summaryrefslogtreecommitdiffstats
path: root/src/crypto/aes.c
blob: b9e206bfb583c845e05c551fd97b574a1cfa3cbc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*
 * Copyright (C) 2015 Michael Brown <mbrown@fensystems.co.uk>.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *
 * You can also choose to distribute this program under the terms of
 * the Unmodified Binary Distribution Licence (as given in the file
 * COPYING.UBDL), provided that you have satisfied its requirements.
 */

FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );

/** @file
 *
 * AES algorithm
 *
 */

#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <byteswap.h>
#include <ipxe/rotate.h>
#include <ipxe/crypto.h>
#include <ipxe/ecb.h>
#include <ipxe/cbc.h>
#include <ipxe/aes.h>

/** AES strides
 *
 * These are the strides (modulo 16) used to walk through the AES
 * input state bytes in order of byte position after [Inv]ShiftRows.
 */
enum aes_stride {
	/** Input stride for ShiftRows
	 *
	 *    0 4 8 c
	 *     \ \ \
	 *    1 5 9 d
	 *     \ \ \
	 *    2 6 a e
	 *     \ \ \
	 *    3 7 b f
	 */
	AES_STRIDE_SHIFTROWS = +5,
	/** Input stride for InvShiftRows
	 *
	 *    0 4 8 c
	 *     / / /
	 *    1 5 9 d
	 *     / / /
	 *    2 6 a e
	 *     / / /
	 *    3 7 b f
	 */
	AES_STRIDE_INVSHIFTROWS = -3,
};

/** A single AES lookup table entry
 *
 * This represents the product (in the Galois field GF(2^8)) of an
 * eight-byte vector multiplier with a single scalar multiplicand.
 *
 * The vector multipliers used for AES will be {1,1,1,3,2,1,1,3} for
 * MixColumns and {1,9,13,11,14,9,13,11} for InvMixColumns.  This
 * allows for the result of multiplying any single column of the
 * [Inv]MixColumns matrix by a scalar value to be obtained simply by
 * extracting the relevant four-byte subset from the lookup table
 * entry.
 *
 * For example, to find the result of multiplying the second column of
 * the MixColumns matrix by the scalar value 0x80:
 *
 * MixColumns column[0]: {			      2,    1,    1,    3 }
 * MixColumns column[1]: {			3,    2,    1,    1	  }
 * MixColumns column[2]: {		  1,    3,    2,    1		  }
 * MixColumns column[3]: {	    1,    1,    3,    2			  }
 * Vector multiplier:	 {    1,    1,    1,    3,    2,    1,    1,    3 }
 * Scalar multiplicand:	   0x80
 * Lookup table entry:	 { 0x80, 0x80, 0x80, 0x9b, 0x1b, 0x80, 0x80, 0x9b }
 *
 * The second column of the MixColumns matrix is {3,2,1,1}.  The
 * product of this column with the scalar value 0x80 can be obtained
 * by extracting the relevant four-byte subset of the lookup table
 * entry:
 *
 * MixColumns column[1]: {			3,    2,    1,    1	  }
 * Vector multiplier:	 {    1,    1,    1,    3,    2,    1,    1,    3 }
 * Lookup table entry:	 { 0x80, 0x80, 0x80, 0x9b, 0x1b, 0x80, 0x80, 0x9b }
 * Product:		 {		     0x9b, 0x1b, 0x80, 0x80	  }
 *
 * The column lookups require only seven bytes of the eight-byte
 * entry: the remaining (first) byte is used to hold the scalar
 * multiplicand itself (i.e. the first byte of the vector multiplier
 * is always chosen to be 1).
 */
union aes_table_entry {
	/** Viewed as an array of bytes */
	uint8_t byte[8];
} __attribute__ (( packed ));

/** An AES lookup table
 *
 * This represents the products (in the Galois field GF(2^8)) of a
 * constant eight-byte vector multiplier with all possible 256 scalar
 * multiplicands.
 *
 * The entries are indexed by the AES [Inv]SubBytes S-box output
 * values (denoted S(N)).  This allows for the result of multiplying
 * any single column of the [Inv]MixColumns matrix by S(N) to be
 * obtained simply by extracting the relevant four-byte subset from
 * the Nth table entry.  For example:
 *
 * Input byte (N):	   0x3a
 * SubBytes output S(N):   0x80
 * MixColumns column[1]: {			3,    2,    1,    1	  }
 * Vector multiplier:	 {    1,    1,    1,    3,    2,    1,    1,    3 }
 * Table entry[0x3a]:	 { 0x80, 0x80, 0x80, 0x9b, 0x1b, 0x80, 0x80, 0x9b }
 * Product:		 {		     0x9b, 0x1b, 0x80, 0x80	  }
 *
 * Since the first byte of the eight-byte vector multiplier is always
 * chosen to be 1, the value of S(N) may be lookup up by extracting
 * the first byte of the Nth table entry.
 */
struct aes_table {
	/** Table entries, indexed by S(N) */
	union aes_table_entry entry[256];
} __attribute__ (( aligned ( 8 ) ));

/** AES MixColumns lookup table */
static struct aes_table aes_mixcolumns;

/** AES InvMixColumns lookup table */
static struct aes_table aes_invmixcolumns;

/**
 * Multiply [Inv]MixColumns matrix column by scalar multiplicand
 *
 * @v entry		AES lookup table entry for scalar multiplicand
 * @v column		[Inv]MixColumns matrix column index
 * @ret product		Product of matrix column with scalar multiplicand
 */
static inline __attribute__ (( always_inline )) uint32_t
aes_entry_column ( const union aes_table_entry *entry, unsigned int column ) {
	const union {
		uint8_t byte;
		uint32_t column;
	} __attribute__ (( may_alias )) *product;

	/* Locate relevant four-byte subset */
	product = container_of ( &entry->byte[ 4 - column ],
				 typeof ( *product ), byte );

	/* Extract this four-byte subset */
	return product->column;
}

/**
 * Multiply [Inv]MixColumns matrix column by S-boxed input byte
 *
 * @v table		AES lookup table
 * @v stride		AES row shift stride
 * @v in		AES input state
 * @v offset		Output byte offset (after [Inv]ShiftRows)
 * @ret product		Product of matrix column with S(input byte)
 *
 * Note that the specified offset is not the offset of the input byte;
 * it is the offset of the output byte which corresponds to the input
 * byte.  This output byte offset is used to calculate both the input
 * byte offset and to select the appropriate matric column.
 *
 * With a compile-time constant offset, this function will optimise
 * down to a single "movzbl" (to extract the input byte) and will
 * generate a single x86 memory reference expression which can then be
 * used directly within a single "xorl" instruction.
 */
static inline __attribute__ (( always_inline )) uint32_t
aes_column ( const struct aes_table *table, size_t stride,
	     const union aes_matrix *in, size_t offset ) {
	const union aes_table_entry *entry;
	unsigned int byte;

	/* Extract input byte corresponding to this output byte offset
	 * (i.e. perform [Inv]ShiftRows).
	 */
	byte = in->byte[ ( stride * offset ) & 0xf ];

	/* Locate lookup table entry for this input byte (i.e. perform
	 * [Inv]SubBytes).
	 */
	entry = &table->entry[byte];

	/* Multiply appropriate matrix column by this input byte
	 * (i.e. perform [Inv]MixColumns).
	 */
	return aes_entry_column ( entry, ( offset & 0x3 ) );
}

/**
 * Calculate intermediate round output column
 *
 * @v table		AES lookup table
 * @v stride		AES row shift stride
 * @v in		AES input state
 * @v key		AES round key
 * @v column		Column index
 * @ret output		Output column value
 */
static inline __attribute__ (( always_inline )) uint32_t
aes_output ( const struct aes_table *table, size_t stride,
	     const union aes_matrix *in, const union aes_matrix *key,
	     unsigned int column ) {
	size_t offset = ( column * 4 );

	/* Perform [Inv]ShiftRows, [Inv]SubBytes, [Inv]MixColumns, and
	 * AddRoundKey for this column.  The loop is unrolled to allow
	 * for the required compile-time constant optimisations.
	 */
	return ( aes_column ( table, stride, in, ( offset + 0 ) ) ^
		 aes_column ( table, stride, in, ( offset + 1 ) ) ^
		 aes_column ( table, stride, in, ( offset + 2 ) ) ^
		 aes_column ( table, stride, in, ( offset + 3 ) ) ^
		 key->column[column] );
}

/**
 * Perform a single intermediate round
 *
 * @v table		AES lookup table
 * @v stride		AES row shift stride
 * @v in		AES input state
 * @v out		AES output state
 * @v key		AES round key
 */
static inline __attribute__ (( always_inline )) void
aes_round ( const struct aes_table *table, size_t stride,
	    const union aes_matrix *in, union aes_matrix *out,
	    const union aes_matrix *key ) {

	/* Perform [Inv]ShiftRows, [Inv]SubBytes, [Inv]MixColumns, and
	 * AddRoundKey for all columns.  The loop is unrolled to allow
	 * for the required compile-time constant optimisations.
	 */
	out->column[0] = aes_output ( table, stride, in, key, 0 );
	out->column[1] = aes_output ( table, stride, in, key, 1 );
	out->column[2] = aes_output ( table, stride, in, key, 2 );
	out->column[3] = aes_output ( table, stride, in, key, 3 );
}

/**
 * Perform encryption intermediate rounds
 *
 * @v in		AES input state
 * @v out		AES output state
 * @v key		Round keys
 * @v rounds		Number of rounds (must be odd)
 *
 * This function is deliberately marked as non-inlinable to ensure
 * maximal availability of registers for GCC's register allocator,
 * which has a tendency to otherwise spill performance-critical
 * registers to the stack.
 */
static __attribute__ (( noinline )) void
aes_encrypt_rounds ( union aes_matrix *in, union aes_matrix *out,
		     const union aes_matrix *key, unsigned int rounds ) {
	union aes_matrix *tmp;

	/* Perform intermediate rounds */
	do {
		/* Perform one intermediate round */
		aes_round ( &aes_mixcolumns, AES_STRIDE_SHIFTROWS,
			    in, out, key++ );

		/* Swap input and output states for next round */
		tmp = in;
		in = out;
		out = tmp;

	} while ( --rounds );
}

/**
 * Perform decryption intermediate rounds
 *
 * @v in		AES input state
 * @v out		AES output state
 * @v key		Round keys
 * @v rounds		Number of rounds (must be odd)
 *
 * As with aes_encrypt_rounds(), this function is deliberately marked
 * as non-inlinable.
 *
 * This function could potentially use the same binary code as is used
 * for encryption.  To compensate for the difference between ShiftRows
 * and InvShiftRows, half of the input byte offsets would have to be
 * modifiable at runtime (half by an offset of +4/-4, half by an
 * offset of -4/+4 for ShiftRows/InvShiftRows).  This can be
 * accomplished in x86 assembly within the number of available
 * registers, but GCC's register allocator struggles to do so,
 * resulting in a significant performance decrease due to registers
 * being spilled to the stack.  We therefore use two separate but very
 * similar binary functions based on the same C source.
 */
static __attribute__ (( noinline )) void
aes_decrypt_rounds ( union aes_matrix *in, union aes_matrix *out,
		     const union aes_matrix *key, unsigned int rounds ) {
	union aes_matrix *tmp;

	/* Perform intermediate rounds */
	do {
		/* Perform one intermediate round */
		aes_round ( &aes_invmixcolumns, AES_STRIDE_INVSHIFTROWS,
			    in, out, key++ );

		/* Swap input and output states for next round */
		tmp = in;
		in = out;
		out = tmp;

	} while ( --rounds );
}

/**
 * Perform standalone AddRoundKey
 *
 * @v state		AES state
 * @v key		AES round key
 */
static inline __attribute__ (( always_inline )) void
aes_addroundkey ( union aes_matrix *state, const union aes_matrix *key ) {

	state->column[0] ^= key->column[0];
	state->column[1] ^= key->column[1];
	state->column[2] ^= key->column[2];
	state->column[3] ^= key->column[3];
}

/**
 * Perform final round
 *
 * @v table		AES lookup table
 * @v stride		AES row shift stride
 * @v in		AES input state
 * @v out		AES output state
 * @v key		AES round key
 */
static void aes_final ( const struct aes_table *table, size_t stride,
			const union aes_matrix *in, union aes_matrix *out,
			const union aes_matrix *key ) {
	const union aes_table_entry *entry;
	unsigned int byte;
	size_t out_offset;
	size_t in_offset;

	/* Perform [Inv]ShiftRows and [Inv]SubBytes */
	for ( out_offset = 0, in_offset = 0 ; out_offset < 16 ;
	      out_offset++, in_offset = ( ( in_offset + stride ) & 0xf ) ) {

		/* Extract input byte (i.e. perform [Inv]ShiftRows) */
		byte = in->byte[in_offset];

		/* Locate lookup table entry for this input byte
		 * (i.e. perform [Inv]SubBytes).
		 */
		entry = &table->entry[byte];

		/* Store output byte */
		out->byte[out_offset] = entry->byte[0];
	}

	/* Perform AddRoundKey */
	aes_addroundkey ( out, key );
}

/**
 * Encrypt data
 *
 * @v ctx		Context
 * @v src		Data to encrypt
 * @v dst		Buffer for encrypted data
 * @v len		Length of data
 */
static void aes_encrypt ( void *ctx, const void *src, void *dst, size_t len ) {
	struct aes_context *aes = ctx;
	union aes_matrix buffer[2];
	union aes_matrix *in = &buffer[0];
	union aes_matrix *out = &buffer[1];
	unsigned int rounds = aes->rounds;

	/* Sanity check */
	assert ( len == sizeof ( *in ) );

	/* Initialise input state */
	memcpy ( in, src, sizeof ( *in ) );

	/* Perform initial round (AddRoundKey) */
	aes_addroundkey ( in, &aes->encrypt.key[0] );

	/* Perform intermediate rounds (ShiftRows, SubBytes,
	 * MixColumns, AddRoundKey).
	 */
	aes_encrypt_rounds ( in, out, &aes->encrypt.key[1], ( rounds - 2 ) );
	in = out;

	/* Perform final round (ShiftRows, SubBytes, AddRoundKey) */
	out = dst;
	aes_final ( &aes_mixcolumns, AES_STRIDE_SHIFTROWS, in, out,
		    &aes->encrypt.key[ rounds - 1 ] );
}

/**
 * Decrypt data
 *
 * @v ctx		Context
 * @v src		Data to decrypt
 * @v dst		Buffer for decrypted data
 * @v len		Length of data
 */
static void aes_decrypt ( void *ctx, const void *src, void *dst, size_t len ) {
	struct aes_context *aes = ctx;
	union aes_matrix buffer[2];
	union aes_matrix *in = &buffer[0];
	union aes_matrix *out = &buffer[1];
	unsigned int rounds = aes->rounds;

	/* Sanity check */
	assert ( len == sizeof ( *in ) );

	/* Initialise input state */
	memcpy ( in, src, sizeof ( *in ) );

	/* Perform initial round (AddRoundKey) */
	aes_addroundkey ( in, &aes->decrypt.key[0] );

	/* Perform intermediate rounds (InvShiftRows, InvSubBytes,
	 * InvMixColumns, AddRoundKey).
	 */
	aes_decrypt_rounds ( in, out, &aes->decrypt.key[1], ( rounds - 2 ) );
	in = out;

	/* Perform final round (InvShiftRows, InvSubBytes, AddRoundKey) */
	out = dst;
	aes_final ( &aes_invmixcolumns, AES_STRIDE_INVSHIFTROWS, in, out,
		    &aes->decrypt.key[ rounds - 1 ] );
}

/**
 * Multiply a polynomial by (x) modulo (x^8 + x^4 + x^3 + x^2 + 1) in GF(2^8)
 *
 * @v poly		Polynomial to be multiplied
 * @ret result		Result
 */
static __attribute__ (( const )) unsigned int aes_double ( unsigned int poly ) {

	/* Multiply polynomial by (x), placing the resulting x^8
	 * coefficient in the LSB (i.e. rotate byte left by one).
	 */
	poly = rol8 ( poly, 1 );

	/* If coefficient of x^8 (in LSB) is non-zero, then reduce by
	 * subtracting (x^8 + x^4 + x^3 + x^2 + 1) in GF(2^8).
	 */
	if ( poly & 0x01 ) {
		poly ^= 0x01; /* Subtract x^8 (currently in LSB) */
		poly ^= 0x1b; /* Subtract (x^4 + x^3 + x^2 + 1) */
	}

	return poly;
}

/**
 * Fill in MixColumns lookup table entry
 *
 * @v entry		AES lookup table entry for scalar multiplicand
 *
 * The MixColumns lookup table vector multiplier is {1,1,1,3,2,1,1,3}.
 */
static void aes_mixcolumns_entry ( union aes_table_entry *entry ) {
	unsigned int scalar_x_1;
	unsigned int scalar_x;
	unsigned int scalar;

	/* Retrieve scalar multiplicand */
	scalar = entry->byte[0];
	entry->byte[1] = scalar;
	entry->byte[2] = scalar;
	entry->byte[5] = scalar;
	entry->byte[6] = scalar;

	/* Calculate scalar multiplied by (x) */
	scalar_x = aes_double ( scalar );
	entry->byte[4] = scalar_x;

	/* Calculate scalar multiplied by (x + 1) */
	scalar_x_1 = ( scalar_x ^ scalar );
	entry->byte[3] = scalar_x_1;
	entry->byte[7] = scalar_x_1;
}

/**
 * Fill in InvMixColumns lookup table entry
 *
 * @v entry		AES lookup table entry for scalar multiplicand
 *
 * The InvMixColumns lookup table vector multiplier is {1,9,13,11,14,9,13,11}.
 */
static void aes_invmixcolumns_entry ( union aes_table_entry *entry ) {
	unsigned int scalar_x3_x2_x;
	unsigned int scalar_x3_x2_1;
	unsigned int scalar_x3_x2;
	unsigned int scalar_x3_x_1;
	unsigned int scalar_x3_1;
	unsigned int scalar_x3;
	unsigned int scalar_x2;
	unsigned int scalar_x;
	unsigned int scalar;

	/* Retrieve scalar multiplicand */
	scalar = entry->byte[0];

	/* Calculate scalar multiplied by (x) */
	scalar_x = aes_double ( scalar );

	/* Calculate scalar multiplied by (x^2) */
	scalar_x2 = aes_double ( scalar_x );

	/* Calculate scalar multiplied by (x^3) */
	scalar_x3 = aes_double ( scalar_x2 );

	/* Calculate scalar multiplied by (x^3 + 1) */
	scalar_x3_1 = ( scalar_x3 ^ scalar );
	entry->byte[1] = scalar_x3_1;
	entry->byte[5] = scalar_x3_1;

	/* Calculate scalar multiplied by (x^3 + x + 1) */
	scalar_x3_x_1 = ( scalar_x3_1 ^ scalar_x );
	entry->byte[3] = scalar_x3_x_1;
	entry->byte[7] = scalar_x3_x_1;

	/* Calculate scalar multiplied by (x^3 + x^2) */
	scalar_x3_x2 = ( scalar_x3 ^ scalar_x2 );

	/* Calculate scalar multiplied by (x^3 + x^2 + 1) */
	scalar_x3_x2_1 = ( scalar_x3_x2 ^ scalar );
	entry->byte[2] = scalar_x3_x2_1;
	entry->byte[6] = scalar_x3_x2_1;

	/* Calculate scalar multiplied by (x^3 + x^2 + x) */
	scalar_x3_x2_x = ( scalar_x3_x2 ^ scalar_x );
	entry->byte[4] = scalar_x3_x2_x;
}

/**
 * Generate AES lookup tables
 *
 */
static void aes_generate ( void ) {
	union aes_table_entry *entry;
	union aes_table_entry *inventry;
	unsigned int poly = 0x01;
	unsigned int invpoly = 0x01;
	unsigned int transformed;
	unsigned int i;

	/* Iterate over non-zero values of GF(2^8) using generator (x + 1) */
	do {

		/* Multiply polynomial by (x + 1) */
		poly ^= aes_double ( poly );

		/* Divide inverse polynomial by (x + 1).  This code
		 * fragment is taken directly from the Wikipedia page
		 * on the Rijndael S-box.  An explanation of why it
		 * works would be greatly appreciated.
		 */
		invpoly ^= ( invpoly << 1 );
		invpoly ^= ( invpoly << 2 );
		invpoly ^= ( invpoly << 4 );
		if ( invpoly & 0x80 )
			invpoly ^= 0x09;
		invpoly &= 0xff;

		/* Apply affine transformation */
		transformed = ( 0x63 ^ invpoly ^ rol8 ( invpoly, 1 ) ^
				rol8 ( invpoly, 2 ) ^ rol8 ( invpoly, 3 ) ^
				rol8 ( invpoly, 4 ) );

		/* Populate S-box (within MixColumns lookup table) */
		aes_mixcolumns.entry[poly].byte[0] = transformed;

	} while ( poly != 0x01 );

	/* Populate zeroth S-box entry (which has no inverse) */
	aes_mixcolumns.entry[0].byte[0] = 0x63;

	/* Fill in MixColumns and InvMixColumns lookup tables */
	for ( i = 0 ; i < 256 ; i++ ) {

		/* Fill in MixColumns lookup table entry */
		entry = &aes_mixcolumns.entry[i];
		aes_mixcolumns_entry ( entry );

		/* Populate inverse S-box (within InvMixColumns lookup table) */
		inventry = &aes_invmixcolumns.entry[ entry->byte[0] ];
		inventry->byte[0] = i;

		/* Fill in InvMixColumns lookup table entry */
		aes_invmixcolumns_entry ( inventry );
	}
}

/**
 * Rotate key column
 *
 * @v column		Key column
 * @ret column		Updated key column
 */
static inline __attribute__ (( always_inline )) uint32_t
aes_key_rotate ( uint32_t column ) {

	return ( ( __BYTE_ORDER == __LITTLE_ENDIAN ) ?
		 ror32 ( column, 8 ) : rol32 ( column, 8 ) );
}

/**
 * Apply S-box to key column
 *
 * @v column		Key column
 * @ret column		Updated key column
 */
static uint32_t aes_key_sbox ( uint32_t column ) {
	unsigned int i;
	uint8_t byte;

	for ( i = 0 ; i < 4 ; i++ ) {
		byte = ( column & 0xff );
		byte = aes_mixcolumns.entry[byte].byte[0];
		column = ( ( column & ~0xff ) | byte );
		column = rol32 ( column, 8 );
	}
	return column;
}

/**
 * Apply schedule round constant to key column
 *
 * @v column		Key column
 * @v rcon		Round constant
 * @ret column		Updated key column
 */
static inline __attribute__ (( always_inline )) uint32_t
aes_key_rcon ( uint32_t column, unsigned int rcon ) {

	return ( ( __BYTE_ORDER == __LITTLE_ENDIAN ) ?
		 ( column ^ rcon ) : ( column ^ ( rcon << 24 ) ) );
}

/**
 * Set key
 *
 * @v ctx		Context
 * @v key		Key
 * @v keylen		Key length
 * @ret rc		Return status code
 */
static int aes_setkey ( void *ctx, const void *key, size_t keylen ) {
	struct aes_context *aes = ctx;
	union aes_matrix *enc;
	union aes_matrix *dec;
	union aes_matrix temp;
	union aes_matrix zero;
	unsigned int rcon = 0x01;
	unsigned int rounds;
	size_t offset = 0;
	uint32_t *prev;
	uint32_t *next;
	uint32_t *end;
	uint32_t tmp;

	/* Generate lookup tables, if not already done */
	if ( ! aes_mixcolumns.entry[0].byte[0] )
		aes_generate();

	/* Validate key length and calculate number of intermediate rounds */
	switch ( keylen ) {
	case ( 128 / 8 ) :
		rounds = 11;
		break;
	case ( 192 / 8 ) :
		rounds = 13;
		break;
	case ( 256 / 8 ) :
		rounds = 15;
		break;
	default:
		DBGC ( aes, "AES %p unsupported key length (%zd bits)\n",
		       aes, ( keylen * 8 ) );
		return -EINVAL;
	}
	aes->rounds = rounds;
	enc = aes->encrypt.key;
	end = enc[rounds].column;

	/* Copy raw key */
	memcpy ( enc, key, keylen );
	prev = enc->column;
	next = ( ( ( void * ) prev ) + keylen );
	tmp = next[-1];

	/* Construct expanded key */
	while ( next < end ) {

		/* If this is the first column of an expanded key
		 * block, or the middle column of an AES-256 key
		 * block, then apply the S-box.
		 */
		if ( ( offset == 0 ) || ( ( offset | keylen ) == 48 ) )
			tmp = aes_key_sbox ( tmp );

		/* If this is the first column of an expanded key
		 * block then rotate and apply the round constant.
		 */
		if ( offset == 0 ) {
			tmp = aes_key_rotate ( tmp );
			tmp = aes_key_rcon ( tmp, rcon );
			rcon = aes_double ( rcon );
		}

		/* XOR with previous key column */
		tmp ^= *prev;

		/* Store column */
		*next = tmp;

		/* Move to next column */
		offset += sizeof ( *next );
		if ( offset == keylen )
			offset = 0;
		next++;
		prev++;
	}
	DBGC2 ( aes, "AES %p expanded %zd-bit key:\n", aes, ( keylen * 8 ) );
	DBGC2_HDA ( aes, 0, &aes->encrypt, ( rounds * sizeof ( *enc ) ) );

	/* Convert to decryption key */
	memset ( &zero, 0, sizeof ( zero ) );
	dec = &aes->decrypt.key[ rounds - 1 ];
	memcpy ( dec--, enc++, sizeof ( *dec ) );
	while ( dec > aes->decrypt.key ) {
		/* Perform InvMixColumns (by reusing the encryption
		 * final-round code to perform ShiftRows+SubBytes and
		 * reusing the decryption intermediate-round code to
		 * perform InvShiftRows+InvSubBytes+InvMixColumns, all
		 * with a zero encryption key).
		 */
		aes_final ( &aes_mixcolumns, AES_STRIDE_SHIFTROWS,
			    enc++, &temp, &zero );
		aes_decrypt_rounds ( &temp, dec--, &zero, 1 );
	}
	memcpy ( dec--, enc++, sizeof ( *dec ) );
	DBGC2 ( aes, "AES %p inverted %zd-bit key:\n", aes, ( keylen * 8 ) );
	DBGC2_HDA ( aes, 0, &aes->decrypt, ( rounds * sizeof ( *dec ) ) );

	return 0;
}

/**
 * Set initialisation vector
 *
 * @v ctx		Context
 * @v iv		Initialisation vector
 */
static void aes_setiv ( void *ctx __unused, const void *iv __unused ) {
	/* Nothing to do */
}

/** Basic AES algorithm */
struct cipher_algorithm aes_algorithm = {
	.name = "aes",
	.ctxsize = sizeof ( struct aes_context ),
	.blocksize = AES_BLOCKSIZE,
	.setkey = aes_setkey,
	.setiv = aes_setiv,
	.encrypt = aes_encrypt,
	.decrypt = aes_decrypt,
};

/* AES in Electronic Codebook mode */
ECB_CIPHER ( aes_ecb, aes_ecb_algorithm,
	     aes_algorithm, struct aes_context, AES_BLOCKSIZE );

/* AES in Cipher Block Chaining mode */
CBC_CIPHER ( aes_cbc, aes_cbc_algorithm,
	     aes_algorithm, struct aes_context, AES_BLOCKSIZE );