protocol_guid
= EFI_BLOCK_IO_PROTOCOL_GUID;
@@ -67,6 +84,14 @@ EFI_GUID efi_component_name2_protocol_guid
EFI_GUID efi_device_path_protocol_guid
= EFI_DEVICE_PATH_PROTOCOL_GUID;
+/** DHCPv4 protocol GUID */
+EFI_GUID efi_dhcp4_protocol_guid
+ = EFI_DHCP4_PROTOCOL_GUID;
+
+/** DHCPv4 service binding protocol GUID */
+EFI_GUID efi_dhcp4_service_binding_protocol_guid
+ = EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Disk I/O protocol GUID */
EFI_GUID efi_disk_io_protocol_guid
= EFI_DISK_IO_PROTOCOL_GUID;
@@ -83,6 +108,18 @@ EFI_GUID efi_graphics_output_protocol_guid
EFI_GUID efi_hii_config_access_protocol_guid
= EFI_HII_CONFIG_ACCESS_PROTOCOL_GUID;
+/** IPv4 protocol GUID */
+EFI_GUID efi_ip4_protocol_guid
+ = EFI_IP4_PROTOCOL_GUID;
+
+/** IPv4 configuration protocol GUID */
+EFI_GUID efi_ip4_config_protocol_guid
+ = EFI_IP4_CONFIG_PROTOCOL_GUID;
+
+/** IPv4 service binding protocol GUID */
+EFI_GUID efi_ip4_service_binding_protocol_guid
+ = EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Load file protocol GUID */
EFI_GUID efi_load_file_protocol_guid
= EFI_LOAD_FILE_PROTOCOL_GUID;
@@ -99,6 +136,22 @@ EFI_GUID efi_loaded_image_protocol_guid
EFI_GUID efi_loaded_image_device_path_protocol_guid
= EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID;
+/** Managed network protocol GUID */
+EFI_GUID efi_managed_network_protocol_guid
+ = EFI_MANAGED_NETWORK_PROTOCOL_GUID;
+
+/** Managed network service binding protocol GUID */
+EFI_GUID efi_managed_network_service_binding_protocol_guid
+ = EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID;
+
+/** MTFTPv4 protocol GUID */
+EFI_GUID efi_mtftp4_protocol_guid
+ = EFI_MTFTP4_PROTOCOL_GUID;
+
+/** MTFTPv4 service binding protocol GUID */
+EFI_GUID efi_mtftp4_service_binding_protocol_guid
+ = EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID;
+
/** Network interface identifier protocol GUID (old version) */
EFI_GUID efi_nii_protocol_guid
= EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID;
@@ -130,3 +183,23 @@ EFI_GUID efi_simple_network_protocol_guid
/** TCG protocol GUID */
EFI_GUID efi_tcg_protocol_guid
= EFI_TCG_PROTOCOL_GUID;
+
+/** TCPv4 protocol GUID */
+EFI_GUID efi_tcp4_protocol_guid
+ = EFI_TCP4_PROTOCOL_GUID;
+
+/** TCPv4 service binding protocol GUID */
+EFI_GUID efi_tcp4_service_binding_protocol_guid
+ = EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID;
+
+/** UDPv4 protocol GUID */
+EFI_GUID efi_udp4_protocol_guid
+ = EFI_UDP4_PROTOCOL_GUID;
+
+/** UDPv4 service binding protocol GUID */
+EFI_GUID efi_udp4_service_binding_protocol_guid
+ = EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID;
+
+/** VLAN configuration protocol GUID */
+EFI_GUID efi_vlan_config_protocol_guid
+ = EFI_VLAN_CONFIG_PROTOCOL_GUID;