summaryrefslogtreecommitdiffstats
path: root/memtestEDK/Memtest/SingleComponents/init.c
diff options
context:
space:
mode:
Diffstat (limited to 'memtestEDK/Memtest/SingleComponents/init.c')
-rw-r--r--memtestEDK/Memtest/SingleComponents/init.c1296
1 files changed, 1296 insertions, 0 deletions
diff --git a/memtestEDK/Memtest/SingleComponents/init.c b/memtestEDK/Memtest/SingleComponents/init.c
new file mode 100644
index 0000000..32bff7f
--- /dev/null
+++ b/memtestEDK/Memtest/SingleComponents/init.c
@@ -0,0 +1,1296 @@
+/*
+ * MemTest86+ V5 Specific code (GPL V2.0)
+ * By Samuel DEMEULEMEESTER, sdemeule@memtest.org
+ * http://www.canardpc.com - http://www.memtest.org
+ * ------------------------------------------------
+ * init.c - MemTest-86 Version 3.6
+ *
+ * Released under version 2 of the Gnu Public License.
+ * By Chris Brady
+ */
+
+
+#include "stdin.h"
+#include "stddef.h"
+#include "test.h"
+#include "defs.h"
+#include "config.h"
+#include "cpuid.h"
+#include "smp.h"
+#include "io.h"
+#include "spd.h"
+#include "pci.h"
+#include "controller.h"
+
+extern struct tseq tseq[];
+extern short memsz_mode;
+extern int num_cpus;
+extern int act_cpus;
+extern int found_cpus;
+unsigned long imc_type = 0;
+extern int maxcpus;
+extern char cpu_mask[];
+extern void initialise_cpus();
+
+/* Here we store all of the cpuid data */
+extern struct cpu_ident cpu_id;
+
+int l1_cache=0, l2_cache=0, l3_cache=0;
+int tsc_invariable = 0;
+ulong extclock;
+
+ulong memspeed(ulong src, ulong len, int iter);
+static void cpu_type(void);
+static int cpuspeed(void);
+static void get_cache_size();
+static void cpu_cache_speed();
+void get_cpuid();
+int beepmode;
+extern short dmi_initialized;
+extern int dmi_err_cnts[MAX_DMI_MEMDEVS];
+
+/* Failsafe function */
+/* msec: number of ms to wait - scs: scancode expected to stop */
+/* bits: 0 = extended detection - 1: SMP - 2: Temp Check */
+/* 3: MP SMP - 4-7: RSVD */
+void failsafe(int msec, int scs)
+{
+ int i;
+ ulong sh, sl, l, h, t;
+ unsigned char c;
+ volatile char *pp;
+
+ for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<40; i++, pp+=2) {
+ *pp = 0x1E;
+ }
+ for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<3; i++, pp+=2) {
+ *pp = 0x9E;
+ }
+ for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(55*2)+1); i<3; i++, pp+=2) {
+ *pp = 0x9E;
+ }
+
+ cprint(18, 18, "==> Press F1 to enter Fail-Safe Mode <==");
+
+ if(vv->fail_safe & 2)
+ {
+ cprint(19, 15, "==> Press F2 to force Multi-Threading (SMP) <==");
+ }
+
+ /* save the starting time */
+ asm __volatile__
+ ("rdtsc":"=a" (sl),"=d" (sh));
+
+ /* loop for n seconds */
+ while (1) {
+ asm __volatile__(
+ "rdtsc":"=a" (l),"=d" (h));
+ asm __volatile__ (
+ "subl %2,%0\n\t"
+ "sbbl %3,%1"
+ :"=a" (l), "=d" (h)
+ :"g" (sl), "g" (sh),
+ "0" (l), "1" (h));
+
+ t = h * ((unsigned)0xffffffff / vv->clks_msec);
+ t += (l / vv->clks_msec);
+
+ /* Is the time up? */
+ if (t >= msec) { break; }
+
+ /* Is expected Scan code pressed? */
+ c = get_key();
+ c &= 0x7f;
+
+ /* F1 */
+ if(c == scs) { vv->fail_safe |= 1; break; }
+
+ /* F2 */
+ if(c == scs+1)
+ {
+ vv->fail_safe ^= 2;
+ break;
+
+ }
+
+ /* F3 */
+ if(c == scs+2)
+ {
+ if(vv->fail_safe & 2) { vv->fail_safe ^= 2; }
+ vv->fail_safe |= 8;
+ break;
+ }
+ }
+
+ cprint(18, 18, " ");
+ cprint(19, 15, " ");
+
+ for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<40; i++, pp+=2) {
+ *pp = 0x17;
+ }
+}
+
+static void display_init(void)
+{
+ int i;
+ volatile char *pp;
+
+ /* Set HW cursor out of screen boundaries */
+ __outb(0x0F, 0x03D4);
+ __outb(0xFF, 0x03D5);
+
+ __outb(0x0E, 0x03D4);
+ __outb(0xFF, 0x03D5);
+
+
+ serial_echo_init();
+ serial_echo_print("INE_SCROLL;24r"); /* Set scroll area row 7-23 */
+ serial_echo_print(""); /* Clear Screen */
+ serial_echo_print("");
+ serial_echo_print("");
+ serial_echo_print("");
+
+ /* Clear screen & set background to blue */
+ for(i=0, pp=(char *)(SCREEN_ADR); i<80*24; i++) {
+ *pp++ = ' ';
+ *pp++ = 0x17;
+ }
+
+ /* Make the name background green */
+ for(i=0, pp=(char *)(SCREEN_ADR+1); i<TITLE_WIDTH; i++, pp+=2) {
+ *pp = 0x20;
+ }
+ cprint(0, 0, " Memtest86 5.31b ");
+
+ /* Set Blinking "+" */
+ for(i=0, pp=(char *)(SCREEN_ADR+1); i<2; i++, pp+=30) {
+ *pp = 0xA4;
+ }
+ cprint(0, 15, "+");
+
+ /* Do reverse video for the bottom display line */
+ for(i=0, pp=(char *)(SCREEN_ADR+1+(24 * 160)); i<80; i++, pp+=2) {
+ *pp = 0x71;
+ }
+
+ serial_echo_print("");
+}
+
+/*
+ * Initialize test, setup screen and find out how much memory there is.
+ */
+void init(void)
+{
+ int i;
+
+ outb(0x8, 0x3f2); /* Kill Floppy Motor */
+
+ /* Turn on cache */
+ set_cache(1);
+
+ /* Setup the display */
+ display_init();
+
+ cprint(5, 60, "| Time: 0:00:00");
+ cprint(1, COL_MID,"Pass %");
+ cprint(2, COL_MID,"Test %");
+ cprint(3, COL_MID,"Test #");
+ cprint(4, COL_MID,"Testing: ");
+ cprint(5, COL_MID,"Pattern: ");
+ cprint(1, 0, "CLK: (32b Mode)");
+ cprint(2, 0, "L1 Cache: Unknown ");
+ cprint(3, 0, "L2 Cache: Unknown ");
+ cprint(4, 0, "L3 Cache: None ");
+ cprint(5, 0, "Memory : ");
+ cprint(6, 0, "------------------------------------------------------------------------------");
+ cprint(7, 0, "Core#:");
+ cprint(8, 0, "State:");
+ cprint(9, 0, "Cores: Active / Total (Run: All) | Pass: 0 Errors: 0 ");
+ cprint(10, 0, "------------------------------------------------------------------------------");
+
+ /*
+ for(i=0, pp=(char *)(SCREEN_ADR+(5*160)+(53*2)+1); i<20; i++, pp+=2) {
+ *pp = 0x92;
+ }
+
+ for(i=0, pp=(char *)(SCREEN_ADR+0*160+1); i<80; i++, pp+=2) {
+ *pp = 0x47;
+ }
+ */
+
+ cprint(7, 39, "| Chipset : Unknown");
+ cprint(8, 39, "| Memory Type : Unknown");
+
+ for(i=0; i < 6; i++) {
+ cprint(i, COL_MID-2, "| ");
+ }
+
+ footer();
+
+ aprint(5, 10, vv->test_pages);
+
+ vv->pass = 0;
+ vv->msg_line = 0;
+ vv->ecount = 0;
+ vv->ecc_ecount = 0;
+ vv->testsel = -1;
+ vv->msg_line = LINE_SCROLL-1;
+ vv->scroll_start = vv->msg_line * 160;
+ vv->erri.low_addr.page = 0x7fffffff;
+ vv->erri.low_addr.offset = 0xfff;
+ vv->erri.high_addr.page = 0;
+ vv->erri.high_addr.offset = 0;
+ vv->erri.min_bits = 32;
+ vv->erri.max_bits = 0;
+ vv->erri.min_bits = 32;
+ vv->erri.max_bits = 0;
+ vv->erri.maxl = 0;
+ vv->erri.cor_err = 0;
+ vv->erri.ebits = 0;
+ vv->erri.hdr_flag = 0;
+ vv->erri.tbits = 0;
+ for (i=0; tseq[i].msg != NULL; i++) {
+ tseq[i].errors = 0;
+ }
+ if (dmi_initialized) {
+ for (i=0; i < MAX_DMI_MEMDEVS; i++){
+ if (dmi_err_cnts[i] > 0) {
+ dmi_err_cnts[i] = 0;
+ }
+ }
+ }
+
+ /* setup beep mode */
+ beepmode = BEEP_MODE;
+
+ /* Get the cpu and cache information */
+ get_cpuid();
+
+ /* setup pci */
+ pci_init();
+
+ get_cache_size();
+
+ cpu_type();
+
+ cpu_cache_speed();
+
+ /* Check fail safe */
+ failsafe(5000, 0x3B);
+
+ /* Initalize SMP */
+ initialise_cpus();
+
+ for (i = 0; i <num_cpus; i++) {
+ dprint(7, i+7, i%10, 1, 0);
+ cprint(8, i+7, "S");
+ }
+
+ dprint(9, 19, num_cpus, 2, 0);
+
+ if((vv->fail_safe & 3) == 2)
+ {
+ cprint(LINE_CPU,9, "(SMP: Disabled)");
+ cprint(LINE_RAM,9, "Running...");
+ }
+ // dprint(10, 5, found_cpus, 2, 0);
+
+ /* Find Memory Specs */
+ if(vv->fail_safe & 1)
+ {
+ cprint(LINE_CPU, COL_SPEC, " **** FAIL SAFE **** FAIL SAFE **** ");
+ cprint(LINE_RAM, COL_SPEC, " No detection, same reliability ");
+ } else {
+ find_controller();
+ get_spd_spec();
+ if(num_cpus <= 16 && !(vv->fail_safe & 4)) { coretemp(); }
+ }
+
+ if(vv->check_temp > 0 && !(vv->fail_safe & 4))
+ {
+ cprint(LINE_CPU, 26, "| CPU Temp");
+ cprint(LINE_CPU+1, 26, "| øC");
+ }
+
+ beep(600);
+ beep(1000);
+
+ /* Record the start time */
+ asm __volatile__ ("rdtsc":"=a" (vv->startl),"=d" (vv->starth));
+ vv->snapl = vv->startl;
+ vv->snaph = vv->starth;
+ if (l1_cache == 0) { l1_cache = 64; }
+ if (l2_cache == 0) { l1_cache = 512; }
+ vv->printmode=PRINTMODE_ADDRESSES;
+ vv->numpatn=0;
+}
+
+/* Get cache sizes for most AMD and Intel CPUs, exceptions for old CPUs are
+ * handled in CPU detection */
+void get_cache_size()
+{
+ int i, j, n, size;
+ unsigned int v[4];
+ unsigned char *dp = (unsigned char *)v;
+ struct cpuid4_eax *eax = (struct cpuid4_eax *)&v[0];
+ struct cpuid4_ebx *ebx = (struct cpuid4_ebx *)&v[1];
+ struct cpuid4_ecx *ecx = (struct cpuid4_ecx *)&v[2];
+
+ switch(cpu_id.vend_id.char_array[0]) {
+ /* AMD Processors */
+ case 'A':
+ //l1_cache = cpu_id.cache_info.amd.l1_i_sz;
+ l1_cache = cpu_id.cache_info.amd.l1_d_sz;
+ l2_cache = cpu_id.cache_info.amd.l2_sz;
+ l3_cache = cpu_id.cache_info.amd.l3_sz;
+ l3_cache *= 512;
+ break;
+ case 'G':
+ /* Intel Processors */
+ l1_cache = 0;
+ l2_cache = 0;
+ l3_cache = 0;
+
+ /* Use CPUID(4) if it is available */
+ if (cpu_id.max_cpuid > 3) {
+
+ /* figure out how many cache leaves */
+ n = -1;
+ do
+ {
+ ++n;
+ /* Do cpuid(4) loop to find out num_cache_leaves */
+ cpuid_count(4, n, &v[0], &v[1], &v[2], &v[3]);
+ } while ((eax->ctype) != 0);
+
+ /* loop through all of the leaves */
+ for (i=0; i<n; i++)
+ {
+ cpuid_count(4, i, &v[0], &v[1], &v[2], &v[3]);
+
+ /* Check for a valid cache type */
+ if (eax->ctype == 1 || eax->ctype == 3)
+ {
+
+ /* Compute the cache size */
+ size = (ecx->number_of_sets + 1) *
+ (ebx->coherency_line_size + 1) *
+ (ebx->physical_line_partition + 1) *
+ (ebx->ways_of_associativity + 1);
+ size /= 1024;
+
+ switch (eax->level)
+ {
+ case 1:
+ l1_cache += size;
+ break;
+ case 2:
+ l2_cache += size;
+ break;
+ case 3:
+ l3_cache += size;
+ break;
+ }
+ }
+ }
+ return;
+ }
+
+ /* No CPUID(4) so we use the older CPUID(2) method */
+ /* Get number of times to iterate */
+ cpuid(2, &v[0], &v[1], &v[2], &v[3]);
+ n = v[0] & 0xff;
+ for (i=0 ; i<n ; i++) {
+ cpuid(2, &v[0], &v[1], &v[2], &v[3]);
+
+ /* If bit 31 is set, this is an unknown format */
+ for (j=0 ; j<3 ; j++) {
+ if (v[j] & (1 << 31)) {
+ v[j] = 0;
+ }
+ }
+
+ /* Byte 0 is level count, not a descriptor */
+ for (j = 1 ; j < 16 ; j++) {
+ switch(dp[j]) {
+ case 0x6:
+ case 0xa:
+ case 0x66:
+ l1_cache += 8;
+ break;
+ case 0x8:
+ case 0xc:
+ case 0xd:
+ case 0x60:
+ case 0x67:
+ l1_cache += 16;
+ break;
+ case 0xe:
+ l1_cache += 24;
+ break;
+ case 0x9:
+ case 0x2c:
+ case 0x30:
+ case 0x68:
+ l1_cache += 32;
+ break;
+ case 0x39:
+ case 0x3b:
+ case 0x41:
+ case 0x79:
+ l2_cache += 128;
+ break;
+ case 0x3a:
+ l2_cache += 192;
+ break;
+ case 0x21:
+ case 0x3c:
+ case 0x3f:
+ case 0x42:
+ case 0x7a:
+ case 0x82:
+ l2_cache += 256;
+ break;
+ case 0x3d:
+ l2_cache += 384;
+ break;
+ case 0x3e:
+ case 0x43:
+ case 0x7b:
+ case 0x7f:
+ case 0x80:
+ case 0x83:
+ case 0x86:
+ l2_cache += 512;
+ break;
+ case 0x44:
+ case 0x78:
+ case 0x7c:
+ case 0x84:
+ case 0x87:
+ l2_cache += 1024;
+ break;
+ case 0x45:
+ case 0x7d:
+ case 0x85:
+ l2_cache += 2048;
+ break;
+ case 0x48:
+ l2_cache += 3072;
+ break;
+ case 0x4e:
+ l2_cache += 6144;
+ break;
+ case 0x23:
+ case 0xd0:
+ l3_cache += 512;
+ break;
+ case 0xd1:
+ case 0xd6:
+ l3_cache += 1024;
+ break;
+ case 0x25:
+ case 0xd2:
+ case 0xd7:
+ case 0xdc:
+ case 0xe2:
+ l3_cache += 2048;
+ break;
+ case 0x29:
+ case 0x46:
+ case 0x49:
+ case 0xd8:
+ case 0xdd:
+ case 0xe3:
+ l3_cache += 4096;
+ break;
+ case 0x4a:
+ l3_cache += 6144;
+ break;
+ case 0x47:
+ case 0x4b:
+ case 0xde:
+ case 0xe4:
+ l3_cache += 8192;
+ break;
+ case 0x4c:
+ case 0xea:
+ l3_cache += 12288;
+ break;
+ case 0x4d:
+ l3_cache += 16384;
+ break;
+ case 0xeb:
+ l3_cache += 18432;
+ break;
+ case 0xec:
+ l3_cache += 24576;
+ break;
+ } /* end switch */
+ } /* end for 1-16 */
+ } /* end for 0 - n */
+ }
+}
+
+/*
+ * Find IMC type and set global variables accordingly
+ */
+void detect_imc(void)
+{
+ // Check AMD IMC
+ if(cpu_id.vend_id.char_array[0] == 'A' && cpu_id.vers.bits.family == 0xF)
+ {
+ switch(cpu_id.vers.bits.extendedFamily)
+ {
+ case 0x0:
+ imc_type = 0x0100; // Old K8
+ break;
+ case 0x1:
+ case 0x2:
+ imc_type = 0x0101; // K10 (Family 10h & 11h)
+ break;
+ case 0x3:
+ imc_type = 0x0102; // A-Series APU (Family 12h)
+ break;
+ case 0x5:
+ imc_type = 0x0103; // C- / E- / Z- Series APU (Family 14h)
+ break;
+ case 0x6:
+ imc_type = 0x0104; // FX Series (Family 15h)
+ break;
+ case 0x7:
+ imc_type = 0x0105; // Kabini & related (Family 16h)
+ break;
+ }
+ return;
+ }
+
+ // Check Intel IMC
+ if(cpu_id.vend_id.char_array[0] == 'G' && cpu_id.vers.bits.family == 6 && cpu_id.vers.bits.extendedModel)
+ {
+ switch(cpu_id.vers.bits.model)
+ {
+ case 0x5:
+ if(cpu_id.vers.bits.extendedModel == 2) { imc_type = 0x0003; } // Core i3/i5 1st Gen 45 nm (NHM)
+ if(cpu_id.vers.bits.extendedModel == 3) { vv->fail_safe |= 4; } // Atom Clover Trail
+ if(cpu_id.vers.bits.extendedModel == 4) { imc_type = 0x0007; } // HSW-ULT
+ break;
+ case 0x6:
+ if(cpu_id.vers.bits.extendedModel == 3) {
+ imc_type = 0x0009; // Atom Cedar Trail
+ vv->fail_safe |= 4; // Disable Core temp
+ }
+ break;
+ case 0xA:
+ switch(cpu_id.vers.bits.extendedModel)
+ {
+ case 0x1:
+ imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHME)
+ break;
+ case 0x2:
+ imc_type = 0x0004; // Core 2nd Gen (SNB)
+ break;
+ case 0x3:
+ imc_type = 0x0006; // Core 3nd Gen (IVB)
+ break;
+ }
+ break;
+ case 0xC:
+ switch(cpu_id.vers.bits.extendedModel)
+ {
+ case 0x1:
+ if(cpu_id.vers.bits.stepping > 9) { imc_type = 0x0008; } // Atom PineView
+ vv->fail_safe |= 4; // Disable Core temp
+ break;
+ case 0x2:
+ imc_type = 0x0002; // Core i7 1st Gen 32 nm (WMR)
+ break;
+ case 0x3:
+ imc_type = 0x0007; // Core 4nd Gen (HSW)
+ break;
+ }
+ break;
+ case 0xD:
+ imc_type = 0x0005; // SNB-E
+ break;
+ case 0xE:
+ imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHM)
+ break;
+ }
+
+ if(imc_type) { tsc_invariable = 1; }
+ return;
+ }
+}
+
+void smp_default_mode(void)
+{
+ int i, result;
+ char *cpupsn = cpu_id.brand_id.char_array;
+ char *disabledcpu[] = { "Opteron", "Xeon", "EPYC", "Genuine Intel" };
+
+ for(i = 0; i < 3; i++)
+ {
+ result = mt86_strstr(cpupsn , disabledcpu[i]);
+ if(result != -1) { vv->fail_safe |= 0b10; }
+ }
+
+ // For 5.01 release, SMP disabled by defualt by config.h toggle
+ if(CONSERVATIVE_SMP) { vv->fail_safe |= 0b10; }
+
+}
+
+/*
+ * Find CPU type
+ */
+void cpu_type(void)
+{
+ /* If we can get a brand string use it, and we are done */
+ if (cpu_id.max_xcpuid >= 0x80000004) {
+ cprint(0, COL_MID, cpu_id.brand_id.char_array);
+ //If we have a brand string, maybe we have an IMC. Check that.
+ detect_imc();
+ smp_default_mode();
+ return;
+ }
+
+ /* The brand string is not available so we need to figure out
+ * CPU what we have */
+ switch(cpu_id.vend_id.char_array[0]) {
+ /* AMD Processors */
+ case 'A':
+ switch(cpu_id.vers.bits.family) {
+ case 4:
+ switch(cpu_id.vers.bits.model) {
+ case 3:
+ cprint(0, COL_MID, "AMD 486DX2");
+ break;
+ case 7:
+ cprint(0, COL_MID, "AMD 486DX2-WB");
+ break;
+ case 8:
+ cprint(0, COL_MID, "AMD 486DX4");
+ break;
+ case 9:
+ cprint(0, COL_MID, "AMD 486DX4-WB");
+ break;
+ case 14:
+ cprint(0, COL_MID, "AMD 5x86-WT");
+ break;
+ case 15:
+ cprint(0, COL_MID, "AMD 5x86-WB");
+ break;
+ }
+ /* Since we can't get CPU speed or cache info return */
+ return;
+ case 5:
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ cprint(0, COL_MID, "AMD K5");
+ l1_cache = 8;
+ break;
+ case 6:
+ case 7:
+ cprint(0, COL_MID, "AMD K6");
+ break;
+ case 8:
+ cprint(0, COL_MID, "AMD K6-2");
+ break;
+ case 9:
+ cprint(0, COL_MID, "AMD K6-III");
+ break;
+ case 13:
+ cprint(0, COL_MID, "AMD K6-III+");
+ break;
+ }
+ break;
+ case 6:
+
+ switch(cpu_id.vers.bits.model) {
+ case 1:
+ cprint(0, COL_MID, "AMD Athlon (0.25)");
+ break;
+ case 2:
+ case 4:
+ cprint(0, COL_MID, "AMD Athlon (0.18)");
+ break;
+ case 6:
+ if (l2_cache == 64) {
+ cprint(0, COL_MID, "AMD Duron (0.18)");
+ } else {
+ cprint(0, COL_MID, "Athlon XP (0.18)");
+ }
+ break;
+ case 8:
+ case 10:
+ if (l2_cache == 64) {
+ cprint(0, COL_MID, "AMD Duron (0.13)");
+ } else {
+ cprint(0, COL_MID, "Athlon XP (0.13)");
+ }
+ break;
+ case 3:
+ case 7:
+ cprint(0, COL_MID, "AMD Duron");
+ /* Duron stepping 0 CPUID for L2 is broken */
+ /* (AMD errata T13)*/
+ if (cpu_id.vers.bits.stepping == 0) { /* stepping 0 */
+ /* Hard code the right L2 size */
+ l2_cache = 64;
+ } else {
+ }
+ break;
+ }
+ break;
+
+ /* All AMD family values >= 10 have the Brand ID
+ * feature so we don't need to find the CPU type */
+ }
+ break;
+
+ /* Intel or Transmeta Processors */
+ case 'G':
+ if ( cpu_id.vend_id.char_array[7] == 'T' ) { /* GenuineTMx86 */
+ if (cpu_id.vers.bits.family == 5) {
+ cprint(0, COL_MID, "TM 5x00");
+ } else if (cpu_id.vers.bits.family == 15) {
+ cprint(0, COL_MID, "TM 8x00");
+ }
+ l1_cache = cpu_id.cache_info.ch[3] + cpu_id.cache_info.ch[7];
+ l2_cache = (cpu_id.cache_info.ch[11]*256) + cpu_id.cache_info.ch[10];
+ } else { /* GenuineIntel */
+ if (cpu_id.vers.bits.family == 4) {
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ case 1:
+ cprint(0, COL_MID, "Intel 486DX");
+ break;
+ case 2:
+ cprint(0, COL_MID, "Intel 486SX");
+ break;
+ case 3:
+ cprint(0, COL_MID, "Intel 486DX2");
+ break;
+ case 4:
+ cprint(0, COL_MID, "Intel 486SL");
+ break;
+ case 5:
+ cprint(0, COL_MID, "Intel 486SX2");
+ break;
+ case 7:
+ cprint(0, COL_MID, "Intel 486DX2-WB");
+ break;
+ case 8:
+ cprint(0, COL_MID, "Intel 486DX4");
+ break;
+ case 9:
+ cprint(0, COL_MID, "Intel 486DX4-WB");
+ break;
+ }
+ /* Since we can't get CPU speed or cache info return */
+ return;
+ }
+
+
+ switch(cpu_id.vers.bits.family) {
+ case 5:
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ case 7:
+ cprint(0, COL_MID, "Pentium");
+ if (l1_cache == 0) {
+ l1_cache = 8;
+ }
+ break;
+ case 4:
+ case 8:
+ cprint(0, COL_MID, "Pentium-MMX");
+ if (l1_cache == 0) {
+ l1_cache = 16;
+ }
+ break;
+ }
+ break;
+ case 6:
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ case 1:
+ cprint(0, COL_MID, "Pentium Pro");
+ break;
+ case 3:
+ case 4:
+ cprint(0, COL_MID, "Pentium II");
+ break;
+ case 5:
+ if (l2_cache == 0) {
+ cprint(0, COL_MID, "Celeron");
+ } else {
+ cprint(0, COL_MID, "Pentium II");
+ }
+ break;
+ case 6:
+ if (l2_cache == 128) {
+ cprint(0, COL_MID, "Celeron");
+ } else {
+ cprint(0, COL_MID, "Pentium II");
+ }
+ }
+ break;
+ case 7:
+ case 8:
+ case 11:
+ if (l2_cache == 128) {
+ cprint(0, COL_MID, "Celeron");
+ } else {
+ cprint(0, COL_MID, "Pentium III");
+ }
+ break;
+ case 9:
+ if (l2_cache == 512) {
+ cprint(0, COL_MID, "Celeron M (0.13)");
+ } else {
+ cprint(0, COL_MID, "Pentium M (0.13)");
+ }
+ break;
+ case 10:
+ cprint(0, COL_MID, "Pentium III Xeon");
+ break;
+ case 12:
+ l1_cache = 24;
+ cprint(0, COL_MID, "Atom (0.045)");
+ break;
+ case 13:
+ if (l2_cache == 1024) {
+ cprint(0, COL_MID, "Celeron M (0.09)");
+ } else {
+ cprint(0, COL_MID, "Pentium M (0.09)");
+ }
+ break;
+ case 14:
+ cprint(0, COL_MID, "Intel Core");
+ break;
+ case 15:
+ if (l2_cache == 1024) {
+ cprint(0, COL_MID, "Pentium E");
+ } else {
+ cprint(0, COL_MID, "Intel Core 2");
+ }
+ break;
+ }
+ break;
+ case 15:
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ case 1:
+ case 2:
+ if (l2_cache == 128) {
+ cprint(0, COL_MID, "Celeron");
+ } else {
+ cprint(0, COL_MID, "Pentium 4");
+ }
+ break;
+ case 3:
+ case 4:
+ if (l2_cache == 256) {
+ cprint(0, COL_MID, "Celeron (0.09)");
+ } else {
+ cprint(0, COL_MID, "Pentium 4 (0.09)");
+ }
+ break;
+ case 6:
+ cprint(0, COL_MID, "Pentium D (65nm)");
+ break;
+ default:
+ cprint(0, COL_MID, "Unknown Intel");
+ break;
+ break;
+ }
+
+ }
+ break;
+
+ /* VIA/Cyrix/Centaur Processors with CPUID */
+ case 'C':
+ if ( cpu_id.vend_id.char_array[1] == 'e' ) { /* CentaurHauls */
+ l1_cache = cpu_id.cache_info.ch[3] + cpu_id.cache_info.ch[7];
+ l2_cache = cpu_id.cache_info.ch[11];
+ switch(cpu_id.vers.bits.family){
+ case 5:
+ cprint(0, COL_MID, "Centaur 5x86");
+ break;
+ case 6: // VIA C3
+ switch(cpu_id.vers.bits.model){
+ default:
+ if (cpu_id.vers.bits.stepping < 8) {
+ cprint(0, COL_MID, "VIA C3 Samuel2");
+ } else {
+ cprint(0, COL_MID, "VIA C3 Eden");
+ }
+ break;
+ case 10:
+ cprint(0, COL_MID, "VIA C7 (C5J)");
+ l1_cache = 64;
+ l2_cache = 128;
+ break;
+ case 13:
+ cprint(0, COL_MID, "VIA C7 (C5R)");
+ l1_cache = 64;
+ l2_cache = 128;
+ break;
+ case 15:
+ cprint(0, COL_MID, "VIA Isaiah (CN)");
+ l1_cache = 64;
+ l2_cache = 128;
+ break;
+ }
+ }
+ } else { /* CyrixInstead */
+ switch(cpu_id.vers.bits.family) {
+ case 5:
+ switch(cpu_id.vers.bits.model) {
+ case 0:
+ cprint(0, COL_MID, "Cyrix 6x86MX/MII");
+ break;
+ case 4:
+ cprint(0, COL_MID, "Cyrix GXm");
+ break;
+ }
+ return;
+
+ case 6: // VIA C3
+ switch(cpu_id.vers.bits.model) {
+ case 6:
+ cprint(0, COL_MID, "Cyrix III");
+ break;
+ case 7:
+ if (cpu_id.vers.bits.stepping < 8) {
+ cprint(0, COL_MID, "VIA C3 Samuel2");
+ } else {
+ cprint(0, COL_MID, "VIA C3 Ezra-T");
+ }
+ break;
+ case 8:
+ cprint(0, COL_MID, "VIA C3 Ezra-T");
+ break;
+ case 9:
+ cprint(0, COL_MID, "VIA C3 Nehemiah");
+ break;
+ }
+ // L1 = L2 = 64 KB from Cyrix III to Nehemiah
+ l1_cache = 64;
+ l2_cache = 64;
+ break;
+ }
+ }
+ break;
+ /* Unknown processor */
+ default:
+ /* Make a guess at the family */
+ switch(cpu_id.vers.bits.family) {
+ case 5:
+ cprint(0, COL_MID, "586");
+ case 6:
+ cprint(0, COL_MID, "686");
+ default:
+ cprint(0, COL_MID, "Unidentified Processor");
+ }
+ }
+}
+
+#define STEST_ADDR 0x100000 /* Measure memory speed starting at 1MB */
+
+/* Measure and display CPU and cache sizes and speeds */
+void cpu_cache_speed()
+{
+ int i, off = 4;
+ ulong speed;
+
+
+ /* Print CPU speed */
+ if ((speed = cpuspeed()) > 0) {
+ if (speed < 999499) {
+ speed += 50; /* for rounding */
+ cprint(1, off, " . MHz");
+ dprint(1, off+1, speed/1000, 3, 1);
+ dprint(1, off+5, (speed/100)%10, 1, 0);
+ } else {
+ speed += 500; /* for rounding */
+ cprint(1, off, " MHz");
+ dprint(1, off, speed/1000, 5, 0);
+ }
+ extclock = speed;
+ }
+
+ /* Print out L1 cache info */
+ /* To measure L1 cache speed we use a block size that is 1/4th */
+ /* of the total L1 cache size since half of it is for instructions */
+ if (l1_cache) {
+ cprint(2, 0, "L1 Cache: K ");
+ dprint(2, 11, l1_cache, 3, 0);
+ if ((speed=memspeed(STEST_ADDR, (l1_cache/2)*1024, 200))) {
+ cprint(2, 16, " MB/s");
+ dprint(2, 16, speed, 6, 0);
+ }
+ }
+
+ /* Print out L2 cache info */
+ /* We measure the L2 cache speed by using a block size that is */
+ /* the size of the L1 cache. We have to fudge if the L1 */
+ /* cache is bigger than the L2 */
+ if (l2_cache) {
+ cprint(3, 0, "L2 Cache: K ");
+ dprint(3, 10, l2_cache, 4, 0);
+
+ if (l2_cache < l1_cache) {
+ i = l1_cache / 4 + l2_cache / 4;
+ } else {
+ i = l1_cache;
+ }
+ if ((speed=memspeed(STEST_ADDR, i*1024, 200))) {
+ cprint(3, 16, " MB/s");
+ dprint(3, 16, speed, 6, 0);
+ }
+ }
+ /* Print out L3 cache info */
+ /* We measure the L3 cache speed by using a block size that is */
+ /* 2X the size of the L2 cache. */
+
+ if (l3_cache)
+ {
+ cprint(4, 0, "L3 Cache: K ");
+ aprint(4, 10, l3_cache/4);
+ //dprint(4, 10, l3_cache, 4, 0);
+
+ i = l2_cache*2;
+
+ if ((speed=memspeed(STEST_ADDR, i*1024, 150))) {
+ cprint(4, 16, " MB/s");
+ dprint(4, 16, speed, 6, 0);
+ }
+ }
+}
+
+/* Measure and display memory speed, multitasked using all CPUs */
+ulong spd[MAX_CPUS];
+void get_mem_speed(int me, int ncpus)
+{
+ int i;
+ ulong speed=0;
+
+ /* Determine memory speed. To find the memory speed we use
+ * A block size that is the sum of all the L1, L2 & L3 caches
+ * in all cpus * 6 */
+ i = (l3_cache + l2_cache + l1_cache) * 4;
+
+ /* Make sure that we have enough memory to do the test */
+ /* If not use all we have */
+ if ((1 + (i * 2)) > (vv->plim_upper << 2)) {
+ i = ((vv->plim_upper <<2) - 1) / 2;
+ }
+
+ speed = memspeed(STEST_ADDR, i * 1024, 100);
+ cprint(5, 16, " MB/s");
+ dprint(5, 16, speed, 6, 0);
+
+}
+
+/* #define TICKS 5 * 11832 (count = 6376)*/
+/* #define TICKS (65536 - 12752) */
+#define TICKS 59659 /* 50 ms */
+
+/* Returns CPU clock in khz */
+ulong stlow, sthigh;
+static int cpuspeed(void)
+{
+ int loops;
+ ulong end_low, end_high;
+
+ if (cpu_id.fid.bits.rdtsc == 0 ) {
+ return(-1);
+ }
+
+ /* Setup timer */
+ outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+ outb(0xb0, 0x43);
+ outb(TICKS & 0xff, 0x42);
+ outb(TICKS >> 8, 0x42);
+
+ asm __volatile__ ("rdtsc":"=a" (stlow),"=d" (sthigh));
+
+ loops = 0;
+ do {
+ loops++;
+ } while ((inb(0x61) & 0x20) == 0);
+
+ asm __volatile__ (
+ "rdtsc\n\t" \
+ "subl stlow,%%eax\n\t" \
+ "sbbl sthigh,%%edx\n\t" \
+ :"=a" (end_low), "=d" (end_high)
+ );
+
+ /* Make sure we have a credible result */
+ if (loops < 4 || end_low < 50000) {
+ return(-1);
+ }
+ vv->clks_msec = end_low/50;
+
+ if (tsc_invariable) end_low = correct_tsc(end_low);
+
+ return(vv->clks_msec);
+}
+
+/* Measure cache speed by copying a block of memory. */
+/* Returned value is kbytes/second */
+ulong memspeed(ulong src, ulong len, int iter)
+{
+ int i;
+ ulong dst, wlen;
+ ulong st_low, st_high;
+ ulong end_low, end_high;
+ ulong cal_low, cal_high;
+
+ if (cpu_id.fid.bits.rdtsc == 0 ) {
+ return(-1);
+ }
+ if (len == 0) return(-2);
+
+ dst = src + len;
+ wlen = len / 4; /* Length is bytes */
+
+ /* Calibrate the overhead with a zero word copy */
+ asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
+ for (i=0; i<iter; i++) {
+ asm __volatile__ (
+ "movl %0,%%esi\n\t" \
+ "movl %1,%%edi\n\t" \
+ "movl %2,%%ecx\n\t" \
+ "cld\n\t" \
+ "rep\n\t" \
+ "movsl\n\t" \
+ :: "g" (src), "g" (dst), "g" (0)
+ : "esi", "edi", "ecx"
+ );
+ }
+ asm __volatile__ ("rdtsc":"=a" (cal_low),"=d" (cal_high));
+
+ /* Compute the overhead time */
+ asm __volatile__ (
+ "subl %2,%0\n\t"
+ "sbbl %3,%1"
+ :"=a" (cal_low), "=d" (cal_high)
+ :"g" (st_low), "g" (st_high),
+ "0" (cal_low), "1" (cal_high)
+ );
+
+
+ /* Now measure the speed */
+ /* Do the first copy to prime the cache */
+ asm __volatile__ (
+ "movl %0,%%esi\n\t" \
+ "movl %1,%%edi\n\t" \
+ "movl %2,%%ecx\n\t" \
+ "cld\n\t" \
+ "rep\n\t" \
+ "movsl\n\t" \
+ :: "g" (src), "g" (dst), "g" (wlen)
+ : "esi", "edi", "ecx"
+ );
+ asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
+ for (i=0; i<iter; i++) {
+ asm __volatile__ (
+ "movl %0,%%esi\n\t" \
+ "movl %1,%%edi\n\t" \
+ "movl %2,%%ecx\n\t" \
+ "cld\n\t" \
+ "rep\n\t" \
+ "movsl\n\t" \
+ :: "g" (src), "g" (dst), "g" (wlen)
+ : "esi", "edi", "ecx"
+ );
+ }
+ asm __volatile__ ("rdtsc":"=a" (end_low),"=d" (end_high));
+
+ /* Compute the elapsed time */
+ asm __volatile__ (
+ "subl %2,%0\n\t"
+ "sbbl %3,%1"
+ :"=a" (end_low), "=d" (end_high)
+ :"g" (st_low), "g" (st_high),
+ "0" (end_low), "1" (end_high)
+ );
+ /* Subtract the overhead time */
+ asm __volatile__ (
+ "subl %2,%0\n\t"
+ "sbbl %3,%1"
+ :"=a" (end_low), "=d" (end_high)
+ :"g" (cal_low), "g" (cal_high),
+ "0" (end_low), "1" (end_high)
+ );
+
+ /* Make sure that the result fits in 32 bits */
+ //hprint(11,40,end_high);
+ if (end_high) {
+ return(-3);
+ }
+ end_low /= 2;
+
+ /* Convert to clocks/KB */
+ end_low /= len;
+ end_low *= 1024;
+ end_low /= iter;
+ if (end_low == 0) {
+ return(-4);
+ }
+
+ /* Convert to kbytes/sec */
+
+ if (tsc_invariable) end_low = correct_tsc(end_low);
+
+ return((vv->clks_msec)/end_low);
+}
+
+#define rdmsr(msr,val1,val2) \
+ __asm__ __volatile__("rdmsr" \
+ : "=a" (val1), "=d" (val2) \
+ : "c" (msr))
+
+
+ulong correct_tsc(ulong el_org)
+{
+ float coef_now, coef_max;
+ int msr_lo, msr_hi, is_xe;
+
+ rdmsr(0x198, msr_lo, msr_hi);
+ is_xe = (msr_lo >> 31) & 0x1;
+
+ if(is_xe){
+ rdmsr(0x198, msr_lo, msr_hi);
+ coef_max = ((msr_hi >> 8) & 0x1F);
+ if ((msr_hi >> 14) & 0x1) { coef_max = coef_max + 0.5f; }
+ } else {
+ rdmsr(0x17, msr_lo, msr_hi);
+ coef_max = ((msr_lo >> 8) & 0x1F);
+ if ((msr_lo >> 14) & 0x1) { coef_max = coef_max + 0.5f; }
+ }
+
+ if(cpu_id.fid.bits.eist) {
+ rdmsr(0x198, msr_lo, msr_hi);
+ coef_now = ((msr_lo >> 8) & 0x1F);
+ if ((msr_lo >> 14) & 0x1) { coef_now = coef_now + 0.5f; }
+ } else {
+ rdmsr(0x2A, msr_lo, msr_hi);
+ coef_now = (msr_lo >> 22) & 0x1F;
+ }
+ if(coef_max && coef_now) {
+ el_org = (ulong)(el_org * coef_now / coef_max);
+ }
+ return el_org;
+}
+